Overview of CEPC Physics and Detector CDR

João Guimarães da Costa (IHEP, Chinese Academy of Sciences) CEPC Physics and Detector CDR International Review – Beijing 13 September 2018

The CEPC Program 😕

100 km e+e- collider

Center of Mass Energy [GeV]

Main Parameters of Collider Ring

	Higgs	Ŵ	Z (3T)	Z (2T)
Center-of-mass energy (GeV)	240	160		91
Number of IPs			2	
Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	3	10	16	32
Number of years	7	1		2
Total Integrated Luminosity (ab ⁻¹) - 2 IP	5.6	2.6	8	16
Total number of particles	1 × 10 ⁶	2 × 107	3 × 10 ¹¹	7 × 10 ¹¹

Institutional Board YN GAO J. GAO

Project Director XC LOU Q. QIN N. XU

Y.F. WANG (IHEP),....

Accelerator J. GAO (IHEP) CY Long (IHEP) SN FU (IHEP)

Detector

Joao Costa (IHEP)

S. JIN (NJU)

YN GAO (TH)

Current CEPC Organization

International Advisory Committee

Young-Kee Kim, U. Chicago (Chair) Barry Barish, Caltech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Murayama, UC Berkeley/IPMU Katsunobu Oide, KEK Robert Palmer, BNL John Seeman, SLAC Ian Shipsey, Oxford Steinar Stapnes, CERN Geoffrey Taylor, U. Melbourne Henry Tye, IAS, HKUST Yifang Wang, IHEP Harry Weerts, ANL

Organization of the Physics and Detector Working Group

Machine Detector Interface

Hongbo Zhu Sha Bai

Vertex

Ouyang Qun Sun Xiangming Wang Meng

Tracker

Qi Huirong Yulan Li

http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Physics_and_Detector

Conveners

Joao Barreiro Guimaraes Costa (IHEP) Yuanning Gao (Tsinghua Univ.) Shan Jin (Nanjing Univ.)

	Calorimeter	
ECal	HCal	Muons
Hu Tao	Liu Jianbei Yang Haijun	Li Liang Zhu Chenggua

Physics analysis and detector optimization

Ruan Mangi Li Gang Li Qiang Fang Yaquan

IHEP-CEPC-DR-2015-01

IHEP-EP-2015-01

IHEP-TH-2015-01

Can be downloaded from http://cepc.ihep.ac.cn/preCDR/volume.html

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

403 pages, 480 authors

The CEPC-SPPC Study Group

2017-1-24

March 2015

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

328 pages, 300 authors

The CEPC-SPPC Study Group

March 2015

CEPC CDR – Volume I: Accelerator Completed

CEPC accelerator CDR completed in June 2018 (printed on Sept. 2018)

- Executive Summary	
1 Introduction	
2. Machine Lavout and Performance	
2. Machine Layout and Performance	
3. Operation Scenarios	
4. CEPC Booster	
5. CEPC Linac	
6. Systems Common to the CEPC Linac, Booster and Collider	Pr
7. Super Proton Proton Collider	
8. Conventional Facilities	
9. Environment, Health and Safety	
10. R&D Program	
11. Project Plan, Cost and Schedule	
Appendix 1: CEPC Parameter List	
Appendix 2: CEPC Technical Component List	
Appendix 3: CEPC Electric Power Requirement	
Appendix 4: Operation for High Intensity y-ray Source	
Appendix 5: Advanced Partial Double Ring	
Appendix 6: CEPC Injector Based on Plasma Wakefield Acce	elera
Appendix 7: Operation for e-p, e-A and Heavy Ion Collisio	n
Appendix 8: Opportunities for Polarization in the CEPC	
Appendix 9: International Review Report	

HIEP-CEPC-DR-2015-01 HIEP-AC-2015-01

CEPC-SPPC

reliminary Conceptual Design Report

Volume II - Accelerator

The CEPC-SPPC Study Group March 2015 CEPC-SPPC Progress Report (2015 - 2016)

IHEP-CEPC-DR-2017-01

IHEP-AC-2017-01

Accelerator

The CEPC-SPPC Study Group April 2017 **CEPC** Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group July 2018

March 2015

April 2017

July 2018

tor CDR International Review June 28-30, 2018 Final CDR released on Sept. 2 arXiv:1809.00285

Mini-Review of Preliminary CDR

Reviewers:

Alexandre Glazov (DESY), Charlie Young (SLAC), Sebastian Grinstein (Barcelona), Alberto Belloni (Maryland), Jianming Qian (Michigan), Walter Snoeys (CERN), Daniela Bortoletto (Oxford), Franco Grancagnolo (INFN)

Draft-0 preliminary chapters

- Chapter 3: Detector concepts (partial)
- Chapter 4: Vertex detector
- * Chapter 5: Tracking system (TPC, silicon tracker, silicon-only concept, drift chamber)
- * Chapter 6: Calorimeter (PFA and DR calorimeter options)
- Chapter 7: Magnet system
- Chapter 8: Muon system
- * Chapter 10: MDI, beam background and luminosity measurement
- Chapter 11: Physics performance (partial)

Minutes and comments: https://indico.ihep.ac.cn/event/7384/material/slides/1.pdf

https://indico.ihep.ac.cn/event/7384/ 10-11 November, 2017

IHEP-CEPC-DR-2018-XX IHEP-EP-2018-XX IHEP-TH-2018-XX

CEPC

Conceptual Design Report

Volume I - Physics & Detector

The CEPC Study Group Spring 2018

CDR Editors

General Editors

Joao Guimaraes da Costa,¹ guimaraes@ihep.ac.cn, Yuanning Gao,² gaoyn@mail.tsinghua.edu.cn, Shan Jin,³ jins@ihep.ac.cn Christopher Tully,¹⁰ cgtully@princeton.edu, Charles Young,⁹ young@slac.stanford.edu,

Chapter 1: Executive Summary Joao Guimaraes da Costa,¹ guimaraes@ihep.ac.cn

Chapter 2: Overview of the Physics Case for CEPC Liantao Wang,¹¹ liantaow@uchicago.edu

Chapter 3: Experimental conditions, Physics Require Joao Guimaraes da Costa,¹ guimaraes@ihep.ac.cn, Manqi Ruan,¹ ruanmq@ihep.ac.cn, Hongbo Zhu,¹ zhuhb@ihep.ac.cn

Chapter 4: Tracking System 4.1: Vertex Tracker Detector

Mingyi Dong,¹ dongmy@ihep.ac.cn, Yunpeng Lu,¹ yplu@ihep.ac.cn, Qun Ouyang,¹ ouyq@ihep.ac.cn, Zhigang Wu,¹ wuzg@ihep.ac.cn,

4.2.1: Time Projection Chamber

Zhi Deng,² dengz@mail.tsinghua.edu.cn, Yulan Li,² yulanli@mail.tsinghua.edu.cn, Huirong Qi,¹ qihr@ihep.ac.cn,

4.2.2: Silicon Tracker Meng Wang,⁴ mwang@sdu.edu.cn,

4.3: Full Silicon Tracker Chengdong Fu,¹ fucd@ihep.ac.cn, Weimin Yao,¹² wmyao@lbl.gov,

4.4: Drift Chamber Tracker Franco Grancagnolo,¹⁴ franco.grancagnolo@le.infn.it

Chapter 5: Calorimetry 5.3: Electromagnetic Calorimeter for Particle Flow Approach Tao Hu,¹ hut@ihep.ac.cn, Jianbei Liu,⁵ liujianb@ustc.edu.cn,

Haijun Yang,^{6,7} haijun.yang@sjtu.edu.cn,

5.5: Dual-readout Calorimeter Franco Bedeschi,¹⁶ bed@fnal.gov Roberto Ferrari,¹⁵ roberto.ferrari@cern.ch,

Chapter 6: Detector Magnet System Zhilong Hou,¹ houzl@ihep.ac.cn, Xuyang Liu,¹ liuxuyang@ihep.ac.cn, Feipeng Ning,¹ ningfp@ihep.ac.cn, Meifen Wang,¹ wangmf@ihep.ac.cn, Huan Yang,¹ yanghuan@ihep.ac.cn, Guoqing Zhang,¹ gqzhang@ihep.ac.cn, Ling Zhao,¹ zhaoling@ihep.ac.cn, Wei Zhao,¹ zhaow@ihep.ac.cn, Zian Zhu,¹ zhuza@ihep.ac.cn,

Chapter 7: Muon System Paolo Giacomelli,¹⁷ paolo.giacomelli@cern.ch Liang Li,^{6,7} liangliphy@sjtu.edu.cn,

Fei Li,¹ lifei@ihep.ac.cn Zhenan Liu,¹ liuza@ihep.ac.cn, Kejun Zhu,¹ zhukj@ihep.ac.cn,

Chapter 9: Machine Detector Interface and Luminosity Detectors Suen Hou,¹⁸ suen@sinica.edu.tw, Ivanka Bozovic Jelisavcic,¹⁸ ibozovic@vinca.rs Hongbo Zhu,¹ zhuhb@ihep.ac.cn,

5.4: Hadronic Calorimeter for Particle Flow Approach

Chapter 8: Readout Electronics, Trigger and Data Acquisition

Chapter 10: Simulation, Reconstruction and Physics Object P and

Chapter 11: Physics Performance with Benchmark Processes Yaquan Fang,¹ fangyq@ihep.ac.cn, Gang Li,¹ li.gang@mail.ihep.ac.cn, Qiang Li,⁸ qliphy@gmail.com, Zhijun Liang,¹ zhijun.liang@cern.ch, Jianming Qian,¹³ qianj@umich.edu Manqi Ruan,¹ ruanmq@ihep.ac.cn,

Chapter 12: Future Plans and R&D Prospects

Joao Guimaraes da Costa,¹ guimaraes@ihep.ac.cn Xin Shi,¹ shixin@ihep.ac.cn,

- 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- 2. Department of Engineering Physics Department, Tsinghua University, Beijing, China
- 3. Department of Physics, Nanjing University, Nanjing, China
- 4. Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Qingdao, China
- 5. University of Science and Technology of China, Hefei, China
- 6. Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- 7. Tsung-Dao Lee Institute, Shanghai, China
- 8. Department of Physics, Peking University, Beijing, China
- 9. SLAC National Accelerator Laboratory, USA
- 10. Princeton University, USA
- 11. Department of Physics, University of Chicago, USA
- 12. Lawrence Berkeley National Lab(LBNL), USA
- 13. Department of Physics, University of Michigan
- 14. INFN Sezione di Lecce and University of Lecce
- 15. INFN Sezione di Pavia and University of Pavia
- 16. INFN Sezione di Pisa, Universita' di Pisa and Scuola Normale Superiore
- 17. INFN Sezione di Bologna and University of Bologna
- 18. Vinca Institute of Nuclear Sciences, University of Belgrade
- 19. Institute of Physics, Academia Sinica, Taiwan

The Physics Goals — Shopping List

Chapter 2 Liantao's talk today

- 2.1 CEPC: the precision frontier
- 2.2 Higgs boson and electroweak symmetry breaking
 - 2.2.1 Naturalness
 - 2.2.2 Electroweak phase transition
- 2.3 Exploring new physics
 - 2.3.1 Exotic Higgs boson decays
 - 2.3.2 Exotic Z boson decays
 - 2.3.3 Dark matter and hidden sectors
 - 2.3.4 Neutrino connection
 - 2.3.5 Extended Higgs sector
- 2.4 QCD precision measurement
 - 2.4.1 Precision α_s determination
 - 2.4.2 Jet rates at CEPC
 - 2.4.3 Non-global logarithms
 - 2.4.4 QCD event shapes and light quark Yukawa coupling
- 2.5 Flavor Physics with the Z factory of CEPC
 - 2.5.1 Rare B decays
 - 2.5.2 Tau decays
 - 2.5.3 Flavor violating Z decays
 - 2.5.4 Summary

Chapter 11 Jianming and Zhijun's talk on Friday

Including detector performance

CEPC Accelerator Chain and Systems

10 GeV

Injector

Booster 100 km

Collider Ring 100 km

e-

e+

45/80/120 GeV beams

Energy ramp 10 GeV

45/80/120 GeV

Three machines in one single tunnel

- Booster and CEPC - SPPC

$\sqrt{s} = 90, 160 \text{ or } 240 \text{ GeV}$ **2** interaction points

Booster Cycle (0.1 Hz)

- The key systems of CEPC:
 - 1) Linac Injector
 - 2) Booster
 - 3) Collider ring
 - 4) Machine Detector Interface
 - 5) Civil Engineering

Accelerator CDR provides details of all systems 11

Detector Conceptual Designs

Particle Flow Approach

Baseline detector ILD-like (3 Tesla)

Full silicon tracker concept

CEPC plans for **2** interaction points

Low magnetic field concept (2 Tesla)

IDEA - also proposed for FCC-ee

Chapter 3 Gang and Franco's talk today

Final two detectors likely to be a mix and match of different options

Committee Charge

The International Review Committee of the CEPC Physics and Detector Conceptual Design Report (CDR) is to consider the physics program goals of the CEPC and the detector concepts presented.

The committee is asked to assess if the CEPC physics program is well motivated and aligned with the worldwide program for the future of High Energy Physics, and if the detector concepts presented in the CDR, as a whole, are adequate to carry out the physics program, and if there is a sufficient understanding of the detector subsystems to start working towards the TDR and produce detectors on the CEPC timescale. The Committee is requested to suggest mitigating measures in case of potential technological concerns on specific detector subsystems.

With regard to the site and cost no specific comments are solicited at this time.

The committee is invited to issue comments or suggestions on any aspect of this CDR draft beyond those specifically included in this charge.

It is requested that a committee report responsive to this charge be forwarded to the IHEP **Director by September 27, 2018**.

Chuangchun, Jilin 吉林长春

Site selection

Huangling, Shanxi 陕西黄陵

Xinjiang Qinghai

libet

Completed 2017

Considerations:

- 1. Available land
- 2. Geological conditions
- 3. Good social, environment, transportation and cultural conditions
- 4. Fit local development plan: mid-size city \rightarrow + science city

shan, Guangdong 深汕合作区

Completed 2016

Qinhuangdao, Hebei 河北秦皇岛

Completed 2014

Xiong an, Hebei

河北雄安 ~~~~

Huzhou, Zhejiang 浙江湖州

Cost of project

CEPC "optimistic" Schedule

 CEPC data-taking starts before the LHC program ends Possibly concurrent with the ILC program

Construction (2022-2030)

Data taking (2030 - 2040)

- Seek approval, site decision - Construction during 14th 5-year plan

CEPC Funding in recent years

IHEP seed money 11 M CNY/3 year (2015-2017)

R&D Funding - NSFC

Increasing support for CEPC D+RDby NSFC 5 projects (2015); 7 projects(2016)

CEPC相关基金名称(2015-2016)	基金类型	负责人	承担单位
高精度气体径迹探测器及激光校正的研究 (2015)	重点基金	李玉兰/ 陈元柏	清华大学/ Tsinghua 高能物理研究所 IHEP
成像型电磁量能器关键技术研究(2016)	重点基金	刘树彬	中国科技大学 USTC
CEPC局部双环对撞区挡板系统设计及螺线管场补偿 (2016)	面上基金	白莎	高能物理研究所
用于顶点探测器的高分辨、低功耗SOI像素芯片的 若干关键问题的研究(2015)	面上基金	卢云鹏	高能物理研究所
基于粒子流算法的电磁量能器性能研究 (2016)	面上基金	王志刚	高能物理研究所
基于THGEM探测器的数字量能器的研究(2015)	面上基金	俞伯祥	高能物理研究所 IH
高粒度量能器上的通用粒子流算法开发(2016)	面上基金	阮曼奇	高能物理研究所 🧡
正离子反馈连续抑制型气体探测器的实验研究 (2016)	面上基金	祁辉荣	高能物理研究所
CEPC对撞区最终聚焦系统的设计研究(2015)	青年基金	王逗	高能物理研究所
利用耗尽型CPS提高顶点探测器空间分辨精度的研究 (2016)	青年基金	周扬	高能物理研究所
关于CEPC动力学孔径研究(2016)	青年基金	王毅伟	高能物理研究所

Thanks to many different funding sources, CEPC team can carry out CEPC design, key-technology research and site feasibility studies

Ministry of Sciences and Technology 2016: 36 M CNY 国家重点研发计划 2018: ~31 M CNY 项目申报书 国家重点研发计划 项目申报书 高能环形正负电子对撞机相关的物理和关键技法 项目名称: 究 所属专项: 大科学装置前沿研究 项目名称: 高能环形正负电子对撞机关键技术研发和验证 指南方向: 高能环形正负电子对撞机预先研究 所属专项: 大科学装置前沿研究 专业机构: 科学技术部高技术研究发展中心 指南方向: 推荐单位: 3.1 高能环形正负电子对撞机关键技术验证 教育部 专业机构: 科学技术部高技术研究发展中心 申报单位: 清华大学 (公章) 推荐单位: 中国科学院 项目负责人: 高原宁 申报单位: 中国科学院高能物理研究所 (公章) 项目负责人: Joao Guimaraes da Costa 中华人民共和国科学技术部 2016年05月06日 中华人民共和国科学技术部 0001YF SQ2016YFJC030028 2016-05-06 16:52:14 2018年02月26日

~60 M CNY CAS-Beijing fund, talent program ~500 M CNY Beijing fund (light source)

Funding Support for Detector R&D

Multiple funding sources

Detector Silicon TPC Calorimeter Magnet **Total**

Ministery of Sciences and Technology (MOST) **National Science Foundation of China**

- Major project funds
- Individual funds

Industry cooperation funds **IHEP Seed Funding** Others

Funding (M RMB)
18.2
7.0
21.3
8.7
55.2

Currently secured funding

CEPC Workshops and international impact

INTERNATIONAL WORKSHOP ON HIGH ENERGY **CIRCULAR ELECTRON POSITRON COLLIDER**

International Advisory Committee Young-Kee Kim, U. Chicago (Chair) Barry Barish, Caltech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Muravama, UC Berkeley/IPMU Katsunobu Oide, KEK Robert Palmer, BNL John Seeman, SLAC **260 attendees** sey, Oxford

÷.

30% from foreign institutions

Many international events have been hosted to discuss **CEPC** physics and carry out collaboration on key-technology research

November 6-8, 2017

http://indico.ihep.ac.cn/event/6618

Local Organizing Committee

Xinchou Lou, IHEP (Chair) Qinghong Cao, PKU Joao Guimaraes Costa, IHEP Jie Gao, IHEP Yuanning Gao, THU Hongjian He, THU Shan Jin, IHEP Gang Li, IHEP Jianbei Liu, USTC Yajun Mao, PKU Qing Qin, IHEP Mangi Ruan, IHEP Meng Wang, SDU Nu Xu, CCNU Haijun Yang, SJTU Hongbo Zhu, IHEP

Workshop on the Circular **Electron-Positron Collider**

EU Edition

Roma, May 24-26 2018 University of Roma Tre

https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=14816

Scientific Committee

Franco Bedeschi - INFN, Italy Alain Blondel - Geneva Univ., Switzerland Daniela Bortoletto - Oxford Univ., UK Manuela Boscolo - INFN, Italy Biagio Di Micco - Roma Tre Univ. & INFN, Italy Yunlong Chi - IHEP, China Marcel Demarteau - ANL, USA ning Gao - Tsing Joao Guimaraes da Costa - IHEP, China Gao Jie - IHEP, China Gang Li - IHEP, China Jianbei Liu - USTC, China Xinchou Lou - IHEP, China Felix Sefkow - DESY, Germany Shan Jin- Nanjing Univ., China Marcel Vos - CSIC, Spain

Local Organizing Committee

Antonio Baroncelli - INFN, Italy Biagio Di Micco - Roma Tre Univ. & INFN, Italy Ada Farilla - INFN, Italy Francesca Paolucci - Roma Tre Univ. & INFN, Italy Domizia Orestano - Roma Tre Univ. & INFN, Italy Marco Sessa - Roma Tre Univ. & INFN, Italy Monica Verducci - Roma Tre Univ. & INFN, Italy

Agenda

Thursday, 13 September 2018

- 08:30 09:00 Committee Executive Session
- 09:00 13:30 Session 1
 - 09:00 Welcome 5'
 - 09:05 Overview of detector CDR (15'+10') 25' Speaker: Joao Guimaraes Costa
 - 09:30 Ch2: Physics Motivation (30'+20') 50' Speaker: Liantao Wang (University of Chicago)
 - 10:20 Coffee Break 30'
 - 10:50 Accelerator Overview (20'+15') 35' Speaker: Dr. Yuan Zhang (IHEP, Beijing)
 - 11:25 Ch 3: Physics Requirements and PFA Detector Concepts 15' Speakers: LI Gang (EPC.IHEP), Dr. Gang LI (EPD, IHEP, CAS)
 - 11:40 Ch 3: Alternative concept: IDEA 10' Speakers: Franco Bedeschi (I), Franco Bedeschi (I)
 - 11:50 Ch 3: Discussion 20'
 - 12:10 Lunch Box 1h20'

13:30 - 16:00 Session 2

- 13:30 Ch 9: MDI and beam backgrounds and luminosity (25'+20') 45' Speakers: Dr. Hongbo ZHU (IHEP), Suen Hou (SINICA)
- 14:15 Ch 4.1: Vertex (20'+20') 40' Speaker: Prof. Qun OUYANG (IHEP)
- 14:55 Ch 4.2.1: TPC (20'+20') 40' Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)
- 15:35 Coffee Break 25'
- 16:00 16:30 Discussion with CEPC team 30'
- 16:30 18:00 Committee Executive Session
- 18:00 20:00 Dinner(Committee only)

Friday, 14 September 2018

	08:30 - 10:40	Sessio	on 2: Continue
		08:30	Ch 4.2.2: Silicon (15'+15') 30'
			Speaker: Prof. Meng Wang (Shandong University)
		09:00	Ch 4.3: Full Silicon (15'+15') 30' Speaker: Chengdong FU (IHEP)
		09:30	Ch 4.4: Drift Chamber (20'+20') 40' Speaker: Francesco Grancagnolo (INFN-Lecce)
		10:10	Coffee Break 30'
	10:40 - 1 4: 10	Sessio	on 3
		10:40	Ch 5.3: ECAL (20'+20') 40' Speaker: Dr. Jianbei Liu (University of Science and Technolo
		11:20	Ch 5.4: HCAL (20'+20') 40' Speaker: Haijun Yang (Shanghai Jiao Tong University)
		12:00	Lunch Box 1h30'
		13:30	Ch 5.5: Dual-Readout (20'+20') 40' Speaker: Franco Bedeschi (I)
	14:10 - 16:3 0	Sessio	on 4
,		14:10	Ch 6: Magnet (20'+20') 40' Speaker: Ms. Wei Zhao (IHEP)
		14:50	Ch 7: Muon (25'+20') 45' Speakers: Prof. Liang Li (Shanghai Jiao Tong University), Pa
		15:35	Coffee Break 20'
		15:55	Ch 8: DAQ (15'+20') <i>35'</i> Speaker: Mr. Fei Li (IHEP, CAS, China)
	16:30 - 17:10	Discus	ssion with CEPC team 40'
	17:10 - 18:10	Comm	nittee Executive Session
	18:10 - 20:10	Bangu	et(With CEPC team)

Agenda

Saturday, 1	5 Septe	ember 2018		
09:00 - 10:55	Sessio 09:00	n 5 Ch 10: Physics performance (
		Speaker: Mr. Manqi Ruan (IHEP)		
	09:40	Ch 11: Physics Analysis (25'+ Speakers: Jianming Qian (Univers (IHEP)		
	10:25	Coffee Break 30'		
10:55 - 11:25	Discus	sion with CEPC team 30'		
11:25 - 12:00	Comm	Committee Executive Session		
12:00 - 13:30	Lunch	Box		
13:30 - 16:00	Comm	ittee Executive Session		
16:00 - 16:30	Coffee	Break		
16:30 - 17:30	Summ	ary 1h0'		

(20'+20') 40'

+20') 45' sity of Michigan), Prof. Zhijun Liang (IHEP), Prof. Yaquan FANG Yaquan

Final remarks

* Detector designs at conceptual level, addressing potential drawbacks ***** Further R&D required towards TDR * Funding adequate for R&D but need to expand international collaboration

* Need to know if there are major technological road blocks that will prevents us from extracting the physics from CEPC

***** International Collaborations with be formed in the coming years

Next milestone: 2022 — CEPC TDR

Looking forward to you comments

Acknowledgments

Editor List

Executive Summary

Overview of the physics case for CEPC 2

- 2.1 CEPC: the precision frontier 2.2 2.2.1 Naturalness 2.2.2 Exploring new physics 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 QCD precision measurement 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.5
 - 2.5.1
 - 2.5.2 Tau decays
 - 2.5.3
 - Summary 2.5.4

Higgs boson and electroweak symmetry breaking Electroweak phase transition Exotic Higgs boson decays Exotic Z boson decays Dark matter and hidden sectors Neutrino connection Extended Higgs sector Precision α_s determination Jet rates at CEPC Non-global logarithms QCD event shapes and light quark Yukawa coupling Flavor Physics with the Z factory of CEPC Rare B decays Flavor violating Z decays

Experimental Conditions, Physics Requirements and Detector Concepts 3

- 3.1 **CEPC** Experimental Conditions The CEPC beam 3.1.1 3.1.2 Beam backgrounds 3.2 **Physics Requirements** 3.2.1 Multiplicity 3.2.2 Tracking 3.2.3 Charged Leptons Charged hadron identification 3.2.4 3.2.5 Photons 3.2.6 Jets and Missing energy 3.2.7 Flavor Tagging 3.2.8 Requirements on the physics objects: summary 3.3 Detector concepts 3.3.1 The baseline detector concept
 - 3.3.2 Full silicon detector concept
 - 3.3.3

111

An alternative low magnetic field detector concept

Tracking system

- 4.1 Vertex tracker detector
 - Performance Requirements and Detector Challenges 4.1.1
 - 4.1.2 Baseline design
 - Detector performance studies 4.1.3
 - 4.1.4 Beam-induced Background in the Vertex Detector
 - Sensor Technology Options 4.1.5
 - 4.1.6 Mechanics and Integration
 - 4.1.7 Critical R&D
 - 4.1.8 Summary
- Time Projection Chamber and Silicon tracker 4.2
 - 4.2.1 Time Projection Chamber
 - Silicon Tracker 4.2.2
 - TPC and Silicon tracker performance 4.2.3
- **Full Silicon Tracker** 4.3
 - Full silicon tracker layout 4.3.1
 - **Expected Resolution** 4.3.2
 - 4.3.3 Detector simulation and reconstruction
 - Tracking performance 4.3.4
 - Conclusion 4.3.5
- Drift Chamber Tracker 4.4
 - 4.4.1 Introduction
 - 4.4.2 Overview
 - 4.4.3 Expected performance
 - Tracking system simulation results 4.4.4
 - Backgrounds in the tracking system 4.4.5
 - Constraints on the readout system 4.4.6

Calorimetry 5

- 5.1 Introduction to calorimeters
- 5.2 General design considerations for the PFA Calorimetry system
- 5.3 Electromagnetic Calorimeter for Particle Flow Approach
 - 5.3.1 **Design Optimization**
 - 5.3.2 Silicon-Tungsten Sandwich Electromagnetic Calorimeter
 - 5.3.3 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter
- Hadronic Calorimeter for Particle Flow Approach 5.4
 - Introduction 5.4.1
 - 5.4.2 Semi-Digital Hadronic Calorimeter (SDHCAL)
 - AHCAL based on Scintillator and SiPM 5.4.3
- 5.5 **Dual-readout Calorimeter**
 - 5.5.1 Introduction
 - 5.5.2 Principle of dual-readout calorimetry
 - Layout and mechanics 5.5.3
 - Sensors and readout electronics 5.5.4
 - 5.5.5 Performance studies with fiber-sampling prototypes
 - Monte Carlo simulations 5.5.6
 - 5.5.7 Final remarks on dual-readout calorimetry

Tracking system

- 4.1 Vertex tracker detector
 - Performance Requirements and Detector Challenges 4.1.1
 - 4.1.2 Baseline design
 - Detector performance studies 4.1.3
 - 4.1.4 Beam-induced Background in the Vertex Detector
 - Sensor Technology Options 4.1.5
 - 4.1.6 Mechanics and Integration
 - 4.1.7 Critical R&D
 - 4.1.8 Summary
- Time Projection Chamber and Silicon tracker 4.2
 - 4.2.1 Time Projection Chamber
 - Silicon Tracker 4.2.2
 - TPC and Silicon tracker performance 4.2.3
- **Full Silicon Tracker** 4.3
 - Full silicon tracker layout 4.3.1
 - **Expected Resolution** 4.3.2
 - 4.3.3 Detector simulation and reconstruction
 - Tracking performance 4.3.4
 - Conclusion 4.3.5
- Drift Chamber Tracker 4.4
 - 4.4.1 Introduction
 - 4.4.2 Overview
 - 4.4.3 Expected performance
 - Tracking system simulation results 4.4.4
 - Backgrounds in the tracking system 4.4.5
 - Constraints on the readout system 4.4.6

Calorimetry 5

- 5.1 Introduction to calorimeters
- 5.2 General design considerations for the PFA Calorimetry system
- 5.3 Electromagnetic Calorimeter for Particle Flow Approach
 - 5.3.1 **Design Optimization**
 - 5.3.2 Silicon-Tungsten Sandwich Electromagnetic Calorimeter
 - 5.3.3 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter
- Hadronic Calorimeter for Particle Flow Approach 5.4
 - Introduction 5.4.1
 - 5.4.2 Semi-Digital Hadronic Calorimeter (SDHCAL)
 - AHCAL based on Scintillator and SiPM 5.4.3
- 5.5 **Dual-readout Calorimeter**
 - 5.5.1 Introduction
 - 5.5.2 Principle of dual-readout calorimetry
 - Layout and mechanics 5.5.3
 - Sensors and readout electronics 5.5.4
 - 5.5.5 Performance studies with fiber-sampling prototypes
 - Monte Carlo simulations 5.5.6
 - 5.5.7 Final remarks on dual-readout calorimetry

The CEPC Baseline Collider Design

Double ring Common RF cavities for Higgs

Two RF sections in total

Two RF stations per RF section

$10 \times 2 = 20$ cryomodules

6 2-cell cavities per cryomodule

Main Parameters of Collider Ring

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2				
Center-of-mass energy (GeV)	240	160	9	1		
Crossing angle at IP (mrad)	16.5×2					
Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8.	0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)		
<mark>Beam size at IP σ_x /σ_y (μm)</mark>	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.0		
Bunch length σ _z (mm)	3.26	5.9	8	5		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1		

CEPC baseline detector: ILD-like

Magnetic Field: 3 Tesla — changed from preCDR

• Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV⁻¹)

• Jet energy resolution: $\sigma_E / E \sim 30\% / \sqrt{E}$

- m /-1)
- Flavor tagging
- BR(Higgs → µµ)
- W/Z dijet mass separation

CEPC baseline detector: ILD-like: Design Considerations

Major concerns being addressed

1. MDI region highly constrained L* increased to 2.2 m **Compensating magnets**

2. Low-material Inner Tracker design

3. TPC as tracker in high-luminosity **Z-pole scenario**

4. ECAL/HCAL granularity needs Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

•Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1)

• Jet energy resolution: $\sigma_{\rm F}/E \sim 30\%/\sqrt{E}$

- **Flavor tagging**
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation

Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Similar to Concept Detector for FCC-ee Collaboration with China Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~0.8 X₀)

- Vertex: Similar to CEPC default
- * Drift chamber: 4 m long; Radius ~30-200 cm
- Preshower: ~1 X₀
- * Dual-readout calorimeter: 2 m/8 λ_{int}
- * (yoke) muon chambers

Integrated test beam September 2018 Looking for helpers

Interaction region: Machine Detector Interface

One of the most complicated issue in the CEPC detector design

Full partial double ring

Challenging engineering design

Updated baseline parameters:

Head-on collision changed to crossing angle of **33 mrad** Focal length (**L***) increased from 1.5 m to **2.2 m** Solenoid field reduced from 3.5 T to **3 T**

Baseline Pixel Detector Layout 3-layers of double-sided pixel sensors

		R(mm)	z (mm)	$ cos \theta $	$\sigma(\mu m)$	Readout tin
Ladder	Layer 1	16	62.5	0.97	2.8	20
1	Layer 2	18	62.5	0.96	6	1-10
Ladder	Layer 3	37	125.0	0.96	4	20
2	Layer 4	39	125.0	0.95	4	20
Ladder	Layer 5	58	125.0	0.91	4	20
3	Layer 6	60	125.0	0.90	4	20

+ ILD-like layout

+ Innermost layer: $\sigma_{SP} = 2.8 \ \mu m$

+ Polar angle $\theta \sim 15$ degrees

+ Material budget $\leq 0.15\% X_0/layer$

Implemented in GEANT4 simulation framework (MOKKA)

Current R&D activities

• Initial sensor R&D targeting:

	Specs
Single point resolution near IP:	< 3-5 μm
Power consumption:	< 100 mW/cm ²
Integration readout time:	< 10-100 µs
Radiation (TID)	1 MRad

Sensors technologies:

	Process	Smallest pixel size	Chips designed	Observations
CMOS pixel sensor (CPS)	TowerJazz CIS 0.18 µm	22 × 22 µm²	2	Founded by MOST and
SOI pixel sensor	LAPIS 0.2 µm	16 × 16 µm²	2	Funded by NSFC

- Institutions: CCNU, NWTU, Shandong, Huazhong Universities and IHEP (IPHC in Strasbourg, KEK)
- New project: Full size CMOS sensor for use in real size prototype

IHEP

Silicon Tracker Detector – Baseline **SET:** r = ~1.8 m

Not much R&D done so far

Sensor technology

1. Microstrip sensors 2. Large CMOS pixel sensors (CPS)

Power and Cooling

1. DC/DC converters

2. Investigate air cooling

ETD: z = ~2.4 m

Extensive opportunities for international participation

Time Projection Chamber (TPC) TPC detector concept

- Allows for particle identification
- Low material budget: •
 - 0.05 X₀ including outfield cage in r •
 - **0.25** X₀ for readout endcaps in Z
- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- Position resolution: ~100 μ m in r ϕ •
- dE/dx resolution: 5%
- GEM and Micromegas as readout
- Problem: Ion Back Flow —> track distortion **Operation at L > 2 × 10^{34} cm⁻² s⁻¹**

Prototype built

IEP, Tsinghua and Shandong y MOST and NSFC

Drift Chamber Option – IDEA proposal

Lead by Italian Colleagues

and MEG2 experiments

Follows design of the KLOE

Low-mass cylindrical drift chamber

- Length: 4 m **Radius: 0.3-2m** Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)
- •

Layers: 14 SL × 8 layers = 112 Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

- Spatial resolution: < 100 µm dE/dx resolution: 29
- Max drift time: <400 nsec Cells: 56,448

MEG2 prototype being tested

Full silicon tracker concept

Replace TPC with additional silicon layers SIDB: SiD optimized 5 barrel single strip layers 5 endcap double strip layers

CEPC-SID:

6 barrel double strip layers 5 endcap double strip layers

Collaboration with Argonne and Berkeley

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and **HEP** seed funding

Hadronic

New

(*) SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) (*) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

(*) Dual readout calorimeters (INFN, Italy + Iowa, USA)

ECAL Calorimeter — Particle Flow Calorimeter Scintillator-Tungsten Sandwich ECAL

Superlayer (7 mm) is made of:

- 3 mm thick: Tungsten plate
- 2 mm thick: 5 x 45 mm²
- 2 mm thick: Readout/service layer

Plastic scintillator 5 x 45 mm² (2 mm thick)

R&D on-going:

- SiPM dynamic range
- Scintillator strip non-uniformity
- Coupling of SiPM and scintillator

Mini-prototype tested on testbeam at the IHEP

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Dual Readout Calorimeter

Lead by Italian colleagues: based on the DF

Projective 4π layout implemented into CEPC simulation (based on 4th Detector Collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different dept 4000 fibers (start at different depths to keep constant the sampling fraction)

/**5**m Εl 1.8m $\cos(\text{theta}) > 0.995$

Expected resolution: EM: ~10%/sqrt(E) Hadronic: 30-40%/sqrt(E)

Studying different readout schemes **PMT vs SiPM**

Several prototypes from RD52

nave been built

Superconductor solenoid development Updated design done for 3 Tesla field (down from 3.5 T)

Design for 2 Tesla magnet presents no problems

Double-solenoid design also available

Default is NbTi Rutherford SC cable (4.2K) Solutions with High-Temperature SC cable also being considered (YBCO, 20K)

7240	Main parameters of so	olenoid coil
6080	Central magnetic field	3 T
	Operating current	15779 A
4400 3600	Stored energy	1.3 GJ
	Inductance	10.46 H
1810	Coil radius	3.6-3.9 m
500	Coil length	7.6 m
1710	Cable length	30.35 km

Muon detector

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- Detection efficiency: 95%

Technologies considered

Monitored Drift Tubes Resistive Plate Chambers (RPC) Thin Gap Chambers (TGC) Micromegas Gas Electron Multiplier (GEM) Scintillator Strips

Baseline: Bakelite/glass RPC

Good experience in China on gas detectors strong direct work on CEPC — rather open collaboration

New technology proposal (INFN): µRwell

Muon system: open studi

Layout optimization:

- Justification for number of layers
 - Implications for exotic physics searc
 - Use as a tail catcher / muon tracker (TCMT)
 - Jet energy resolution with/without TCMT

Funding Support for Detector R&D

Multiple funding sources

Detector Silicon TPC Calorimeter Magnet **Total**

Ministery of Sciences and Technology (MOST) **National Science Foundation of China**

- Major project funds
- Individual funds

Industry cooperation funds **IHEP Seed Funding** Others

Funding (M RMB)
18.2
7.0
21.3
8.7
55.2

Currently secured funding

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers lacksquare
- Technical challenges identified \rightarrow R&D issues •

•

Draft-0 released in November 2017

***** Mini international review

Early fall 2018: Planned public release date

- **Soon after CEPC accelerator CDR is released**
- ***** Accommodate new accelerator design parameters and solenoid magnetic field

Still

***** Opportunities for people to contribute editing, reviewing

(<u>http://cepc.ihep.ac.cn/preCDR/volume.html</u>)

- **Detector and Physics Conceptual Design Report (CDR)**
 - **Goal:** A working concept on paper, including alternatives

EP-CEPC-DR-2018-XX **IHEP-EP-2018-XX IHEP-TH-2018-XX**

CEPC

Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group Fall 2018

Final remarks **Significant work done towards the CEPC Detector CDR *** Two significantly different detector concepts are emerging **High-magnetic field (3 Tesla):** PFA-oriented — with TPC or full-silicon tracker **Low-magnetic field (2 Tesla):** with drift chamber and dual readout calorimeter ***** Key technologies are under R&D and put to prototyping: **X** Vertex detector, TPC, calorimeters, magnets *e.g. Drift chamber, dual readout calorimeter and muon chamber *****CEPC funding adequate for required R&D program * Support from several sources in China: NSFC, MOST, etc International collaboration expanding

- International colleagues getting more heavily involved, participating in CDR
- 🗱 INFN, SLAC, Iowa State Univ., Belgrade, LLR, IPNL, LC-TPC, Liverpool, Oxford, Barcelona, etc...
 - **CDR Expected final release: Early Fall 2018**
 - From 2018-2022, CEPC TDR will be finished

Thank you for the attention!

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

Draft-0 preliminary chapters available in November 2017

- Chapter 2: Physics case
- Chapter 3: Detector concepts (partial)
- * Chapter 4: Tracking system (vertex, silicon tracker, silicon-only, TPC, drift chamber) ***** Chapter 5: Calorimeter (PFA and DR calorimeter options)
- Chapter 6: Magnet system
- ***** Chapter 7: Muon system
- ***** Chapter 8: Triger and DAQ
- * Chapter 9: MDI, beam background and luminosity measurement
- ***** Chapter 10: Physics performance and expectations (partial)

(http://cepc.ihep.ac.cn/preCDR/volume.html)

- **Detector and Physics Conceptual Design Report (CDR)**
 - **Goal:** A working concept on paper, including alternatives

timinar

Main Parameters of Collider Ring

	Higgs	W	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	4	5.5
Circumference (km)		100		
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0	036
Crossing angle at IP (mrad)		16.5×2		
Piwinski angle	2.58	7.0	23	8.8
Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8	.0
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)
Beam current (mA)	17.4	87.9	46	1.0
Synchrotron radiation power /beam (MW)	30	30	16	5. 5
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04
RF frequency f _{RF} (MHz) (harmonic)		650 (2168	16)	
Bunch length σ_z (mm)	3.26	5.9	8	.5
Natural energy spread (%)	0.1	0.066	0.0)38
Photon number due to beamstrahlung	0.29	0.35	0.	55
Lifetime (hour)	0.67	1.4	4.0	2.1
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

Interaction region: Machine Detector Interface Machine induced backgrounds

- Radiative Bhabha scattering
- **Beam-beam interactions**
- Synchrotron radiation
- Beam-gas interactions ightarrow

Higgs operation $(E_{cm} = 240 \text{ GeV})$

Rates at the inner layer (16 mm): Hit density: ~2.5 hits/cm²/BX TID: 2.5 MRad/year 10¹² 1MeV n_{eq}/cm² NIEL:

(Safety factors of 10 applied)

Studies for new configuration being finalized

Detector optimization

Optimized (CDR)

B Field	3 Tesla	R
TPC radius	1.8 m	Rec
TOF	50 ps	
ECAL thickness	84 mm	Op
ECAL cell size	10 mm	M better 5
ECAL num. layers	25	Dep
HCAL thickness	1 m	
HCAL num. layers	40	C

Comments

- lequired from beam emmitance
- uired by $Br(H \rightarrow \mu\mu)$ measurement
- **Pi-Kaon separation at Z pole**
- otimized for Br(H->γγ) at 250 GeV
- laximum for EW measurements, mm but passive cooling needs 20 mm
- ends on silicon sensor thickness

The CEPC Program 😕

100 km e+e- collider

Center of Mass Energy [GeV]

Institutional Board YN GAO J. GAO

Project Director XC LOU Q. QIN N. XU

Y.F. WANG (IHEP),....

Accelerator J. GAO (IHEP) CY Long (IHEP) SN FU (IHEP)

Detector

Joao Costa (IHEP)

S. JIN (NJU)

YN GAO (TH)

Current CEPC Organization

International Advisory Committee

Young-Kee Kim, U. Chicago (Chair) Barry Barish, Caltech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Murayama, UC Berkeley/IPMU Katsunobu Oide, KEK Robert Palmer, BNL John Seeman, SLAC Ian Shipsey, Oxford Steinar Stapnes, CERN Geoffrey Taylor, U. Melbourne Henry Tye, IAS, HKUST Yifang Wang, IHEP Harry Weerts, ANL

CEPC "optimistic" Schedule

 CEPC data-taking starts before the LHC program ends Possibly concurrent with the ILC program

Construction (2022-2030)

Data taking (2030 - 2040)

- Seek approval, site decision - Construction during 14th 5-year plan

CEPC Accelerator Chain and Systems

10 GeV

Injector

Booster 100 km

Collider Ring 100 km

e-

e+

45/80/120 GeV beams

Energy ramp 10 GeV

45/80/120 GeV

Three machines in one single tunnel

- Booster and CEPC - SPPC

$\sqrt{s} = 90, 160 \text{ or } 240 \text{ GeV}$ **2** interaction points

Booster Cycle (0.1 Hz)

- The key systems of CEPC:
 - 1) Linac Injector
 - 2) Booster
 - 3) Collider ring
 - 4) Machine Detector Interface
 - 5) Civil Engineering

CDR provides details of all systems

CEPC Funding in recent years

IHEP seed money 11 M CNY/3 year (2015-2017)

R&D Funding - NSFC

Increasing support for CEPC D+RDby NSFC 5 projects (2015); 7 projects(2016)

CEPC相关基金名称(2015-2016)	基金类型	负责人	承担单位
高精度气体径迹探测器及激光校正的研究 (2015)	重点基金	李玉兰/ 陈元柏	清华大学/ Tsinghua 高能物理研究所 IHEP
成像型电磁量能器关键技术研究(2016)	重点基金	刘树彬	中国科技大学 USTC
CEPC局部双环对撞区挡板系统设计及螺线管场补偿 (2016)	面上基金	白莎	高能物理研究所
用于顶点探测器的高分辨、低功耗SOI像素芯片的 若干关键问题的研究(2015)	面上基金	卢云鹏	高能物理研究所
基于粒子流算法的电磁量能器性能研究 (2016)	面上基金	王志刚	高能物理研究所
基于THGEM探测器的数字量能器的研究(2015)	面上基金	俞伯祥	高能物理研究所 IH
高粒度量能器上的通用粒子流算法开发(2016)	面上基金	阮曼奇	高能物理研究所 🧡
正离子反馈连续抑制型气体探测器的实验研究 (2016)	面上基金	祁辉荣	高能物理研究所
CEPC对撞区最终聚焦系统的设计研究(2015)	青年基金	王逗	高能物理研究所
利用耗尽型CPS提高顶点探测器空间分辨精度的研究 (2016)	青年基金	周扬	高能物理研究所
关于CEPC动力学孔径研究(2016)	青年基金	王毅伟	高能物理研究所

Thanks to many different funding sources, CEPC team can carry out CEPC design, key-technology research and site feasibility studies

Ministry of Sciences and Technology 2016: 36 M CNY 国家重点研发计划 2018: ~31 M CNY 项目申报书 国家重点研发计划 项目申报书 高能环形正负电子对撞机相关的物理和关键技法 项目名称: 究 所属专项: 大科学装置前沿研究 项目名称: 高能环形正负电子对撞机关键技术研发和验证 指南方向: 高能环形正负电子对撞机预先研究 所属专项: 大科学装置前沿研究 专业机构: 科学技术部高技术研究发展中心 指南方向: 推荐单位: 3.1 高能环形正负电子对撞机关键技术验证 教育部 专业机构: 科学技术部高技术研究发展中心 申报单位: 清华大学 (公章) 推荐单位: 中国科学院 项目负责人: 高原宁 申报单位: 中国科学院高能物理研究所 (公章) 项目负责人: Joao Guimaraes da Costa 中华人民共和国科学技术部 2016年05月06日 中华人民共和国科学技术部 0001YF SQ2016YFJC030028 2016-05-06 16:52:14 2018年02月26日

~60 M CNY CAS-Beijing fund, talent program ~500 M CNY Beijing fund (light source)

Total e+e- cross sections

Running scenario

Particle type	Energy (c.m.) (GeV)	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	Luminosity per year (ab ⁻¹ , 2 IPs)	Years	Total luminosity (ab ⁻¹ , 2 IPs)	Total number of particles
Η	240	3	0.8	7	5.6	1 x 10 ⁶
Z	91	32	8	2	16	0.7 x 10 ¹²
W	160	12	3.2	1	3.2	1 x 107

Main Parameters of Collider Ring

	Higgs	W	Z (3T)	Z(2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	45.5		
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)		16.5×2			
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68μs)	1524 (0.21μs)	12000 (25ns+10%	%gap)	
Beam current (mA)	17.4	87.9	461.0		
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)		10.7			
Momentum compact (10-5)		1.11			
$β$ function at IP $β_x*/β_y*$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_x/\varepsilon_y$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x / \sigma_y (\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)		2.17 0.47 0.10 650 (216816)			
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_z (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.29	0.35	0.55		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0,99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

Accelerator Parameters

	Higgs	Ŵ	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	4	5.5
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016
Beam size at IP σ_x / σ_y (µm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04
Bunch length σ _z (mm)	3.26	5.9	8	.5
Lifetime (hour)	0.67	1.4	4.0	2.1
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

CEPC Civil Engineering Design and Implementation

CEPC Interaction Region

TUNNEL CROSS SECTION OF THE ARC AREA

CEPC-SppC tunnel

CEPC Detector Hall

CEPC Injection Region

CEPC SCRF Gallary

Interaction region: Machine Detector Interface Machine induced backgrounds

- Radiative Bhabha scattering
- **Beam-beam interactions**
- Synchrotron radiation
- Beam-gas interactions ightarrow

Higgs operation $(E_{cm} = 240 \text{ GeV})$

Rates at the inner layer (16 mm): Hit density: ~2.5 hits/cm²/BX

TID:

NIEL:

2.5 MRad/year 10¹² 1MeV n_{eq}/cm²

(Safety factors of 10 applied)

Studies for new configuration being finalized

Vertex Detector Performance Requirements

Efficient identification of heavy quarks (b/c) and T leptons

Intrinsic resolution of vertex detector

	Specs	Consequences	
Single point resolution near IP:	< 3 µm	High granularity	
First layer close to beam pipe:	r ~ 1.6 cm		
Material budget/layer:	≤ 0.15%X₀	Low power consumption, < 50 mW/cm ² for air cooling	
Detector occupancy:	≤ 1%	High granularity and short readout time (< 20 µs)	

Target: A High granularity; A Fast readout; A Low power dissipation; A Light structure

Resolution effects due to multiple scattering

Dominant for low-p_T tracks

htinuous eration mode

Performance studies: Material budget

Transverse impact parameter resolution for single muons

Requirement

Baseline includes very small material budget for beam pipe, sensor layers and supports \leq 0.15%X₀ / layer

× 2 more material 20% resolution degradation

Impact parameter resolution goal achievable but only with low material budget

Silicon Tracker Detector – Baseline **SET:** r = ~1.8 m

Not much R&D done so far

Sensor technology

1. Microstrip sensors 2. Large CMOS pixel sensors (CPS)

Power and Cooling

1. DC/DC converters

2. Investigate air cooling

ETD: z = ~2.4 m

Extensive opportunities for international participation

Time Projection Chamber (TPC)

TPC readout with micro-pattern gaseous detectors (MPGDs)

New: Micromegas + GEM

Indication that TPC operation would be feasible at high-luminosity Z factory

IBF: Ion Back Flow reduced to 0.19%

Drift Chamber Option – IDEA proposal

Lead by Italian Colleagues

and MEG2 experiments

Follows design of the KLOE

Low-mass cylindrical drift chamber

- Length: 4 m **Radius: 0.3-2m** Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)
- •

Layers: 14 SL × 8 layers = 112 Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

- Spatial resolution: < 100 µm dE/dx resolution: 29
- Max drift time: <400 nsec Cells: 56,448

MEG2 prototype being tested

Baseline ECAL Calorimeter — Particle Flow Calorimeter Silicon-Tungsten Sandwich ECAL

Cell size:

- 5 x 5 mm² optimal for PFA
- 10 x 10 mm² default
- 20 x 20 mm² required for
- passive cooling

Baseline HCAL Calorimeter — Particle Flow Calorimeter **Semi-Digital HCAL SDHCAL:** multiple thresholds per channel Self-supporting absorber (steel) **Prevent saturations at E > 40 GeV**

Lateral segmentation: 1 x 1 cm² Total number of channels: 4 x 10⁷

Challenges

- **Power consumption** —> temperature
- Large amount of services/cables

Baseline HCAL Calorimeter — Particle Flow Calorimeter Semi-Digital gRPC HCAL

Lead by Italian colleagues: based on the DREAM/RD52 collaboration

Dual readout (DR) calorimeter measures both: **Electromagnetic component Non-electromagnetic component**

Fluctuations in event-by-event calorimeter response affect the energy resolution le" energy losses

Méasure simultaneously:

Cherenkov light (sensitive to relativistic particles) Scintillator light (sensitive to total deposited energy) **Expected resolution:**

EM: ~10%/sqrt(E) Hadronic: 30-40%/sqrt(E)

have been built

cos(theta) > 0.995 Lead by Italian colleagues: based on the Dherwin boz conaboration

Projective 4π layout implemented into CEPC simulation (based on 4th Detector Collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different depths to keep constant the sampling fraction)

Studying different readout schemes **PMT vs SiPM**

1.8m

Superconductor solenoid development Updated design don

cept improved by FCC studies

Con

Default: Iron Yoke

Non-uniformity

9.1%

Muon detector

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- Detection efficiency: 95%

Technologies considered

Monitored Drift Tubes Resistive Plate Chambers (RPC) Thin Gap Chambers (TGC) Micromegas Gas Electron Multiplier (GEM) Scintillator Strips

Baseline: Bakelite/glass RPC

yo F E (r

New technology proposal: µRwell

Muon system: open studies

Full simulation samples with full detec

yoke and magnet system

Further layout optimization: N layers
Effect as a tail catcher / muon tracket
Jet energy resolution with/without
Gas detectors: Study aging effects, in

reliability and stability **All detectors:** Improve massive and la procedures, readout technologies.

Exotics/new physics search study, e.g. long lived particles

• MOST 1 – Funding

- SJTU, IHEP, THU, USTC, Huazhong Univ
- Silicon pixel detector ASIC chip design
- Time projection chamber detector
- Electromagnetic and hadrons calorimeter
 - High-granularity ECAL
 - Large area compact HCAL
- Large momentum range particle identification Cherenkov detector
- MOST 2 funding
 - SJTU, IHEP, Shandong U. Northwestern Tech. University

• Vertex detector

- Use 180 nm process
- Carry out the pixel circuit simulation and optimization, in order to achieve a CPS design with a small pixel depletion type, and try to improve the ratio between signal and noise;
- Focus on the small pixel unit design, reduce the power consumption and improve readout speed; time projection chamber detector
- Parameters:
 - spatial resolution to be better than 5 microns
 - integrated time to be 10–100 microseconds
 - power consumption of about 100 mW/cm².

- Time Projection Chamber
 - Based on the new composite structure, read the positive ion feedback suppression, when the detector precision is better than 100 microns.
 - Study the effect of electromagnetic field distortion on position and momentum resolution.
 - Test the main performance indicators of the readout module in the 1T magnet field. • Low power readout electronics is planed to use advanced 65nm integrated circuit technology, to achieve high density and high integration of ASIC chip design, reduce circuit power consumption to less than 5mW / channel.

 - Parameters:
 - spatial resolution to be better than 5 microns
 - integrated time to be 10–100 microseconds
 - power consumption of about 100 mW/cm².

- High granularity ECAL
 - Technical selection based on SiPM readout electromagnetic calorimeter • Realizing ECAL readout unit granularity of 5×5mm²

 - Develop small ECAL prototype;
 - Develop a set of active cooling system based on two-phase CO_2 refrigeration. • The thermal conductivity is greater than 30 mW/cm^2 in -20 degrees.
- High granularity HCAL
 - Decide technical design of digital calorimeter;
 - At a particle size of 1 cm x 1 cm, master the gas detector production process with thickness less than 6 mm; Produce the micro hole detector unit model with area of $1 \text{ m} \times 0.5 \text{ m}$. The overall gain uniformity of the detector is better than 20%. Counting rate is 1MHz/s; Produce the flat panel board with area of $1 \text{ m} \times 1 \text{ m}$
 - Detection efficiency is better than 95%.

- Particle Identification technology
 - radiation
 - Make a prototype and test it
 - Parameters:

 Combine the advantages of THGEM and MicroMegas to achieve the detection of Cherenkov light with high sensitivity, low background, high count rate and anti-

• The photon angle resolution of the Cherenkov radiation is better than 2 mrad

Full silicon tracker concept

Replace TPC with additional silicon layers

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

CEPC-SID: $\sigma = 0.21$ GeV

SIDB: $\sigma = 0.26$ GeV

Performance studies: Impact parameter resolution

Transverse impact parameter resolution for single muons

83

Performance studies: Material budget

Transverse impact parameter resolution for single muons

Requirement

CDR: Chapter 4

Baseline includes very small material budget for beam pipe, sensor layers and supports ≤ **0.15%X**₀

× 2 more material 20% resolution degradation

Impact parameter resolution goal achievable but only with low material budget

Performance studies: Pixel size

Transverse impact parameter resolution for single muons

CDR: Chapter 4

50% single point resolution degradation

50% impact parameter resolution degradation (for high-pt tracks)

Minimum degradation for low-pt tracks (dominated by multiple scattering)

Target **Baseline** p = 10 GeVp = 100 GeVBaseline

85

Performance studies: Distance to IP

Transverse impact parameter resolution for single muons

86

Standard Pixel Sensor imaging Process (Tower)

CMOS 180nm

- High-resistivity (> 1k Ω cm) p-type epitaxial layer (18 μ m to 30 μ m) on p-type substrate
- Deep PWELL shielding NWELL allowing PMOS transistors (full CMOS within active area)
- Small n-well diode (2 μ m diameter), ~100 times smaller than pixel => low capacitance (2fF) => large S/N
- Reverse bias can be applied to the substrate to increase the depletion volume around the NWELL collection diode and further reduce sensor capacitance for better analog performance at lower power

W. Snoeys, CEPC Workshop, Beijing, Nov 7, 2017

ALPIDE CMOS Pixel Sensor

		וח) ion	7
	ALPIDE	Resolut	6
Pixel dimensions	26.9 µm × 29.2 µm		5
Spatial resolution	~ 5 µm		3
Time resolution	5-10 µs		
Hit rate	~ 10 ⁴ /mm ² /s		0
Power consumption	< ~20-35 mW/cm ²	iciency (%)	98
Radiation tolerance	$\begin{array}{c} 300kRad \\ 2\times10^{12} \ 1 \ MeV \ n_{eq}/cm^2 \end{array}$	etection Eff	96 94 94 94

Almost OK specifications

Need lower resolution Higer radiation tolerance

⁸ F

Ê

ATLAS Modified TowerJazz process

Standard process

•

Modified process

No significant circuit or layout changes required

DOI 10.1016/j.nima.2017.07.046

Irradiation tests: 1×10¹⁵ n_{eq}/cm²

Improvement of radiation tolerance by at least one order of magnitude

W. Snoeys, CEPC Workshop, Beijing, Nov 7, 2017

Optimization of TPC radius and B-field BR($H \rightarrow \mu \mu$) measurement

Detector cost sensitive to tracker radius, however:

- simulation prefers TPC with radius >= 1.8 m,
- momentum resolution ($\Delta(1/P_T) < 2 \times 10^{-5} \text{ GeV}^{-1}$)

Better:

- **Separation and Jet Energy Resolution**
- dE/dx measurement
- BR($H \rightarrow \mu\mu$) measurement

out

Lead by Italian colleagues: based on the DREAM/RD52 collaboration

Lead, 9 modules

Each module: $9.3 * 9.3 * 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: 5%, 10 λ_{int}

Hauptman, Santoro, Ferrari Tomorrow, 11:30, 12:00, 12:30 am

0.2

Lead by Italian colleagues

Brass module, dimensions: ~ 112 cm long, $12 \times 12 \text{ mm}^2$

Hauptman, Santoro, Ferrari Tomorrow, 11:30, 12:00, 12:30

Trigger : $(T_1 \cdot T_2 \cdot \overline{T_H})$

