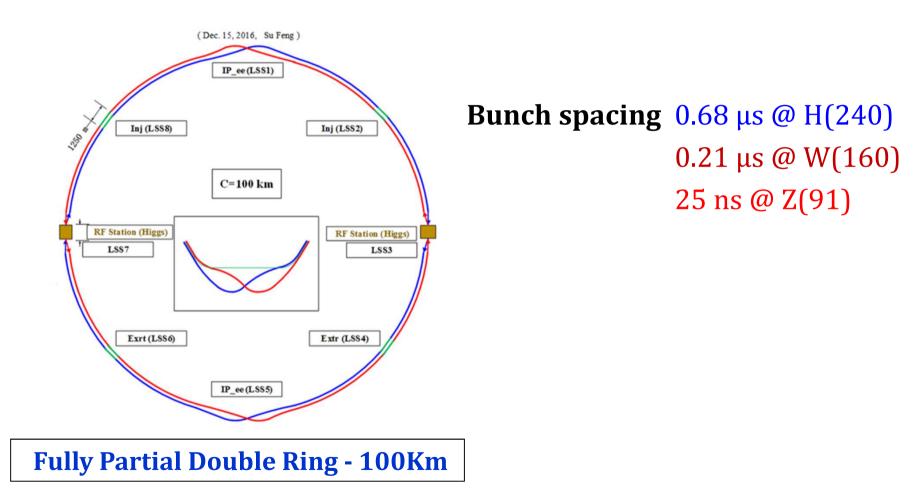


Vertex Tracker Detector

<u>Qun Ouyang</u>(IHEP), Xiangming Sun(CCNU), Meng Wang(SDU) On behalf of the study group

September 13-15, 2018 Beijing


CEPC Physics and Detector CDR International Review

Outline:

- Requirements and challenges
- Baseline design and performance studies
- Sensor technology options
- Mechanics and Integration
- R&D activities
- Summary

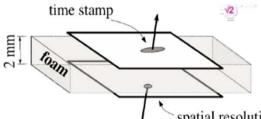
Reminder: CEPC Beam Timing

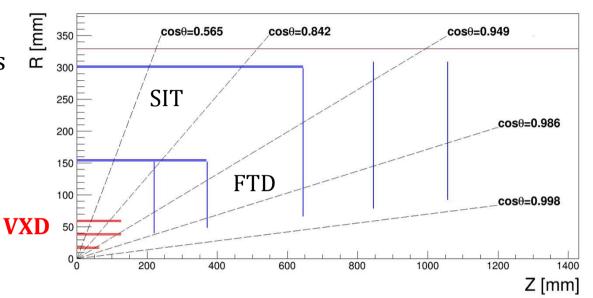
Circular e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in 10yrs E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, (1.6×10³⁵ cm⁻²s⁻¹ at the Z-pole)

Vertex Detector Requirements

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - \longrightarrow impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

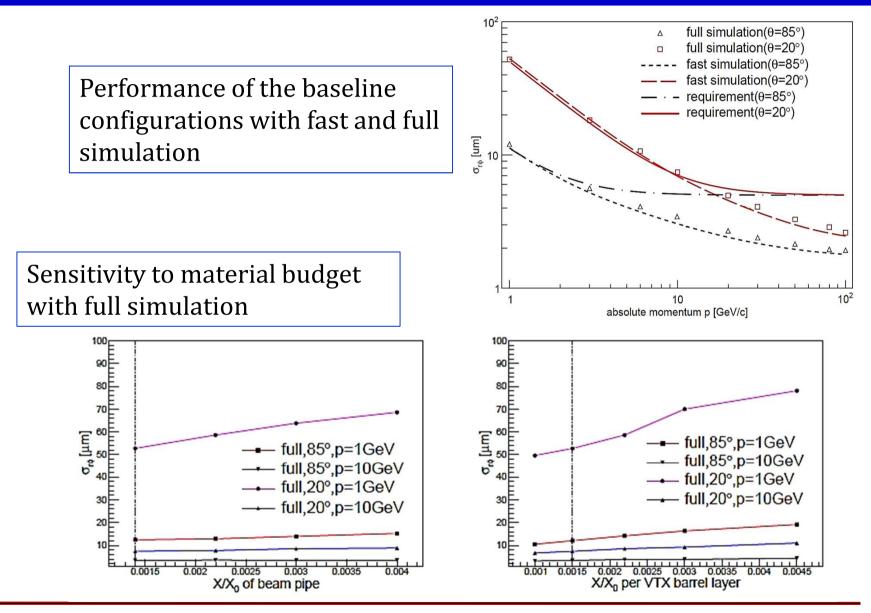

- Detector system requirements:
 - $-\sigma_{\rm SP}$ near the interaction point: $<3 \,\mu m \longrightarrow \sim 16 \,\mu m$ pixel pitch
 - material budget: $\leq 0.15\% X_0/layer$
 - first layer located at a radius: ~1.6 cm
 - pixel occupancy: $\leq 1\%$


- power consumption $< 50 \text{mW/cm}^2$, if air cooling used
- $\sim \mu s$ level readout
- * Radiation tolerance: see slide 8 * Time stamp: needed for short bunch spacing

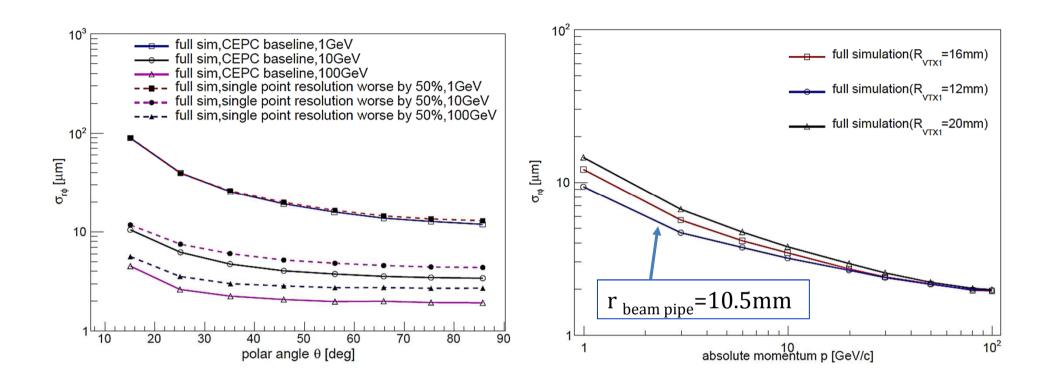
Baseline Vertex Detector Layout

<u>VXD</u>: B=3T

- 3 layers of double-sided pixels
- σ_{SP} =2.8µm in L1
- Faster pixel sensor in L2, to provide time-stamp
- Polar angle $\theta \sim 15$ degrees



spatial resolution		R (mm)	z (mm)	cos 0	σ _{sp} (μm)
- VXD parameters	Layer 1	16	62.5	0.97	2.8
	Layer 2	18	62.5	0.96	6
	Layer 3	37	125.0	0.96	4
	Layer 4	39	125.0	0.95	4
	Layer 5	58	125.0	0.91	4
-	Layer 6	60	125.0	0.90	4


Sept 13-15, 2018 CEPC physics and detector CDR international review

Performance Studies – IP Resolution

CEPC physics and detector CDR international review

Performance Studies – IP Resolution

Sensitivity to single-point resolution and innermost radius with full simulation

Beam-Induced Radiation Backgrounds

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4 - 62
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2

Table 9.4: Summary of hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) with combined contributions from pair production and off-energy beam particles, at the first vertex detector layer (r = 1.6 cm) at different machine operation energies of $\sqrt{s} = 240$, 160 and 91 GeV, respectively.

	H(240)	W(160)	Z(91)
Hit density (hits \cdot cm ⁻² \cdot BX ⁻¹)	2.4	2.3	0.25
Bunching spacing (µs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23

Table 4.2: Occupancies of the first vertex detector layer at different machine operation energies: 240 GeV for ZH production, 160 GeV near W-pair threshold and 91 GeV for Z-pole.

detector occupancy <1%, assuming 10 μ s of readout time for the silicon pixel sensor and an average cluster size of 9 pixels per hit.

Sensor Technology Options

Technology	Examples	Small pixels	Low mass	Low power	Fast timing
Monolithic CMOS MAPS	Mimosa CPS	++	++	++	-
Integrated sensor/amplif. + separate r/o	DEPFET, FPCCD	+/++	0	+	-
Monolithic CMOS with depletion	HV-CMOS, HR-CMOS	+	++	0	+
3D integrated	Tezzaron, SOI	++	+	0	++
Hybrid	CLICpix+planar sensor, HV-CMOS hybrid	+	0	+	++

Ref: Recent developments in LC vertex and tracking R&D, Dominik Dannheim, LCWS 2015

Many technologies from ILC/CLIC could be referred. BUT, unlike the ILD/CLIC, the CEPC detector will operate in continuous mode. \rightarrow without power-pulsing

Sensor Technology Options

Possible technologies for CEPC vertex

- HR-CMOS sensor with a novel readout structure (ALPIDE @ ALICE-ITS upgrade)
 - relatively mature technology
 - <50mW/cm² expected
 - Capable of readout every ${\sim}4\mu s$
- **SOI** sensor with similar readout structure
 - Fully depleted HR substrate, potential of $16 \mu m$ pixel size design
 - Full CMOS circuit
- **DEPFET**: possible application for inner most vertex layer
 - small material budget, low power consumption in sensitive area
- **3D-IC**: ultimate detector, but not mature enough

Mechanics and Integration

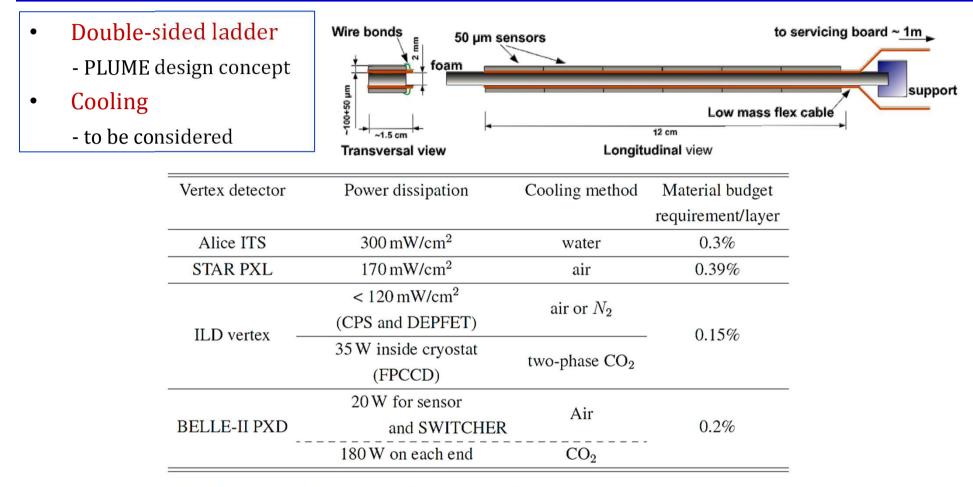
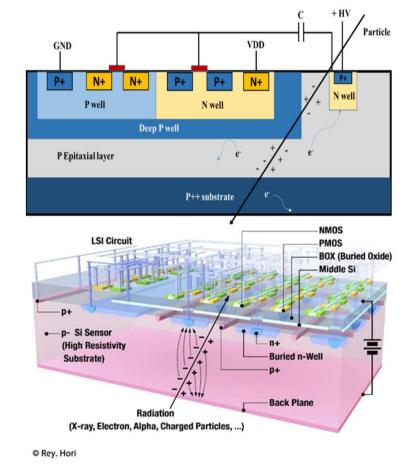
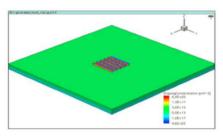
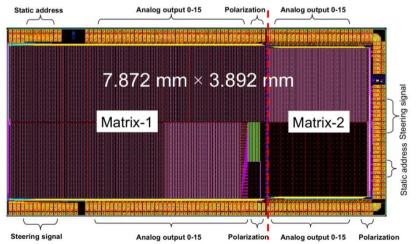



Table 4.3: Cooling methods for several vertex detector designs. The chip power dissipation, coolant type and corresponding material budget requirement per sensor layer are indicated. The active CO₂ cooling adds additional material in the forward region, outside the sensitive area. For the ILD FPCCD option, this additional material budget is $0.3\% X_0$ averaged over the end-plate region, while for the BELLE-II PXD, it is $\sim 0.1 - 0.2\% X_0$ per layer.

R&D Activities in China


Initial sensor R&D targeting on

- Pixel single point resolution <3 $5\mu m$
- Power consumption at the current level <100mW/cm²
- Integration time 10-100μs
- Two monolithic pixel technologies
- CMOS pixel sensor (CPS)
 - TowerJazz CIS 0.18 µm process
 - Quadruple well process
 - Thick (~20 μm) epitaxial layer
 - with high resistivity ($\geq 1 \ k\Omega \bullet cm$)
- SOI pixel sensor
 - LAPIS 0.2 µm process
 - High resistive substrate ($\geq 1 \text{ k}\Omega \cdot \text{cm}$)
 - Double SOI layers available
 - Thinning and backside process



CMOS Pixel Sensor – 1st Design

- Sensor design & TCAD simulation Y.Zhang, et al, NIMA 831(2016)99-104
 - Different sensor diode geometries, epitaxial-layer properties and radiation damage

- JadePix1 submission in Nov. 2015
 - Exploratory prototype, analog pixel, rolling shutter readout mode
 - Sensor optimization and radiation tolerance study
 - sensing node AC-coupled to increase biased voltage
- Sensor characterization
 - Noise level
 - Charge collection efficiency
 - Irradiation with Neutron
 - Test beam in Aug. 2018

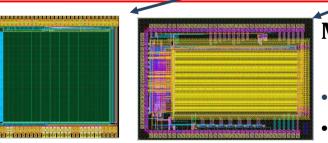
Y. Zhang, Y.Zhou, et al (IHEP, SDU)

CMOS Pixel Sensor – 2nd Design

Design goal: digital readout pixel sensor with

- Single point resolution better than 5µm
- Power consumption <80 mW/cm^2
- Integration time < 100μs

Technology: *TowerJazz CIS 0.18 µm process*

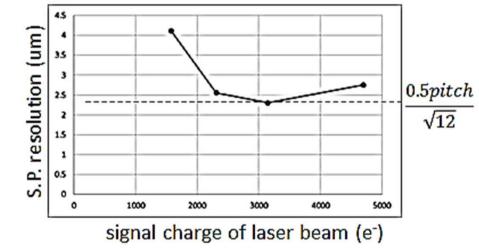

Joint effort of CCNU and IHEP

Design submission in May 2017

- Tow prototypes with digital pixels (in-pixel discriminator)
- Tow different readout schemes: rolling shutter & asynchronous

JadePix2: Y.Zhou (IHEP)

- Pixel size: $22\mu m \times 22\mu m$
- Two different pixel version with higher biased voltage
- Test in lab ongoing


- MIC4: P.Yang(CCNU) Y.Zhou (IHEP)
- Pixel size: $25\mu m \times 25\mu m$
- Two different pixel front-end with Matrix readout architecture
- Test in lab ongoing

R&D Activities - SOI Pixel Sensor

- First submission (CPV1) in June 2015
 - 16*16 µm with in-pixel-discrimination
 - Double-SOI process for shielding and radiation enhancement
- Second submission (CPV2) in June 2016
 - In-pixel CDS stage inserted
 - To improve RTC and FPN noise
 - To replace the charge injection threshold

<u>CPV2 performance</u>

- Thinned down to 75um thick
- Temporal noise ~6e⁻
- Threshold dispersion (FPN) ~114e⁻
- Single point resolution measurement under infrared laser beam

Sept 13-15 , 2018 CEPC physics and detector CDR international review

Y. Lu (IHEP)

Y. Lu, Y.Zhou (IHEP)

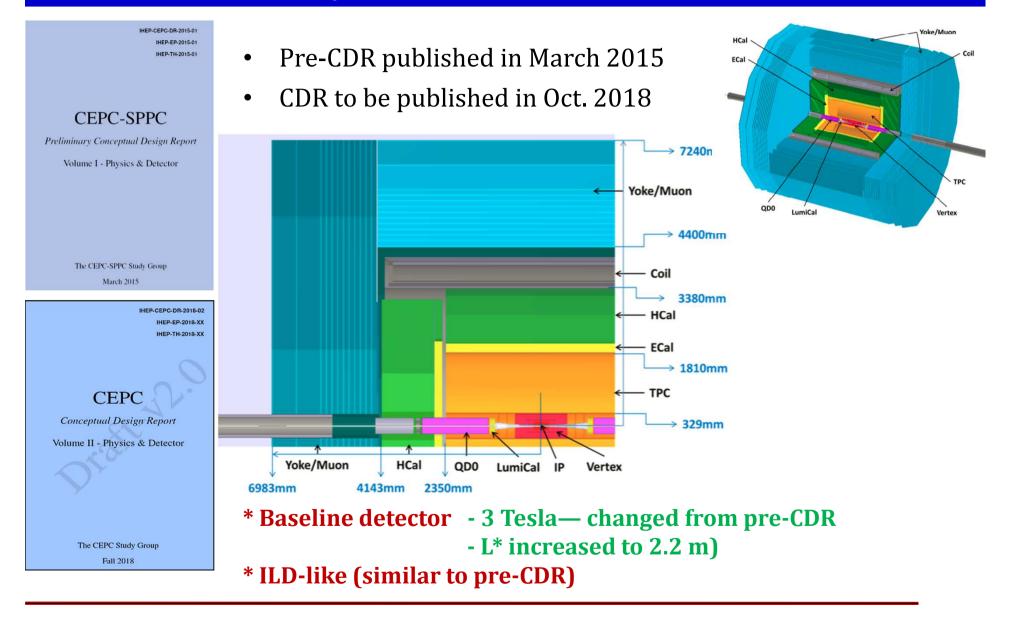
Future Plan on R&D

- Further optimization study of vertex system
- Novel readout scheme exploration
- Large area pixel array design
- Radiation hardness and time-stamp sensor design
- Prototype development
- Small ($16\mu m \times 16\mu m$) pixel, targeting on $3\mu m$ single point resolution
 - To explore 3D connection technology by designing the in-pixel digital logic in a separated tier
 - Or to look for any new process

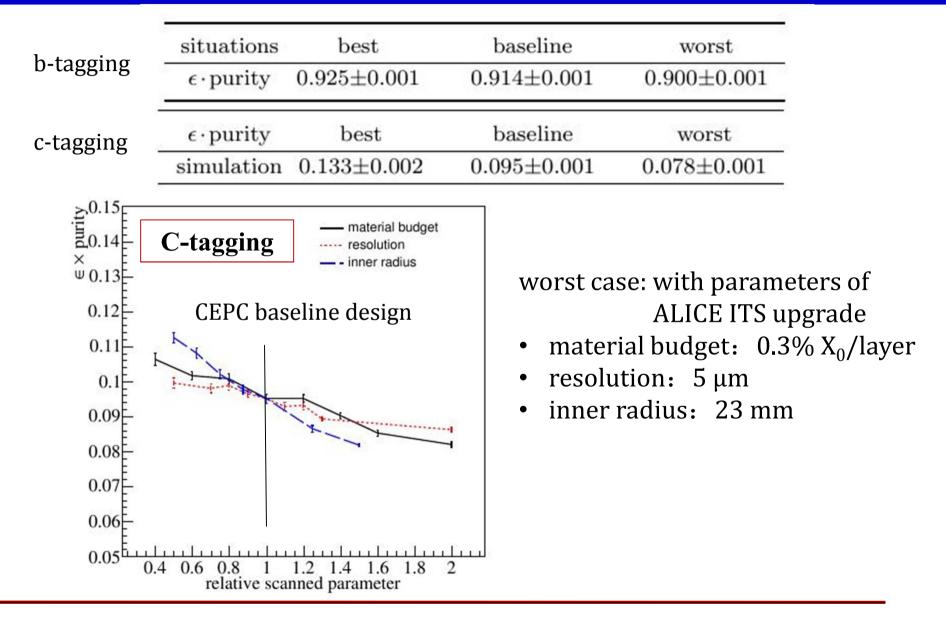
Summary

- CDR finished with baseline design
- Critical technologies listed
- R&D project started along the baseline design specifications
 - in-pixel electronics, small pixel size
 - new asynchronous readout architecture
- Collaboration with international teams
- Going to TDR for next step
- Expertise demanding

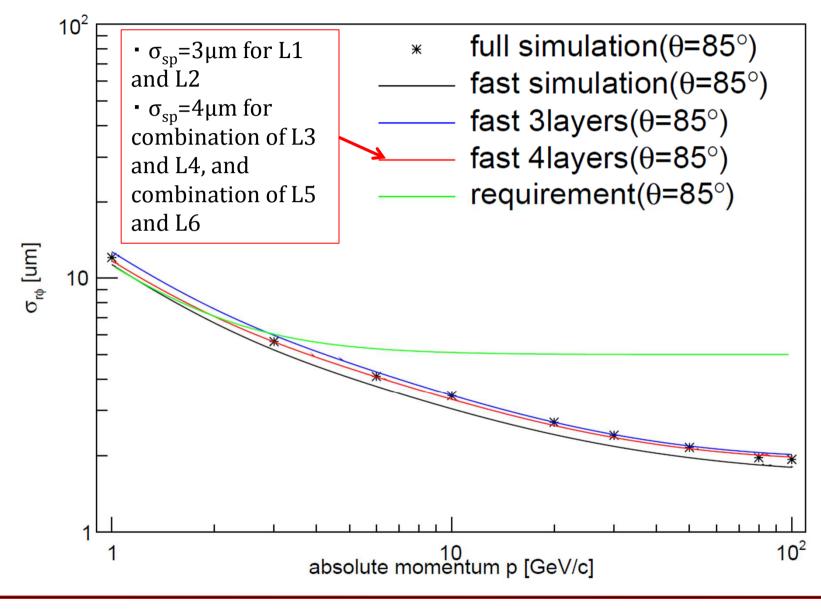
Many thanks to all members of CEPC Physics and Detector working group who made significant efforts to prepare the CDR !


Thank you for your attention!

CEPC CDR Parameters

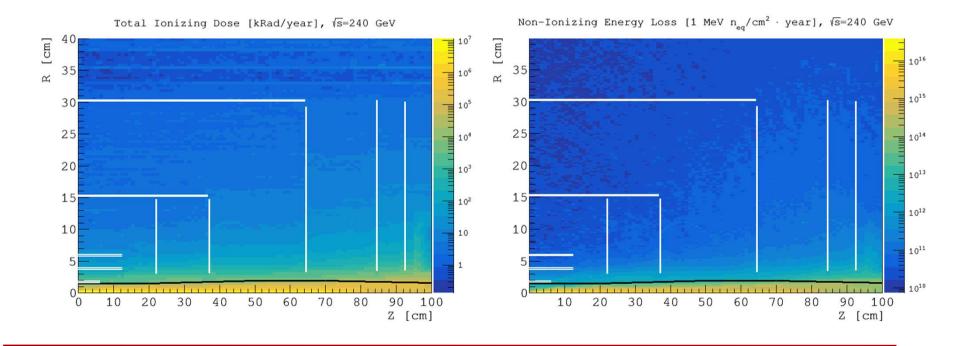

D. Wang

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs	2				
Beam energy (GeV)	120	80	45	5.5	
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)	16.5×2				
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10%gap)		
Beam current (mA)	17.4	87.9	461.0		
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)		10.7			
Momentum compact (10-5)		1.11			
β function at IP $\beta_{y}^{*} / \beta_{y}^{*}$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_{\nu}/\varepsilon_{\nu}$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_{\rm y}/\sigma_{\rm y}$ (µm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_n/ξ_n	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)		650 (2168)	16)		
Natural bunch length σ_{z} (mm)	2.72	2.98	2.42		
Bunch length σ_z (mm)	3.26	5.9	8.5		
Betatron tune v_x/v_y	363.10 / 365.22				
Synchrotron tune v_c	0.065	0.0395	0.028		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.29	0.35	0.55		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	


Physics & Detector CDR

Performance Studies – Flavour Tagging

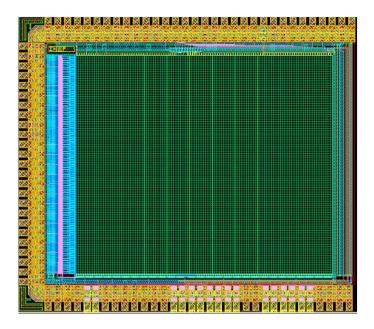
Performance Studies – IP Resolution



Sept 13-15, 2018 CEPC physics and detector CDR international review

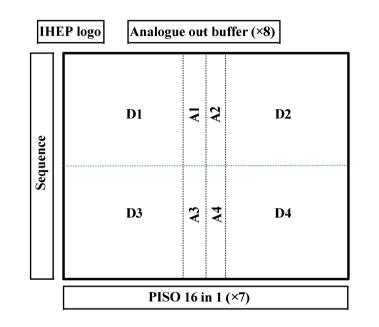
Radiation Background Levels

H. Zhu, CEPC Workshop Rome May 24-26 2018


- Using hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) to quantify the radiation background levels
- Adopted the calculation method used for the ATLAS background estimation (ATL-GEN-2005-001), safety factor of ×10 applied

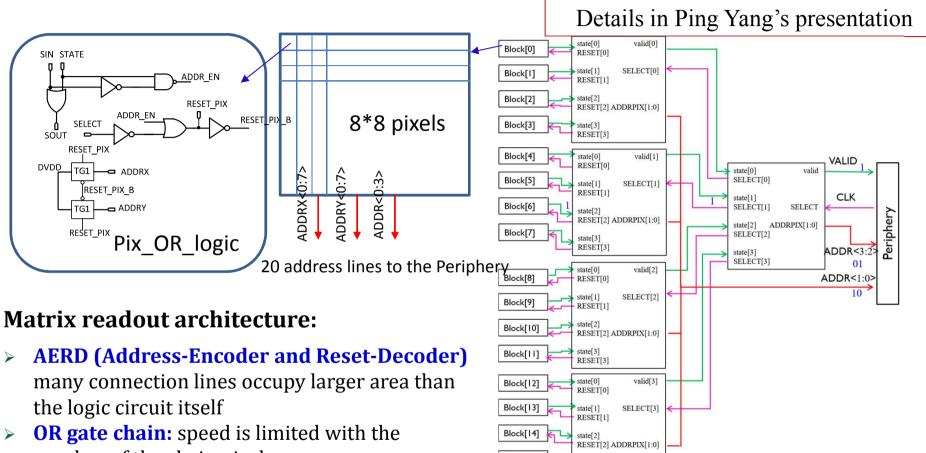
Sept 13-15, 2018

CEPC physics and detector CDR international review


JadePix2: Rolling - shutter Mode

Two different pixel versions:

- Pixel size: $22\mu m \times 22\mu m$
- Same amount of transistors;
- Offset cancellation technique;
- Version 2 has higher signal gain, but suffers "more" from "Latch" input voltage distortion.


Details in Yang Zhou's presentation

Chip features:

- $3 \times 3.3 \text{ mm}^2$
- 96 \times 112 pixels with 8 sub-matrix
- Processing speed: 11.2µs/frame with 100 ns/row
- Output data speed: 160 MHz
- Power: 3.7μA/pixel (14.4 mW/cm² @pixel matrix)

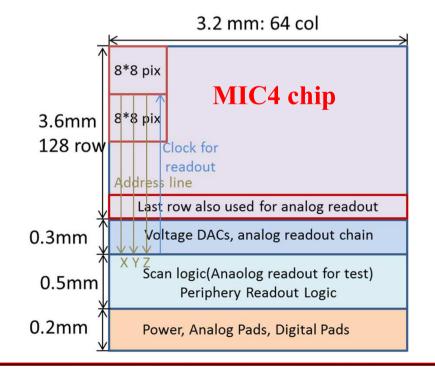
MIC4 Design: Asynchronous Mode

Block[15]

state[3] RESET[3]

number of the chain pixels

 Combine these two solutions: 64 pixels as a group using OR gate chain, groups using AERD structure to readout


front-end I: ALPIDE structure P. Yang (CCNU) front-end II: CSA based front-end circuit Y. Zhang (IHEP)

MIC4 Submission: Asynchronous Mode

Y. Zhang (IHEP) & P.Yang (CCNU)

front-end I: Same structure as ALPIDE chip

- ENC: 8 e⁻
- Power cons.: 61 nA/pixel
- Threshold: 140 e⁻
- Peaking time < 1 us
- Pulse duration < 3 μ s

front-end II: CSA based front-end circuit

- Pixel size: $25\!\times\!25\,\mu m^2$
- ENC: 24 e⁻
- Power cons.: 50 nW/pixel (8 mW/cm² @pixel matrix)
- Threshold: 170 e⁻
- Peaking time < 500 ns @ Qin < 1.5 ke⁻
- Pulse duration < 9.4 μ s @ Qin < 1.5 ke⁻
- > 3.2 \times 3.7 mm²
- \succ 128 \times 64 pixels
- Integration time: < 5 μs/10 μs</p>
- Power consumption: < 80 mW/cm²
- Chip periphery
 - Band gap
 - Voltage DAC
 - Current DAC
 - Matrix configuration
 - LVDS
 - Custom designed PADs