Silicon Tracker

WANG, Meng (Shandong University)

CEPC Physics and Detector CDR International Review, 2018.9.13

Introduction

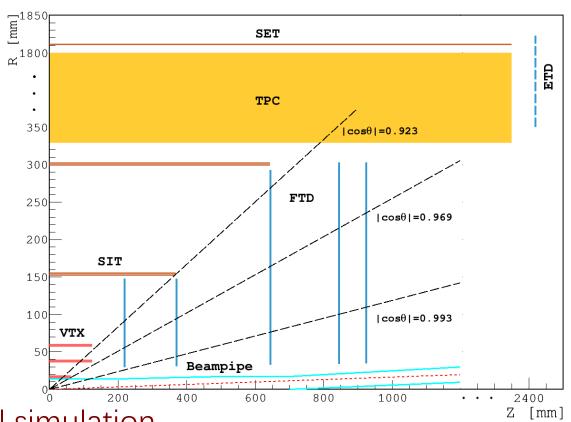
- baseline tracking system: VTX + Silicon Tracker + TPC
- physics requirements on momentum resolution

$$\sigma_{1/p_{\rm T}} = a \oplus \frac{b}{p \sin^{3/2} \theta}$$
 [GeV⁻¹] $a \sim 2 \times 10^{-5} \,{\rm GeV^{-1}}$ and $b \sim 1 \times 10^{-3}$

- functionalities
 - monitoring possible field distortion in TPC
 - detector alignment
 - time-stamping to separate events between bunch crossings
 - dE/dx measurement, potentially
- key constraint: material budget

Baseline design – layout

4 components


- ◆ SIT Silicon Inner Tracker
- ◆ SET Silicon External Tracker
- ◆ ETD Endcap Tracking Detector
- ◆ FTD Forward Tracking Detector

silicon envelope

◆ SIT + SET + ETD

notes

- ◆ ETD not included in the current full simulation.
- ◆ FTD being essential for tracking down to very small/large polar angles.

Baseline design – main parameters

Detector		Radius R [mm]		z [mm]	Material budget $[X_0]$
SIT	Layer 1:	153		371.3	0.65%
	Layer 2:	300		664.9	0.65%
SET	Layer 3:	1811		2350	0.65%
FTD	Disk 1:	$R_{\rm in}=39$	$R_{\rm out} = 151.9$	220	0.50%
	Disk 2:	$R_{\rm in}=49.6$	$R_{\rm out} = 151.9$	371.3	0.50%
	Disk 3:	$R_{\mathrm{in}} = 70.1$	$R_{\rm out}=298.9$	644.9	0.65%
	Disk 4:	$R_{\rm in}=79.3$	$R_{\rm out} = 309$	846	0.65%
	Disk 5:	$R_{\rm in}=92.7$	$R_{\rm out} = 309$	1057.5	0.65%
ETD	Disk:	$R_{\mathrm{in}} = 419.3$	$R_{\mathrm{out}} = 1822.7$	2420	0.65%

Table 4.5: Main parameters of the CEPC silicon tracker.

Sensor technologies – baseline

- requirements of the single point resolution
 - vary with positions of tracker components
 - generally required $\sigma_{SP} < 7 \mu m$
- the basic sensor technology: silicon microstrips
 - for all components except two innermost FTD disks.
 - baseline features
 - a large detection area of 10 x 10 cm²
 - a fine pitch of 50 μm
 - thichness < 200 μm

Sensor technologies – alternative

- a fully pixelated silicon tracker
- choice of pixel technologies is open
- CMOS pixel sensors (CPS) is under investigation for two main performance advantages compared to the microstrip sensors:
 - granularity, significantly reducing the ambiguity of multiple-hits
 - material budget, can be thinned to less than 50 μm
- CPS based on standard CMOS procedure in industry
 - production cost could be significantly reduced for large area detectors

data acquisition requirements

- estimated with the pixelated alternative (Table 4.6)
 - pixel dimension 50 x 350 μm²
 - track multiplicities inferred from hit densities at the 1st vertex detector layer
 - readout time of pixel sensors 10 μs, the same as that of VTX
 - conservatively assumed 9 hits per track

operation mode	H (240)	W (160)	Z (91)
track multiplicity (BX ⁻¹)	310	300	32
bunching spacing (ns)	680	210	25
SIT-L1 occupancy (%)	0.19	0.58	0.52
FTD-D1 occupancy (%)	0.17	0.54	0.48

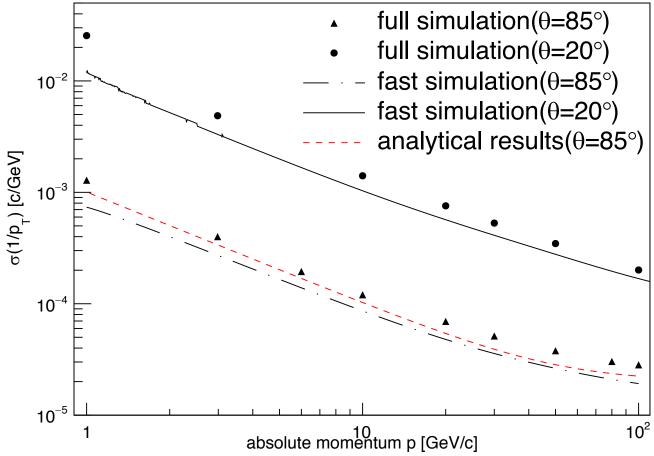
Front-End electronics

- FE chips will depend on the choice of sensors
 - microstrips: ASICs with deep sub-micron CMOS technology
 - pixels: in-pixel electronics
- common requirements
 - ◆ low noise, low power consumption and high radiation tolerance
 - high degree digitization to relax pressure on downstream electronics
- common functions
 - ◆ ADC, zero suppression, sparsification
 - possibly time stamping
 - ◆ control curcuitry

Powering & cooling

- fully open, novel techniques to be investigated
 - ◆ BUT, a chosen technique will have to provide sufficient powering or cooling without compromising the detector performance.
- powering
 - ◆ DC-DC converters?
- cooling
 - forced cooled gas flow
 - silicon micro-channel cooling

Mechanics & integration


- fully open, novel techniques to be investigated
- lightweight but stiff support structure
 - carbon fiber reinforced plastic material?
- concerns
 - design of support structure, cable routing and electronics common to other sub-detectors have to minimize overall material budget.
 - easy construction and integration
 - precise and quick system alignment

Critical R&D

- to be pursued in the R&D phase of CEPC
 - alternative pixelated strip sensors with CMOS technologies
 - ◆ p⁺-on-n silicon microstrip sensors with slim-edgy structure
 - ◆ FE electronics with low power consumption and low noise, fabricated with CMOS technologies of small feature size
 - efficient powering and cooling techniques with low material budget
 - lightweight but robust support structure and related mechanics
 - detector layout optimization, particularly in the end regions
- also important, to exploit synergies with existing R&D from other experiments to share expertise.

Tracking performance

based on the vertex detector and the silicon tracker (Figure 4.22)

