# MIMOSA32TER LVDS TEST STRUCTURE

**TEST REPORT** 

**VERSION 130319** 

| 1  | Int  | roduction                                                         | 3  |
|----|------|-------------------------------------------------------------------|----|
| 2  | LV   | DS Receiver and LVDS Driver Bias current                          | 5  |
|    | 2.1  | LVDS Driver Output Differential Voltage versus ILVDS_TX current   | 5  |
|    | 2.2  | RSDS Driver Output Differential Voltage versus ILVDS_TX current   | 6  |
|    | 2.3  | Driver Output Jitter versus ILVDS_RX current                      | 7  |
| 3  | LV   | DS Driver LVDS_TX measurement                                     | 8  |
|    | 3.1  | LVDS Driver DC parameter                                          | 9  |
|    | 3.2  | LVDS Driver AC parameter                                          | 10 |
| 4  | RS   | DS Driver RSDS_TX measurement                                     | 11 |
|    | 4.1  | RSDS Driver DC parameter                                          | 11 |
|    | 4.2  | RSDS Driver AC parameter                                          | 12 |
| 5  | LV   | DS Receiver LVDS_RX measurement                                   | 13 |
|    | 5.1  | Receiver DC parameter                                             | 13 |
| 6  | Ро   | wer Consumption                                                   | 14 |
|    | 6.1  | Power Consumption with LVDS_TX Driver                             | 14 |
|    | 6.2  | Power Consumption with RSDS_TX Driver                             | 16 |
| 7  | LV   | DS Receiver and LVDS Driver Jitter Performance                    | 18 |
|    | 7.1  | Direct output Measurement                                         | 18 |
|    | 7.2  | Differential Transmission Line Measurement                        | 19 |
|    | 7.3  | Differential Transmission Line Measurement with the LVDS Receiver | 20 |
|    | 7.4  | Jitter Performance with clock data pattern                        | 21 |
|    | 7.5  | Jitter Performance with PRBS7 data pattern                        | 25 |
| 8  | LV   | DS Receiver and RSDS Driver Jitter Performance                    | 29 |
|    | 8.1  | Direct output Measurement                                         | 29 |
|    | 8.2  | Differential Transmission Line Measurement                        | 29 |
|    | 8.3  | Differential Transmission Line Measurement with the LVDS Receiver | 30 |
|    | 8.4  | Jitter Performance with clock data pattern                        | 31 |
|    | 8.5  | Jitter Performance with PRBS7 data pattern                        | 35 |
| 9  | Ey   | e Diagram                                                         | 39 |
| 10 | ) So | me remarks                                                        | 42 |
|    |      |                                                                   |    |

### 1 Introduction

This test report concludes preliminary results of device characterizations of auxiliary Low-Voltage Differential Signaling (LVDS) Test Structure designed by Zhan Shi for a MIMOSA-32TER device. This LVDS test structure consists of a common LVDS receiver with two different output driver implementations: a standard LVDS output driver and an advanced output driver based on Reduced Swing Differential Signaling (RSDS) standard. A block diagram of the test structure is shown in Figure below. The implementation of the LVDS driver and the RSDS driver are labeled as LVDS\_TX and RSDS\_TX, respectively. The common LVDS receiver is labeled as LVDS\_RX. The LVDS Test Structure includes single-ended CMOS pads for injecting a test signal for Output drivers or extracting the output signal of the LVDS receiver. The CMOS input signal for the differential output drivers is labeled as IN\_TX and the CMOS output for the LVDS receiver is labeled as OUT\_RX. For the reason of limited number of I/O pad available for the test structure, there are only 3 digital input signals to select test configuration mode: SEL\_RX, SEL\_TX and SEL\_RXO.



Figure 1. A block diagram of MIMOSA-32TER LVDS Test Structure

In a Table 1 is presented configuration settings. The receiver input can be the CMOS input pad IN\_TX or the LVDS receiver input LVDS\_RX. Output signal is available on the CMOS output pad OUT\_RX or on the LVDS driver pads LVDS\_TX or on the RSDS driver pads RSDS\_TX.

| SEL_RX | SEL_TX | SEL_RX0 | MODE     |         |
|--------|--------|---------|----------|---------|
|        |        |         | RECEIVER | DRIVER  |
| 0      | 0      | 0       | IN_TX    | RSDS_TX |
| 0      | 0      | 0       | LVDS_RX  | -       |
| 0      | 0      | 1       | IN_TX    | -       |
| 0      | 0      | 1       | LVDS_RX  | -       |
| 0      | 1      | 0       | IN_TX    | LVDS_TX |
| 0      | 1      | 0       | LVDS_RX  | -       |
| 0      | 1      | 1       | IN_TX    | -       |
| 0      |        |         | LVDS_RX  | -       |
| 1      | 0      | 0       | IN_TX    | RSDS_TX |
| Ţ      |        | U       | LVDS_RX  | OUT_RX  |
| 1      | 0      |         | IN_TX    | -       |
| Ţ      | 0      | Ţ       | LVDS_RX  | RSDS_TX |
| 1      | 1      | 0       | IN_TX    | LVDS_TX |
| 1      | 1      | U       | LVDS_RX  | OUT_RX  |
| 1      | 1      | 1       | IN_TX    | -       |
| 1      |        | 1       | LVDS_RX  | LVDS_TX |

Table 1. Configuration settings by SEL\_RX, SEL\_TX and SEL\_RXO pads.

### 2 LVDS Receiver and LVDS Driver Bias current

### 2.1 LVDS Driver Output Differential Voltage versus ILVDS\_TX current

This measurement is done with the constant input value and the CMOS input IN\_TX is selected as input (SEL\_RX=1, SEL\_TX=1 and SEL\_RXO=0).



Figure 2. LVDS\_TX Driver Output amplitude vs. bias current ILVDS\_TX

### 2.2 RSDS Driver Output Differential Voltage versus ILVDS\_TX current

This measurement is done with the constant input value and the CMOS input IN\_TX is selected as input (SEL\_RX=1, SEL\_TX=0 and SEL\_RXO=0).



Figure 3. RSDS\_TX Driver Output amplitude vs. bias current ILVDS\_TX

On following measurements the common ILVDS\_TX bias current for LVDS\_TX and RSDS\_TX Driver is fixed to 220  $\mu$ A.

### 2.3 Driver Output Jitter versus ILVDS\_RX current

In Figure 4 is shown the LVDS\_TX output driver Total Jitter (TIE Mode with BER= $10^{-12}$ ). The ILVDS\_TX bias current is fixed to 220  $\mu$ A. The LVDS receiver LVDS\_RX is selected as an input for the LVDS driver LVDS\_TX (SEL\_RX=1, SEL\_TX=1 and SEL\_RXO=1). The reference clock signal frequency is 250 MHz.



Figure 4. LVDS\_TX Driver Output Total Jitter vs. bias current ILVDS\_TX

On following measurements the ILVDS\_RX bias current is fixed to 180 μA.

### 3 LVDS Driver LVDS\_TX measurement

In following measurements, a **Double Termination configuration** is always used for LVDS\_TX driver, because the LVDS\_TX driver has an internal on-chip termination of 100 ohm (Figure 5). The measured value of the internal termination resistance is **111** ohm.

#### **Double Termination (DT)**

In this Configuration, the transmission line is terminated twice to a differential load of 100 ohm, firstly at output of the LVDS Driver and secondly, at the end of PCB traces with a single-ended to differential termination board. The signal captured at the single-ended to differential termination board with a differential probe.



Figure 5. The LVDS\_TX Driver with the internal termination resistances.

MIMOSA32TER\_TEST\_STRUCTURE\_LVDS\_TEST\_130319.dgc

ICore:Ifb2:Icmfb\_p=40:2:1

Ilvds\_dc=6(1+1/20 +2\*1/40)=6\*1.1=6.6mA March 19, 2013

### 3.1 LVDS Driver DC parameter 🖌

Please see the document IEEE Std 1596.3-1996 for more details of parameters presented in this Chapter. The ILVDS\_RX and ILVDS\_TX bias currents are 180 μA and 220 μA, respectively.

| Symbol                           | Parameter                              | units          | min  | max              | Condition   | Measured<br>Value |                 |
|----------------------------------|----------------------------------------|----------------|------|------------------|-------------|-------------------|-----------------|
|                                  |                                        |                |      |                  |             | V <sub>oa</sub>   | V <sub>ob</sub> |
| $V_{oh}$                         | Output Voltage High                    | mV             |      | 1475             | IN_TX= 3.3V | 1352              | 1352            |
| V <sub>ol</sub>                  | Output Voltage Low                     | mV             | 925  |                  | IN_TX= 0V   | 1019              | 1050            |
|                                  | Quitaut Differential voltage           |                | 250  | 400              | IN_TX= 3.3V | 302               |                 |
| V od                             | Output Differential Voltage            |                | 250  | 400              | IN_TX= 0V   | 303               |                 |
| V                                | Quitaut Offcot Voltago                 | m\/            | 1125 | 1275 IN_TX= 3.3V |             | <mark>1201</mark> |                 |
| V <sub>os</sub>                  | Output Onset Voltage                   | e mv 1125 1275 | 1275 | IN_TX= 0V        | 1201        |                   |                 |
| ∆V <sub>od</sub>                 | Change in $V_{os}$ between "0" and "1" | mV             |      | 25               |             | 11                |                 |
| ΔV <sub>os</sub>                 | Change in $V_{os}$ between "0" and "1" | mV             |      | 25               |             | 1                 |                 |
|                                  | Output current, driver                 |                |      | 10               | IN_TX= 3.3V | 12.8              | 12.6            |
| I <sub>sa</sub> ,I <sub>sb</sub> | shorted to GND                         | mA             |      | 40               | IN_TX= 0V   | 12.6              | 12.8            |
|                                  | Output current, driver                 |                |      | 10               | IN_TX= 3.3V | 4.9               |                 |
| Isab                             | shorted together                       | mA             |      | 12               | IN_TX= 0V   | 4.9               |                 |

# 3.2 LVDS Driver AC parameter

| Symbol           | Parameter                                                                                                                                | units | min | max | Condition                            | Measured Value       |                 |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|--------------------------------------|----------------------|-----------------|
|                  |                                                                                                                                          |       |     |     |                                      | V <sub>oa</sub>      | V <sub>ob</sub> |
| Clock            | Clock signal duty cycle<br>At <mark>250 MHz</mark>                                                                                       | %     | 45  | 55  | LVDS receiver<br>LVDS_RX is selected | 49.3                 |                 |
| T <sub>HLT</sub> | Differential High to Low<br>Transition Time, Clock<br>pattern of alternating 1<br>and 0 at 500 Mbps,<br>V <sub>od</sub> fall time 20-80% | ps    | 300 | 500 |                                      | ( <mark>153</mark> ) |                 |
| T <sub>lht</sub> | Differential Low to High<br>Transition Time, Clock<br>pattern of alternating 1<br>and 0 at 500 Mbps,<br>V <sub>od</sub> rise time 20-80% | ps    | 300 | 500 |                                      | 149                  |                 |
| t <sub>on</sub>  | LVDS Driver Output<br>Enable Time                                                                                                        | ns    |     | -   | Enable by<br>SEL_TX signal           | <mark>54</mark>      |                 |
| t <sub>off</sub> | LVDS Driver Output<br>Disable Time                                                                                                       | ns    |     | -   | Disable by<br>SEL_TX signal          | 3                    |                 |
| t <sub>PD</sub>  | Differential Propagation<br>Delay from LVDS_RX to<br>LVDS_TX                                                                             | ns    |     | -   |                                      | 0 <mark>.3</mark>    |                 |
| t <sub>PSE</sub> | Single-ended Propagation<br>Delay<br>from IN_TX to LVDS_TX                                                                               | ns    |     | -   |                                      | 2                    |                 |

### 4 RSDS Driver RSDS\_TX measurement

#### Simple Termination (ST)

In this Configuration, the transmission line is terminated only once to a differential load of 100 ohm at the end of the PCB traces with a single-ended to differential termination board. The signal captured at the single-ended to differential termination board with a differential probe.

The RSDS Driver RSDS\_TX is not furnished with an internal termination resistance. For the reason of reduced output signal swing, the Simple Termination configuration is used in following measurements.

|     |                          | ICore:Ifb2:Icmfb_p=20:1:1 | Irsds_dc=1.84(1+1/20      |
|-----|--------------------------|---------------------------|---------------------------|
| 4.1 | RSDS Driver DC parameter | ¥                         | +2*1/20)=1.84*1.15=2.12mA |

 Please see the document IEEE Std 1596.3-1996 for more details of parameters presented in this Chapter. The

 ILVDS\_RX and ILVDS\_TX bias currents are 180 μA and 220 μA, respectively. The RSDS is considered as a

 Reduced Range Link.

 I\_TX\_RSDS\_Core=1.8 mA

| Symbol                           | Parameter                                                                           | units      | min         |    | max           | Condition                             | Measu<br>Value    | red             |
|----------------------------------|-------------------------------------------------------------------------------------|------------|-------------|----|---------------|---------------------------------------|-------------------|-----------------|
|                                  |                                                                                     |            |             |    |               |                                       | $V_{\text{oa}}$   | V <sub>ob</sub> |
| $V_{oh}$                         | Output Voltage High                                                                 | mV         |             |    | 1375          | IN_TX= 3.3V                           | 1280              | 1280            |
| V <sub>ol</sub>                  | Output Voltage Low                                                                  | mV         | 1025        |    |               | IN_TX= 0V                             | 1096              | 1096            |
| IV J                             | Output Differential voltage                                                         | mV         | 150         |    | 250           | IN_TX= 3.3V                           | <mark>184</mark>  |                 |
| <b> </b> ♥ od <b> </b>           |                                                                                     | IIIV       | 130         |    | 250           | IN_TX= 0V                             | 184               |                 |
| V                                | Output Offsot Voltago                                                               | mV         | 1150        |    | 1250          | IN_TX= 3.3V                           | 1188              |                 |
| <b>V</b> <sub>OS</sub>           | Output Onset Voltage                                                                | IIIV       | 1130        |    | 1250          | IN_TX= 0V                             | 1188              |                 |
|                                  | wrong me                                                                            | surem      | ent         | 1  |               | IN_TX= 3.3V,                          |                   |                 |
|                                  | method                                                                              | Juren      |             |    | $\rightarrow$ | $V_{cm} = 1V,$                        | 311               |                 |
|                                  | Inctiou                                                                             |            |             |    |               | V <sub>oahi</sub> - V <sub>oalo</sub> |                   |                 |
|                                  | Output impedance                                                                    |            | 40 ob       | m  | 140 ohm       | $IN_IX = 0V,$                         | IN_TX= 0V,        |                 |
| _                                | Single-ended                                                                        |            | corresponds |    | corresponds   | $V_{cm} - V_{oalo}$                   | 235               |                 |
| R <sub>o</sub>                   | (V <sub>oahi</sub> - V <sub>oalo</sub> ) or                                         | mV         | to          |    | to            | IN_TX= 3.3V,                          |                   |                 |
|                                  | (V <sub>obhi</sub> - V <sub>oblo</sub> )                                            |            | 178 n       | nV | 295 mV        | $V_{cm} = 1.4V,$                      | <mark>299</mark>  |                 |
|                                  |                                                                                     |            |             |    |               | V <sub>obhi</sub> - V <sub>oblo</sub> |                   |                 |
|                                  |                                                                                     |            |             |    |               | IN_TX= 0V,                            |                   |                 |
|                                  |                                                                                     |            |             |    |               | $V_{cm} = 1.4V,$                      | 3 <mark>11</mark> |                 |
|                                  | D mismatch haturan A Q                                                              | <u>a</u> ( |             |    |               | V <sub>obhi</sub> - V <sub>oblo</sub> |                   |                 |
|                                  | $R_0$ mismatch between A &                                                          | %          |             |    | 10            |                                       | 0                 |                 |
| $\Delta R_o$                     | B                                                                                   |            |             |    |               |                                       | 10                |                 |
|                                  | $ (V_{oahi} - V_{obhi}) - (V_{oalo} - V_{oblo}) $                                   | mV         |             |    | 20            | IN_IX= 3.3V                           | 12                |                 |
|                                  | (V <sub>oahi</sub> - V <sub>obhi</sub> ) - (V <sub>oalo</sub> - V <sub>oblo</sub> ) |            |             |    |               | IN_TX= 0V                             | 12                |                 |
| ΔV <sub>od</sub>                 | Change in V <sub>od</sub> between "0"                                               | mV         |             |    | 25            |                                       | 0                 |                 |
|                                  | and "1"                                                                             |            |             |    |               |                                       |                   |                 |
| $\Delta V_{os}$                  | Change in $V_{os}$ between "0"                                                      | mV         |             |    | 25            |                                       | 0                 |                 |
|                                  | and "1"                                                                             |            |             |    |               |                                       |                   |                 |
| l <sub>sa</sub> ,l <sub>sh</sub> | Output current, driver                                                              | mA         |             |    | 40            | IN_TX= 3.3V                           | 3.57              | 0.01            |
| 307 30                           | shorted to GND                                                                      |            |             |    |               | IN_TX= 0V                             | 0.01              | 3.57            |
| lank                             | Output current, driver                                                              | mΑ         |             |    | 12            | IN_TX= 3.3V                           | 1.87              |                 |
| ·sab                             | shorted together                                                                    |            |             |    |               | IN_TX= 0V                             | 1.87              |                 |

# 4.2 RSDS Driver AC parameter

| Symbol           | Parameter                                                                                                                                | units | min | max | Condition                            | Measured        | Value           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|--------------------------------------|-----------------|-----------------|
|                  |                                                                                                                                          |       |     |     | ·                                    | V <sub>oa</sub> | V <sub>ob</sub> |
| Clock            | Clock signal duty cycle<br>At <mark>250 MHz</mark>                                                                                       | %     | 45  | 55  | LVDS receiver<br>LVDS_RX is selected | 50.3            |                 |
| T <sub>HLT</sub> | Differential High to Low<br>Transition Time, Clock<br>pattern of alternating 1<br>and 0 at 500 Mbps,<br>V <sub>od</sub> fall time 20-80% | ps    | 300 | 500 |                                      | 186             |                 |
| T <sub>lht</sub> | Differential Low to High<br>Transition Time, Clock<br>pattern of alternating 1<br>and 0 at 500 Mbps,<br>Vod rise time 20-80%             | ps    | 300 | 500 |                                      | 182             |                 |
| t <sub>on</sub>  | LVDS Driver Output<br>Enable Time                                                                                                        | ns    |     | -   | Enable by<br>SEL_TX signal           | 38              |                 |
| t <sub>OFF</sub> | LVDS Driver Output<br>Disable Time                                                                                                       | ns    |     | -   | Disable by<br>SEL_TX signal          | 8               |                 |
| t <sub>PD</sub>  | Differential Propagation<br>Delay from LVDS_RX to<br>LVDS_TX                                                                             | ns    |     | -   |                                      | 1.3             |                 |
| t <sub>PSE</sub> | Single-ended Propagation<br>Delay<br>from IN_TX to LVDS_TX                                                                               | ns    |     | -   |                                      | 2.1             |                 |

### 5 LVDS Receiver LVDS\_RX measurement

#### 5.1 Receiver DC parameter

| Symbol            | Parameter                                                                                                     | units | min  | max  | Condition                                                                                                         | Measured<br>Value |                 |
|-------------------|---------------------------------------------------------------------------------------------------------------|-------|------|------|-------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
|                   |                                                                                                               |       |      |      |                                                                                                                   | V <sub>ia</sub>   | V <sub>ib</sub> |
| .,                | Input voltage range,<br>V <sub>ia</sub> or V <sub>ib</sub> ,                                                  | mV    | 825  | 1575 | V <sub>ia</sub>                                                                                                   | 790               | 1670            |
| Vi                | V <sub>gpd</sub>   < 50 mV,<br>measured<br> V <sub>gpd</sub>   = 0.3 mV                                       |       |      | 1575 | V <sub>ib</sub>                                                                                                   | 770               | 1460            |
| V <sub>ith</sub>  | Input differential<br>threshold ,<br> V <sub>gpd</sub>   < 50 mV,<br>measured<br> V <sub>gpd</sub>   = 0.3 mV | mV    | -100 | 100  | 1)                                                                                                                | 35                |                 |
| V <sub>hyst</sub> | Input differential<br>hysteresis,<br>V <sub>idthh</sub> - V <sub>idthl</sub>                                  | mV    | 25   |      | V <sub>ia</sub> variable,<br>V <sub>ib</sub> fixed,<br>V <sub>idthh</sub> - V <sub>idthl</sub> =<br>13 – (-15) mV | 28                |                 |

**1)** The output of LVDS\_TX Driver (Device1) of LVDS Driver is injected in LVDS\_RX Receiver (Device2) input. The output signal amplitude of LVDS\_TX Driver (Device1) is varied by changing the current ILVDS\_TX (Device1) from 0  $\mu$ A to 50  $\mu$ A by step of 1  $\mu$ A. A clock signal is used as input for the LVDS\_TX Driver (Device1) and the output of LVDS\_TX Driver (Device2) is monitored to define a differential threshold voltage level for LVDS\_RX Receiver (Device2).

### 6 Power Consumption

## 6.1 Power Consumption with LVDS\_TX Driver

| Symbol                        | Parameters, Conditions                                                                                                                           | units | Measured<br>Value |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| Ivdd_lvds_static              | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable,<br>Static Condition, ILVDS_RX = 180 μA, ILVDS_TX = 220 μA          | mA    | 7.5               |
| IVDD_LVDS_500Mbps             | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable, Clock<br>Pattern at 500 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 220 μA  | mA    | 10.9              |
| IVDD_LVDS_1000Mbps            | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable, Clock<br>Pattern at 1000 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 220 μA | mA    | 12.0              |
| Ivdd_lvds_static ,ilvds_tx=0  | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable, Static<br>Condition, ILVDS_RX = 180 μA, ILVDS_TX = 0 μA            | mA    | 0.8               |
| IVDD_LVDS_500Mbps,ILVDS_TX=0  | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable, Clock<br>Pattern at 500 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 0 μA    | mA    | 4.7               |
| IVDD_LVDS 1000Mbps,ILVDS_TX=0 | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable, Clock<br>Pattern at 1000 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 0 μA   | mA    | 6.0               |
| IVDD_LVDS_STATIC , ILVDS_RX=0 | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, LVDS_TX Driver Enable, Static<br>Condition, ILVDS_RX = 0 μΑ, ILVDS_TX = 220 μΑ            | mA    | 7.1               |

In Figure 6 is shown the 1.8V power supply (VDD18) current of the LVDS test structure versus the input data clock frequency. The measurements are performed in two different ILVDS\_TX bias current conditions: ILVDS\_TX = 0  $\mu$ A and ILVDS\_TX = 220  $\mu$ A. The LVDS Receiver bias current ILVDS\_RX is 180  $\mu$ A.



Figure 6. Power supply (VDD18) current of the LVDS test structure (LVDS\_TX selected) vs. data input clock frequency

In Figure 7 is shown the 1.8V power supply (VDD18) current of the LVDS test structure versus the bias current ILVDS\_TX. The measurements are performed in two different ILVDS\_RX bias current conditions: ILVDS\_RX = 0  $\mu$ A (Static Condition) and ILVDS\_RX = 180  $\mu$ A. The input data clock frequency is 250 MHz.



Figure 7. Power supply (VDD18) current of the LVDS test structure (LVDS\_TX selected) vs. bias current ILVDS\_TX

### 6.2 Power Consumption with RSDS\_TX Driver

| Symbol                        | Parameters, Conditions                                                                                                                           | units | Measured<br>Value |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| IVDD_RSDS STATIC              | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable,<br>Static Condition, ILVDS_RX = 180 μA, ILVDS_TX = 220 μA          | mA    | 3.4               |
| IVDD_RSDS 500Mbps             | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable, Clock<br>Pattern at 500 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 220 μA  | mA    | 7.2               |
| IVDD_RSDS 1000 Mbps           | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable, Clock<br>Pattern at 1000 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 220 μA | mA    | 8.4               |
| Ivdd_rsds static ,ilvds_tx=0  | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable, Static<br>Condition, ILVDS_RX = 180 μA, ILVDS_TX = 0 μA            | mA    | 0.8               |
| IVDD_RSDS 500Mbps,ILVDS_TX=0  | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable, Clock<br>Pattern at 500 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 0 μA    | mA    | 4.8               |
| IVDD_RSDS 1000Mbps,ILVDS_TX=0 | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable, Clock<br>Pattern at 1000 Mbps ILVDS_RX = 180 μA, ILVDS_TX = 0 μA   | mA    | 6.1               |
| Ivdd_rsds static , ilvds_rx=0 | VDD= 1.8 V supply current,<br>LVDS_RX Receiver Enable, RSDS_TX Driver Enable, Static<br>Condition, ILVDS_RX = 0 μA, ILVDS_TX = 220 μA            | mA    | 2.8               |

In Figure 8 is shown the 1.8V power supply (VDD18) current of the LVDS test structure versus the input data clock frequency. The measurements are performed in two different ILVDS\_TX bias current conditions: ILVDS\_TX = 0  $\mu$ A and ILVDS\_TX = 220  $\mu$ A. The LVDS Receiver bias current is 180  $\mu$ A.



Figure 8. Power supply (VDD18) current of the LVDS test structure (RSDS\_TX selected) vs. data input clock frequency

In Figure 9 is shown the 1.8V power supply (VDD18) current of the LVDS test structure versus the bias current ILVDS\_TX. The measurements are performed in two different ILVDS\_RX bias current conditions: ILVDS\_RX = 0  $\mu$ A (Static Condition) and ILVDS\_RX = 180  $\mu$ A. The input data clock frequency is 250 MHz.



Figure 9. Power supply (VDD18) current of the LVDS test structure (RSDS\_TX selected) vs. bias current ILVDS\_TX

### 7 LVDS Receiver and LVDS Driver Jitter Performance

The LVDS Receiver and Driver jitter performances are measured ensemble. An evaluation board for Xilinx Kintex-7 is used as a data pattern generator. A block diagram of the data pattern generator configurations can be found in Appendix A and Appendix B.

#### 7.1 Direct output Measurement

In Figure 10 is presented a block diagram of a direct output measurement configuration for the LVDS Driver. In this configuration the output signal of the LVDS Driver is measured with a short connection to the differential probe.



Figure 10. Direct Measurement Configuration for the LVDS Driver

### 7.2 Differential Transmission Line Measurement

In Figure 11 is presented a block diagram of a differential transmission line measurement configuration for the LVDS Driver. The length of the differential transmission line is 30 cm or 60 cm.



Figure 11. Differential Transmission Line Measurement Configuration for the LVDS Driver

### 7.3 Differential Transmission Line Measurement with the LVDS Receiver

In Figure 12 is presented a block diagram of a differential transmission line with the LVDS Receiver measurement configuration for the LVDS Driver. The length of the differential transmission line is 30 cm or 60 cm.



Figure 12. Differential Transmission Line with the LVDS Receiver Measurement Configuration for the LVDS Driver

### 7.4 Jitter Performance with clock data pattern

| Name               | Parameter                                                                                                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INPUT              | Data Pattern is generated by Xilinx Kintex-7 with IBERT SCAN IP. The Cross-<br>point Switch output I VDS signal (DS25CP152) is used as a input signal                                                                      |
| LVDS_TX            | MI32TER_LVDS Board N° 1 board, See the Fig.10                                                                                                                                                                              |
| LVDS_TX_30CM       | MI32TER_LVDS Board N° 1 board, the LVDS Driver drives the Differential                                                                                                                                                     |
|                    | MI32TER_LVDS Board N° 1 board, the LVDS Driver drives the Differential                                                                                                                                                     |
|                    | Transmission Line of <mark>60 cm.</mark> See the Fig 12                                                                                                                                                                    |
|                    | MI32TER_LVDS Board N° 1 board works as a receiver for the Data Pattern<br>Generator. The LVDS driver of the MI32TER_LVDS Board N° 1 board drives                                                                           |
|                    | the Differential Transmission Line of <mark>30 cm</mark> . This Transmission Line is connected to the LVDS receiver of the MI32TER LVDS Board N° 2 board.                                                                  |
| LVDS_RX_TX_60CM_RX | MI32TER_LVDS Board N° 1 board works as a receiver for the Data Pattern<br>Generator. The LVDS driver of the MI32TER_LVDS Board N° 1 board drives<br>the Differential Transmission Line of 60 cm. This Transmission Line is |
|                    | connected to the LVDS receiver of the MI32TER_LVDS Board N° 2 board.                                                                                                                                                       |

Following signal names are used in Legends of Figures in Chapter 7.

In following Figure is shown the differential output voltage ( $V_{od}$ ) versus data bit rate.



Figure 13. Differential Output Voltage vs. data bit rate (Clock Pattern data)

The Jitter Calculation method is based on extrapolation of Total Jitter (peak-peak) as a function of Bit Error Ratio  $(10^{-12})$  in reasonable measurement time interval  $(10^{6} ... 10^{7} \text{ samples})$ .



Figure 14. Total Jitter vs. data bit rate (Clock Pattern data)





Figure 15. Total Jitter (UI) vs. data bit rate (Clock Pattern data)



Figure 16. Random Jitter(UI) vs. data bit rate (Clock Pattern data)



Figure 17. Deterministic Jitter vs. data bit rate (Clock Pattern data)



Figure 18. Periodic Jitter vs. data bit rate (Clock Pattern data)



Figure 19. Driver Output Duty Cycle vs. data bit rate (Clock Pattern data)



### 7.5 Jitter Performance with PRBS7 data pattern

Figure 20. Differential Output Voltage vs. data bit rate (PRBS-7 Pattern data)



Figure 21. Total Jitter vs. data bit rate (PRBS-7 Pattern data)



Figure 22. Total Jitter (UI) vs. data bit rate (PRBS-7 Pattern data)



Figure 23. Random Jitter(UI) vs. data bit rate (PRBS-7 Pattern data)



Figure 24. Deterministic Jitter vs. data bit rate (PRBS-7 Pattern data)



Figure 25. Periodic Jitter vs. data bit rate (PRBS-7 Pattern data)



Figure 26. Driver Output Duty Cycle vs. data bit rate (PRBS-7 Pattern data)

### 8 LVDS Receiver and RSDS Driver Jitter Performance

#### 8.1 Direct output Measurement

In following Figure is presented a block diagram of a direct output measurement configuration for the RSDS Driver. In this configuration the output signal of the RSDS Driver is measured with a short connection to the differential probe.



Figure 27. Direct Measurement Configuration for the RSDS Driver

#### 8.2 Differential Transmission Line Measurement

In following Figure is presented a block diagram of a differential transmission line measurement configuration for the RSDS Driver. The length of the differential transmission line is 30 cm.



Figure 28. Differential Transmission Line Measurement Configuration for the RSDS Driver

### 8.3 Differential Transmission Line Measurement with the LVDS Receiver

In following Figure is presented a block diagram of a differential transmission line measurement configuration for the RSDS Driver with the LVDS Receiver.



Figure 29. Differential Transmission Line Measurement Configuration for the RSDS Driver

### 8.4 Jitter Performance with clock data pattern

| Name            | Parameter                                                                                                                                                                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INPUT           | Data Pattern is generated by Xilinx Kintex-7 with IBERT SCAN IP. The Cross-<br>point Switch output LVDS signal (DS25CP152) is used as a input signal.                                                                                                                                              |
| RSDS_TX         | MI32TER_LVDS Board N° 1 board, See the Fig.27                                                                                                                                                                                                                                                      |
| RSDS_TX_30CM    | MI32TER_LVDS Board N° 1 board, the RSDS Driver drives the Differential Transmission Line of 30 cm. See the Fig 28                                                                                                                                                                                  |
| RSDS_RX_TX_30CM | MI32TER_LVDS Board N° 1 board works as a receiver for the Data Pattern<br>Generator. The RSDS driver of the MI32TER_LVDS Board N° 1 board drives<br>the Differential Transmission Line of 30 cm. This Transmission Line is<br>connected to the LVDS receiver of the MI32TER_LVDS Board N° 2 board. |

Following signal names are used in Legends of Figures in Chapter 8.

In following Figure is shown the differential output voltage ( $V_{od}$ ) versus data bit rate.



Figure 30. Differential Output Voltage vs. data bit rate (Clock Pattern data)

The Jitter Calculation method is based on extrapolation of Total Jitter (peak-peak) as a function of Bit Error Ratio  $(10^{-12})$  in reasonable measurement time interval  $(10^6 \dots 10^7 \text{ samples})$ .



Figure 31. Total Jitter vs. data bit rate (Clock Pattern data)



Figure 32. Total Jitter (UI) vs. data bit rate (Clock Pattern data)



Figure 33. Random Jitter(UI) vs. data bit rate (Clock Pattern data)



Figure 34. Deterministic Jitter vs. data bit rate (Clock Pattern data)



Figure 35. Periodic Jitter vs. data bit rate (Clock Pattern data)



Figure 36. Driver Output Duty Cycle vs. data bit rate (Clock Pattern data)

### 8.5 Jitter Performance with PRBS7 data pattern



Figure 37. Differential Output Voltage vs. data bit rate (PRBS-7 Pattern data)



Figure 38. Total Jitter vs. data bit rate (PRBS-7 Pattern data)



Figure 39. Total Jitter (UI) vs. data bit rate (PRBS-7 Pattern data)



Figure 40. Random Jitter(UI) vs. data bit rate (PRBS-7 Pattern data)



Figure 41. Deterministic Jitter vs. data bit rate (PRBS-7 Pattern data)



Figure 42. Periodic Jitter vs. data bit rate (PRBS-7 Pattern data)



Figure 43. Driver Output Duty Cycle vs. data bit rate (Clock Pattern data)

### 9 Eye Diagram

The bit error ratio (BER) is a measure of the percentage of bits that a system under test does not transfer data bit correctly. The BER value of 0.0 means that all the data bits were transmitted correctly and at other hand, the BER value of 1.0 means that all the all data bits received are erroneous data.

The BERT Scan is performed with the Xilinx KINTEX-7 Evaluation board by using the BERT Scan IP. A block diagram of the measurement configuration is shown in Appendix C.

There is no appendix C

In following Figures 44 to 46 are shown an Eye Diagram at 2.0 Gbps with PRBS-23 Data Pattern in different length of the transmission line. The Direct Output and the Transmission Line measurement configurations are presented in Chapters 7.1 to 7.2.

In Figures 47 and 48 are shown Eye Diagram with the measurement configuration presented in Chapter 7.3.



Figure 44. Eye Diagram of LVDS Driver with PRBS-23 Data Pattern at 2 Gbps (Direct output).



Figure 45. Eye Diagram of LVDS Driver with PRBS-23 Data Pattern at 2 Gbps (Transmission Line of 30 cm).



Figure 46. Eye Diagram of LVDS Driver with PRBS-23 Data Pattern at 2 Gbps (Transmission Line of 60 cm).



Figure 47. Eye Diagram of LVDS Driver and LVDS Receiver with PRBS-23 Data Pattern at 2 Gbps (Transmission Line of 30 cm).



Figure 48. Eye Diagram of LVDS Driver and LVDS Receiver with PRBS-23 Data Pattern at 2 Gbps (Transmission Line of 60 cm).

### **10** Some remarks

Only two devices are used in characterization for this document.

*Transition Density* is the ratio of transitions to the number of unit intervals (UI) in a data stream (*x* transitions / *y* unit intervals). For the jitter performance measurements, all the input data patterns used (clock pattern, PRBS-7 or PRBS-23) have approximately transition density of 0.5.

After the preliminary results, the LVDS Output Driver seems to have quite stable performance until **1.5** Gbps or 750 MHz in case of clock signal with the test configuration used in this characterization. For Example, the Total Jitter is increasing moderately when the data bit rate is less that 2 Gbps (Figure labeled as "Total Jitter (UI) vs. data bit rate (Clock Pattern data)" in Chapter 7.4 "Jitter Performance with clock data pattern".

The RSDS output Driver shows quite stable performance until **1.25** Gbps for the short distances (Fig. 39). Due to reduced output swing the power consumption is also reduced compared to LVDS Driver.

In case of use of power pulsing, it should be noted that the LVDS Driver Enable Time is more than 54 ns.







