

Vertex Tracker Detector

<u>Qun Ouyang</u>(IHEP), Xiangming Sun(CCNU), Meng Wang(SDU) On behalf of the study group

September 13-15, 2018 Beijing

CEPC Physics and Detector CDR International Review

Editors:

.

Dong, Mingyi Liu, Beijiang Lu, Yunpeng Ouyang, Qun Wang, Meng Wu, Zhigang

Members of mini-review :

Bortoletto, Daniela Grinstein, Sebastian Snoeys, Walter

Apologize if anybody missed from the list

Outline:

- Requirements and challenges
- Baseline design and performance studies
- Sensor technology options
- Mechanics and Integration
- R&D activities
- Summary

Reminder: CEPC Beam Timing

Circular e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in 10yrs E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, (1.6×10³⁵ cm⁻²s⁻¹ at the Z-pole)

Vertex Detector Requirements

Efficient tagging of heavy quarks (b/c) and τ leptons

 \longrightarrow impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

- Detector system requirements:
 - $-\sigma_{\rm SP}$ near the interaction point: $<3 \,\mu m \longrightarrow \sim 16 \,\mu m$ pixel pitch
 - material budget: $\leq 0.15\% X_0/layer$
 - first layer located at a radius: ~1.6 cm
 - pixel occupancy: $\leq 1\%$

- power consumption $< 50 \text{mW/cm}^2$, if air cooling used
- $\sim \mu s$ level readout
- * Radiation tolerance: see slide 9 * Time stamp: needed for short bunch spacing

Baseline Vertex Detector Layout

Sept 13-15, 2018 CEPC physics and detector CDR international review

Performance Studies – IP Resolution

Sept 13-15, 2018

CEPC physics and detector CDR international review

Performance Studies – IP Resolution

Sensitivity to single-point resolution and innermost radius with full simulation

Beam-Induced Radiation Backgrounds

	H (240)	W (160)	Z (91)	
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25	
TID [MRad/year]	0.93	2.9	3.4 —	Radiation level
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2	

Table 9.4: Summary of hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) with combined contributions from pair production and off-energy beam particles, at the first vertex detector layer (r = 1.6 cm) at different machine operation energies of $\sqrt{s} = 240$, 160 and 91 GeV, respectively.

	H(240)	W(160)	Z(91)
Hit density (hits \cdot cm ⁻² \cdot BX ⁻¹)	2.4	2.3	0.25
Bunching spacing (µs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23

Table 4.2: Occupancies of the first vertex detector layer at different machine operation energies: 240 GeV for ZH production, 160 GeV near W-pair threshold and 91 GeV for Z-pole.

detector occupancy <1%, assuming 10 μ s of readout time for the silicon pixel sensor and an average cluster size of 9 pixels per hit.

Sensor Technology Options

Technology	Examples	Small pixels	Low mass	Low power	Fast timing
Monolithic CMOS MAPS	Mimosa CPS	++	++	++	-
Integrated sensor/amplif. + separate r/o	DEPFET, FPCCD	+/++	0	+	-
Monolithic CMOS with depletion	HV-CMOS, HR-CMOS	+	++	0	+
3D integrated	Tezzaron, SOI	++	+	0	++
Hybrid	CLICpix+planar sensor, HV-CMOS hybrid	+	0	+	++

Ref: Recent developments in LC vertex and tracking R&D, Dominik Dannheim, LCWS 2015

Many technologies from ILC/CLIC could be referred. BUT, unlike the ILD/CLIC, the CEPC detector will operate in continuous mode. \rightarrow without power-pulsing

Sensor Technology Options

Possible technologies for CEPC vertex

- HR-CMOS sensor with a novel readout structure (ALPIDE @ ALICE-ITS upgrade)
 - relatively mature technology
 - <50mW/cm² expected
 - Capable of readout every ${\sim}4\mu s$
- **SOI** sensor with similar readout structure
 - Fully depleted HR substrate, potential of $16 \mu m$ pixel size design
 - Full CMOS circuit
- **DEPFET**: possible application for inner most vertex layer
 - small material budget, low power consumption in sensitive area
- **3D-IC**: ultimate detector, but not mature enough

Mechanics and Integration

Table 4.3: Cooling methods for several vertex detector designs. The chip power dissipation, coolant type and corresponding material budget requirement per sensor layer are indicated. The active CO₂ cooling adds additional material in the forward region, outside the sensitive area. For the ILD FPCCD option, this additional material budget is $0.3\% X_0$ averaged over the end-plate region, while for the BELLE-II PXD, it is $\sim 0.1 - 0.2\% X_0$ per layer.

R&D Activities in China

Initial sensor R&D targeting on

- Pixel single point resolution <3 5μm
- Power consumption at the current level <100mW/cm²
- Integration time 10-100μs

Two monolithic pixel technologies

- CMOS pixel sensor (CPS)
 - TowerJazz CIS 0.18 µm process
 - Quadruple well process
 - Thick (~20 μm) epitaxial layer
 - with high resistivity ($\geq 1 \ k\Omega \bullet cm$)
- SOI pixel sensor
 - LAPIS 0.2 µm process
 - High resistive substrate ($\geq 1 \ k\Omega \bullet cm$)
 - Double SOI layers available
 - Thinning and backside process

CMOS Pixel Sensor – 1st Design

- Sensor design & TCAD simulation Y.Zhang, et al, NIMA 831(2016)99-104
 - Different sensor diode geometries, epitaxial-layer properties and radiation damage

- JadePix1 submission in Nov. 2015
 - Exploratory prototype, analog pixel, rolling shutter readout mode

IHEP

- Sensor optimization and radiation tolerance study
- sensing node AC-coupled to increase biased voltage
- Sensor characterization
 - Noise level
 - Charge collection efficiency
 - Irradiation with Neutron
 - Test beam in Aug. 2018

Y. Zhang, Y.Zhou, et al (IHEP, SDU)

CMOS Pixel Sensor – 2nd Design

Design goal: digital readout pixel sensor with

- Single point resolution better than 5µm
- Power consumption <80 mW/cm^2
- Integration time < 100µs

Joint effort of CCNU and IHEP

Design submission in May 2017

- Tow prototypes with digital pixels (in-pixel discriminator)
- Tow different readout schemes: rolling shutter & asynchronous

JadePix2: Y.Zhou (IHEP)

- Pixel size: $22\mu m \times 22\mu m$
- Two different pixel version with higher biased voltage
- Test in lab ongoing

MIC4: P.Yang(CCNU) Y.Zhang (IHEP)

- Pixel size: $25\mu m \times 25\mu m$
- Two different pixel frontend with Matrix readout architecture
- Test in lab ongoing

SOI Pixel Sensor

- First submission (CPV1) in June 2015
 - 16*16 µm with in-pixel-discrimination
 - Double-SOI process for shielding and radiation enhancement
- Second submission (CPV2) in June 2016
 - In-pixel CDS stage inserted
 - To improve RTC and FPN noise
 - To replace the charge injection threshold

<u>CPV2 performance</u>

- Thinned down to 75um thick
- Temporal noise ~6e⁻
- Threshold dispersion (FPN) ~114e⁻
- Single point resolution measurement under infrared laser beam

Future Plan on R&D

- Further optimization study of vertex system
- Novel readout scheme exploration
- Large area pixel array design
- Radiation hardness and time-stamp sensor design
- Prototype development within 5 years
- Small (16 μ m \times 16 μ m) pixel, targeting on 3 μ m single point resolution
 - To explore 3D connection technology by designing the in-pixel digital logic in a separated tier
 - Or to look for any new process

Summary

- CDR finished with baseline design
- Critical technologies listed
- R&D project started along the baseline design specifications
 - in-pixel electronics, small pixel size
 - new asynchronous readout architecture
- Collaboration with international teams
- Going to TDR for next step
- Expertise demanding

Many thanks to all members of CEPC Physics and Detector working group who made significant efforts to prepare the CDR !

Thank you for your attention!