0, 4

Physics requirements and PFA detector concepts

G. LI for the CEPC study group

September 15th, 2018

Schema

Physics of Z, W, and Higgs

CEPC dedicated to Higgs physics, as well as EW physics of W & Z

1M Higgs events expected, still limited by statistics ~O(0.01), but

W&Z physics extremely depends on the systematic uncertainty control

Operation mode	Z factory	\boldsymbol{W} threshold scan	Higgs factory
\sqrt{s} (GeV)	91.2	158 - 172	240
$L (10^{34} cm^{-2} s^{-1})$	16-32	10	3
Running time (years)	2	1	7
Integrated Luminosity (ab-1)	8 - 16	2.6	5.6
Higgs yield	-	-	10^{6}
W yield	-	10^{7}	10^{8}
Z yield	10^{11-12}	10^{9}	10^{9}

Two ways to go beyond SM Precision measurements and direct searches

 Higgs : precision measurement the Higgs properties of its mass, width, production, decay couplings

- W: mass, width, and TGC
- Z: Rb, Afb, ...
- Flavor physics

See Jianming, and Zhijun's talks

Physics requirements

- Robustness and efficiency : record all physics events/objects in a noisy environment
- Ultimate goal: trace the whole cascade topology of an physics events, for example jet substructure!
- Excellent resolution and efficiency to reconstruction physics objects: better resolutions can compensate statistics
- Luminosity/beam energy calibration to meet physics goal
 - Luminosity: ~ 0.1% at 240 GeV and ~0.01% at 91 GeV
- Highly hermetic coverage: better use of advantage of e+e- collider initial state precisely defined.
- PID: lepton/jet/hadron identification with high efficiency and rejection power
 - Lepton: identification efficiency of 99% and a misidentification rate smaller than 2% for (p > 5GeV)
 - Jet: b-jet identification efficiency/purity better than 80%, and c-jet efficiency/purity 60% (Z pole)
 - pi/K separation: up to 20GeV for flavor physics

Benchmarks for performance

Physics process	Measurands	Critical detector	Required performance
$ZH \rightarrow l^+ l^- X$	m_{H}, σ_{ZH}	Trockor	$A(1/R) = 2 \times 10^{-5} \oplus 0.001$
$H o \mu^+ \mu^-$	$B(H \to \mu^+ \mu^-)$	Hacker	$\Delta(\Pi T_T) = 2 \times 10 \bigoplus \frac{1}{P(\text{GeV})\sin^{\frac{3}{2}}\theta}$
$H \rightarrow b\bar{b}, c\bar{c}, gg$	$B(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \sin^{3/2} \theta} (\mu \text{m})$
$H \rightarrow q\bar{q}, W^+W^-, ZZ$	$B(H \rightarrow q\bar{q}, W^+W^-, ZZ)$	ECAL, HCAL	$\sigma_E^{jet} = 3 \sim 4 \%$ at 100GeV
$H o \gamma \gamma$	$B(H o \gamma \gamma)$	ECAL	$\frac{\Delta E}{E} = \frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$

Experiment conditions

- CEPC design supposed to deliver more luminosities at all energies
- Baseline design of accelerator
 - double ring
 - cross angle: 33 mrad
 - L* = 2.2 m, QD0, QF1 inside detector
 - Backgrounds : pair production & off-beam particles
 - Luminosity measurement very challenge

• Stringent requirements on detector design

More details in	Hongbo's talk
-----------------	---------------

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2

Physics objects: leptons, photons, jets, missing energy, …

Multiplicities of typical events

Averaged multiplicities of the charged tracks and photons ~ 30, but the maximum to 100, which carry most of the energy of an events
Neutral hadrons ~ 10% of the energy
Dedicated detectors are combined together to measure and separate them precisely and efficiently

Ø

Ø

Ø

Jet energy resolution

- Jet energy resolution (JER) is essential for boson reconstruction, left plots demonstrate the importance of boson mass resolution
- 4% is minimum requirement for W&Z boson separation

Photons

- Photon energy resolution is key issue for Higgs di-photon measurement, as well as π^0 and ISR photon tagging
- Simulation shows 20%/E^{1/2} is minimum requirement for Higgs to di-photon study.

CEPC detector concepts

Three detector concepts proposed

- ★ silicon+TPC+PFA calo used for full simulation performance study
- ★ full silicon+PFA calo more details in Chendong's talk

★ silicon+DC+DR calo - Franco's talk

CEPC baseline detector concept silicon+TPC+PFA calo

Particle flow: make use of the optimal subdetector information in reconstruction and a high granularity calorimetry system

Baseline design

15

Concept	ILD	CEPC baseline
Tracker	TPC/Silicon	TPC/Silicon
		or FST
Solenoid B-Field (T)	3.5	3
Solenoid Inner Radius (m)	3.4	3.2
Solenoid Length (m)	8.0	7.8
L* (m)	3.5	2.2
VTX Inner Radius (mm)	16	16
Tracker Outer Radius (m)	1.81	1.81
Calorimeter	PFA	PFA
Calorimeter λ_I	6.6	5.6
ECAL Cell Size (mm)	5	10
ECAL Time resolution (ps)		200
ECAL X_0	24	24
HCAL Layer Number	48	40
HCAL Absorber	Fe	Fe
HCAL λ_I	5.9	4.9
DRCAL Cell Size (mm)	× .	
DRCAL Time resolution (ps)	-	
DRCAL Absorber	-	
Overall Height (m)	14.0	14.5
Overall Length (m)	13.2	14.0

L*: 2.2 m, required by accelerator final focusing

Magnet field: 3 Tesla to achieve higher luminosity

Excellent impact parameter resolution: $\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \sin^{3/2} \theta}$

Momentum resolution : $\Delta(1/P_T) \sim 2 \times 10^{-5} \text{ GeV}^{-1}$

A double amplification layer technique for TPC for the Z pole high events rate environment

Good performance on pi/K separation with TPC dE/dx and time information in ECAL

Calorimetry system, see next page ...

Key of PFA concept

- Ecal baseline
 - ✤ 30 layers
 - Cell size: $1 \times 1 \text{cm}^2$
 - ◆ 24 X₀
- Hcal baseline
 - ✤ 40 layers
 - $\bullet \ \lambda_I = 4.9$

Summary

- CEPC focus on Higgs, EW precision and flavor physics also its physics goal
- MDI and physics program put stringent requirements on detector design
- Three detector concept are developed for CEPC physics
- TPC+PFA detector concept is study with full simulation, shows good performance for CEPC Higgs study.

Extras

Calorimetry optimizations

- High granularity calorimetry system suffers from cooling problem, but CEPC is not going to operate with push-pull mode
- The cell size and number of layers optimized with full simulation study, which is active-cooling free but with 5% resolution degrading.
- Optimized results
 - ECAL cell size: of 10x10 mm²
 - ECAL absorber: 84 mm
 - HCAL #of layers: 40
 - Cost/weight/thickness reduced 25%/50%/20%

Calorimetry optimizations

Number of layers vs. energy resolutions

Other issues

- Photon energy resolution optimized for Higgs study and satisfiys the CEPC requirement
- Muon detector provides good ID efficiency and rejection power, combine it with calorimetry system
- More details please refer to Manqi's performance talk

The requirements high tracking efficiency Excellent tracking resolution Jet energy (boson mass) resolution Good separation power: pi0, tau, jets, ...

Generally High granularity means high efficiency Potential application of modern development of machine learning/deep learning