BSM Searches and Upgrades of the ATLAS experiment

Rui Wang (王睿) Argonne National Laboratory

Seminar at IHEP September, 2018

www.anl.gov

Large Hardon Collider

The world's largest and most powerful particle accelerator First started up on 10 September 2008

Large Hardon Collider

CMS

3

CMS & ATLAS - designed for discover new physics

p-p 13 TeV p-Pb 5.02 TeV Pb-Pb-5.02 TeV

ALIC

Hadronic celorimeter Velo Velo Tacking system

Rui Wang

A Toroidal LHC ApparatuS (ATLAS) detector

The ATLAS detector consists of a series of very large concentric cylinders and disks around the interaction point where the proton beams from the LHC collide 44m

A Toroidal LHC ApparatuS (ATLAS) detector

Different Particle leave signatures in different part of the detector

ATLAS — Calorimeter

Electromagnetic calorimeter ($|\eta| < 3.2$) & Hadronic calorimeter ($|\eta| < 5$):

- Energy deposition measurement
- Photon, electron identification
- Photon, electron trigger
- Jet reconstruction
- Jet trigger

LAr forward (FCal)

LAr electromagnetic

barrel

ATLAS TDAQ

Excellent data taking efficiency and quality

Higgs discovery

On 4 July 2012, the ATLAS and CMS experiments at CERN's Large Hadron Collider announced they had each observed a new particle in the mass region around 126 GeV – <u>The Higgs</u> boson

Higgs discovery

On 4 July 2012, the ATLAS and CMS experiments at CERN's Large Hadron Collider announced they had each observed a new particle in the mass region around 126 GeV - <u>The Higgs</u> <u>boson</u>

Higgs discovery

On 4 July 2012, the ATLAS and CMS experiments at CERN's Large Hadron Collider announced they had each observed a new particle in the mass region around 126 GeV - <u>The Higgs</u> <u>boson</u>

Moving forward

http://phdcomics.com/

Searching for new physics

1	ATLAS SUSY Sear	rches*	- 95%	CL	Low	er Limits					ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$					L					
	Model	<i>e</i> , μ, τ, γ	Jets	E_{T}^{miss} .	∫£ åt [f b ^{−1}	1	Mass limit			√ <i>s</i> = 7, 8 Te	$\sqrt{s} = 13 \text{ TeV}$	_	Referen	nce							
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{k}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	ð [2x, 8x Degen.] ý [1x, 8x Degen.]	0.43	0.7	0.9	1.55	m(ℓ [°])<100 G m/∂)-m(ℓ [°])=5 G	N N	1712.02 1711.03	332 301							
Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{k}^0$	0	2-6 jets	Yes	36.1	2		Fi	taidan	2.0	m((⁴)<200 G	N N	1712.02	332 332							
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{K}_{1}^{0}$	3 c. µ	4 joto 2 jets	Vaz	36.1	88 20			12	1.85	(i*)-8000	N .	1706.03	731							
usive	28, 2→qqWZ2 ⁰	0	7-11 jets	Ye		s NG Long-L	ived Partic	a Sa	arches	* - 95% C		1Y	1003.11			ATL					
Ind	28. 2→m ²⁰	0-1 e.μ	3.6	Ye	Status:	July 2018		00	arches	- 55 /0 0	L LACIUSION				l'r di	AILA 	vs - 8 13 TeV				
	2 7 7	3 e.µ	4 jets	-	N	lodel	Signature	∫£ dt [fi	p ⁻¹]	Lifetin	ne limit				J201	= (0.2 00.1) 10	Reference				
3 rd gen, squarks direct production	$b_1b_1, b_1 \rightarrow b\chi_1/d\chi_1$		Multiple	L.	RPV	$\chi_{2}^{0} \rightarrow eev/ega/pgav$	displaced lepton pair	20.3	x ¹ lilctime		7-74	mm				(g)— 1.3 TeV, m(x))— 1.0 TeV	1504.05162				
	$\tilde{b}_1 \tilde{b}_1, \tilde{t}_1 \tilde{t}_1, M_2 = 2 \times M_1$		Multiple		GGI	$\ell_{X_1^0} \rightarrow Z\bar{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime		6-480 mm				m	$(\hat{g}) = 1.1 \text{ leV} m(\chi_1^2) = 1.0 \text{ leV}$	1504.05162				
	$\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow Wb\tilde{X}_1^0 \text{ or } t\tilde{X}_1^0$	0-2 e. µ (Multiple 0-2 jets/1-2 (Ye	GGI	$I_{X_1^0} \rightarrow Z \tilde{G}$	displaced dimuon	32.9	χ^0_1 life lime				0.0	29.18.0 m	n a	(2)— I.I TeV. m(x2)— I.O TeV	CERN.EP.9018.179				
	ξh, Ĥ LSP		Multiple Multiple		GM	3E	non-pointing or delayed ;	20.3	×1 1		ATLAS Exotic	s Sear	hes*	- 95'	% CL	Upper Exclu	sion Limits			ATL	AS Preliminary
	ζ ₁ ζ ₁ , Well-Tempered LSP		Multiple	Ve 3	AMS	SB $\rho_P \rightarrow \chi^- \chi_1^3 \chi_1^- \chi_1^-$	disappearing track	20.3	$x_1^{\pm 1}$	6	Status: July 2018							Ĵ	$\int \mathcal{L} dt = (3)$	3.2 – 79.8) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
	$(\eta_1, \eta \rightarrow c c_1 / c c, c \rightarrow c c_1)$	0	mono-jet	YC	SUS SWE	$\mathfrak{B} pp \to \chi_{-}^{-} \chi_{1}^{0} \chi_{1}^{-} \chi_{1}^{-} \chi_{1}^{-}$	disappearing track	36.1	$x_1^{\pm 1}$	_	Model	ί,	/ Jets	† E _T	^{ss} ∫£dt[ft	» ⁻¹]	Limit				Reference
	$\tilde{i}_2 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + \tilde{n}$	1-2 e. µ	4 b	Yk	AMS	SB $\rho_{i} \rightarrow \chi^{-} \chi_{1}^{3} \chi_{1}^{-} \chi_{1}^{-}$	large pixel dE/dx	18.4	x	g	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$	0 e. 2 j	v 1-4 -	j Yes	36.1 36.7	Mp Ms			7.7 TeV 8.6 TeV	n = 2 n = 3 HLZ NLO	1711.03301 1707.04147
EW direct	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	2-3 e, µ ev, pp	21	Ye Yo	Solit	SUSY	2 ID/WS vertices	36.1	5 III 8 16	nsio	ADD QBH ADD BH high $\sum p_T$	≥1e	2j µ ≥2j	-	37.0 3.2	M _{ib} M _{ib}			8.9 TeV 8.2 TeV	n = 6 $n = 6$, $M_D = 3$ TeV, ret BH	1703.09217 1608.02285
	$\hat{x}_1^{\dagger} \hat{x}_2^{\dagger}$ via Wh	every the		Ye	Spli.	SUSY	cisplaced vix + E ^{niss}	32.8	ĝ lik	dim	ADD BH multijet BS1 $G_{KK} \rightarrow \gamma\gamma$	2	≥ 3	-	3.6 36.7	Men GKK mass		4.1 TeV	9.55 TeV	$n = 6$, $M_D = 3$ TeV, ret BH $k/M_{P} = 0.1$	1512.02586 1707.04147
	$\mathcal{X}_{1}^{*}\mathcal{X}_{1}^{*}/\mathcal{X}_{2}^{*}, \mathcal{X}_{1}^{*} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \mathcal{X}_{2}^{*} \rightarrow \tilde{\tau} \tau(\nu \tilde{\tau})$	27	·	YF	Split	SUSY	0ℓ , $2-6$ jets $+E_{T}^{nim}$	36.1	<u>g i fe</u>	Extra	Bulk RS $G_{RK} \rightarrow WW/2$ Bulk RS $g_{KK} \rightarrow tt$	Z multi-ch 1 e,	annel a ≥1.b.≥.	1.J/2j Yes	36.1 36.1	G _{KK} mass BKK mass		2.3 TeV 3.8 TeV		$k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$	CERN-EP-2018-179 1804.10823
	$\ell_{LR}\ell_{LR}, \ell \rightarrow c \tilde{r}_1^{\prime}$	2 c. µ 2 e. µ	0 ≥1	Ye Yu	H		2 low-EMF trackless iets	20.3	slife	_	2UED / RPP	1 e,	µ ≥2b,≥	3j Yes	36.1	KK mass		1.8 TeV		$Tier(1,1), \mathcal{B}\bigl(A^{(1,1)}\to \mathcal{Z} t\bigr)=1$	1803.09678
	ĤĤ, Ĥ→hĞ/ZĞ	0 4 e.µ	$\geq 36 \\ 0$	Ye Ye	8 II -	55	2 ID/MS vertices	19.5	s life	2	$SSM Z' \rightarrow t\bar{t}$ $SSM Z' \rightarrow \tau\tau$	2 e. 2 i	μ – -	_	38.1 36.1	Z' mass Z' mass		4.5 TeV 2.42 TeV			1707.02424 1709.07242
Long-lived particles	Direct $\hat{x}_{1}^{\dagger}\hat{x}_{1}^{\dagger}$ prod., long lived \hat{x}_{1}^{\dagger}	Disapp. trk	1 jet	Ye		$Z H \rightarrow 2\gamma_d + X$	2 <i>e−</i> , <i>µ−</i> jets	20.3	2'd I	lasoc	Leptophobic $Z' \rightarrow bb$ Leptophobic $Z' \rightarrow tt$	- 1 e,	2b ⊭ ≥1b,≥	- 1J/2j Yes	36.1 36.1	Z' mass Z' mass		2.1 TeV 3.0 TeV		$\Gamma/m = 1\%$	1805.09299 1804.10823
	Stable @ R-hadron	SMP			FRV	$Z H \rightarrow 2\gamma_{H} + X$	2 m-, μ-, π-jets.	3.4	2/H I	epn	SSM $W' \rightarrow t_V$ SSM $W' \rightarrow \tau_V$	1 e. 1 a	μ – –	Yes Yes	i 79.8 i 36.1	W' mass W' mass		5.6 Te 3.7 TeV	v		ATLAS-CONF-2018-017 1801.0599/2
	Metastable $\tilde{g} \in hadron, \tilde{g} \rightarrow gq \tilde{V}_1^0$ GMSB $\tilde{\mathcal{L}}_1^0 \rightarrow \gamma \tilde{\mathcal{L}}_1^0$ introduced $\tilde{\mathcal{L}}_1^0$	27	Multiple	Ye	B FRV	$Z H \rightarrow 4\gamma_d + X$	2 σ-, μ-, π-jets	3.4	7a I	S	HVT $V' \rightarrow WV' \rightarrow qqq$ HVT $V' \rightarrow WH/ZH$ mo	model B 0.e. del B multi-ch	y 2.J annel		79.8 38.1	V'mess V'mess		4.15 TeV 2.93 TeV		$g_V = 3$ $g_V = 3$	ATLAS-CONF-2018-016 1712.08518
	$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/s\mu r/\mu\mu\nu$	displ. ev/eµ/µ	μ.		н	$Z_d Z_d$	displaced dimuon	32.9	Z _d i		LRSM $W_R \rightarrow tb$	multi-ch	annel		36.1	W' mass	_	3.25 TeV		01.0 TeV	CERN-EP-2018-142
RPV	$\bot FV pp \rightarrow \bar{v}_{\tau} + X, \bar{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $\hat{\chi}^{\pm}_{+}\hat{\chi}^{\dagger}_{+}/\hat{\chi}^{0}_{-} \rightarrow WW/ZUUUv_{-}$	сµ,ст.µт 4 г.µ	0	Y	VH	with H > ss > bbbb	$1 - 2\ell + \text{multi-b-jets}$	36.1	slile	0	Ci flag	2 e.	رے - پر معامد ا	-	36.1	A				40.0 TeV 9/1	1707.02424
	$gg, g \rightarrow qq \tilde{x}_{+}^{0}, \tilde{x}_{+}^{0} \rightarrow qq q$	0 4	5 large- <i>R</i> jet Multiple	15 -	Φ(3)	00 GeV) > s s	2 low-EMF trackless jets	20.3	s life		Axial-vector mediator (D	racDM) 0te,	μ <u>210.2</u> μ 1-4	j Yes	36.1	n Minud	1.	2.57 TeV		$ c_{xy} = 4\pi$ $g_{\alpha}=0.25, g_{\gamma}=1.0, m(\chi) = 1 \text{ GeV}$	1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs / \tilde{g} \rightarrow t\tilde{s}\tilde{\chi}_{+}^{0}, \tilde{\chi}_{+}^{0} \rightarrow tbs$		Multiple		Φ(3)	00 GeV) → ∧ ∧	2 ID/MS vertices	19.5	s lik	NO	Colored scalar mediator VVyy EFT (Dirac DM)	(Dinac DM) 0 c, 0 c,	µ 1−4 µ 1J.≤	j Yes 1 i Yes	36.1	m _{med}	700 GeV	.67 TeV		$g=1.0, m(\chi) = 1 \text{ GeV}$ $m(\chi) < 150 \text{ GeV}$	1711.03301 1606.02372
	$\tilde{i}_1, \tilde{i} \rightarrow \tilde{i}_1, \tilde{i}_1 \rightarrow ibs$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow bs$	0	2 jets – 2 <i>b</i>		φ(6)	00 GeV) ⇒ss	2 low-EMF trackless jets	3.2	s lite	0	Scalar LO 1 st gen	2 6	≥ 2	-	3.2	LQ mass	1.1 TeV			$\beta = 1$	1605.06035
	$I_1I_1, I_1 \rightarrow b\ell$	2 c,µ	2.6	-	Φ(9)	00 GeV) → s s	2 low-EMF trackless jets	20.3	s lile	T C	Scalar LQ 2 nd gen Scalar LQ 3 nd gen	2, 1 e,	≥2j µ ≥1b,≥	i − 3j Yes	3.2 20.3	LQ mass LQ mass	1.05 TeV 640 GeV			$\beta = 1$ $\beta = 0$	1605.06035 1508.04735
10-1		. Englisher and			@(s)	TeV\→	2 ID/WS vertices 2 low-EME trackless jets	18.5	s life		VLQ $TT \rightarrow Ht/Zt/Wb$ VLQ $BB \rightarrow Wt/Zb + \lambda$	+ X. multi-ch multi-ch	annel		36.1 36.1	T mass B mass	1.37	TeV		SU(2) doublet	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX
phe	y a selection of the available mas enomena is shown. Many of the li valified models, of rate, for the m	imits are ba	sed on mode	- 10	-		2 ICH COM TRANSPORT	0.2	5 114	eavy	VLO $T_{5/3}T_{5/3} T_{5/3} \rightarrow k$	t + X = 2(SS)/2	annen 3.e.µ≥1b.≥ v >1b.3	tij Yes	38.1	T _{5/3} mass	1.04	.64 TeV		$\mathcal{D}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{D}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$	GERN-EP-2018-171
3011	prileo modera, c.i. reia. for the a.	333711240173	made,		LD HV.	Z'(ITeV) → q,q,	2 ID/MS vertices	20.3	slife	т	$VLQ B \rightarrow Hb + X$	Ceμ,	$2\gamma \ge 1b_{2}$	≥li Yes	79.8	B mass	1.21 T	eV		$s_{\beta}=0.5$	ATLAS-CONF-2018-XXX
					õ	z (zicv) → qvqv	2 ILLAWS VERTICES	20.5	S IIIe		Excited quark $q^{\dagger} \rightarrow qg$	-	2 E 1	-	37.0	q* mase	050 000	6.0 T	eV.	only u^* and d^* , $\Lambda = m(q^*)$	1703.09127
				17			_			colted	Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$	11	1 j 1 b, 1	j –	36.7 36.1	q* mass b* mass		5.3 TeV 2.6 TeV	1	only u^* and $d^*, \Lambda = m(q^*)$	1709.10440 1805.09299
						√s = 8 T	feV √s = 13 TeV			ú,	Excited lepton t" Excited lepton v"	Зе, Зс.,	μ – .τ –	_	20.3 20.3	f" mess r" mass		3.0 TeV 1.6 TeV		$\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1411.2921 1411.2921
'Only a selection of the available lifetime limits on new state						state		Type III Seesaw	1 c.	µ ≥2]	Yes	79.8	N ⁰ mass	560 GeV			with a - 2 s Tak - a sinter	ATLAS-CONF-2018-020			
											Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	2 e. 2,3,4 e.,	μ 2) (SS) –	_	20.3 36.1	N" máss H ^{at} mass	870 GeV	2.0 TeV		Production	1505.05020
										Othe	Higgs triplet $H^{**} \rightarrow \ell \tau$ Monotop (non-res prod)	3 c.; 1 e.	.т – µ ІБ	Yes	20.3 20.3	H ⁻⁺ mass spin-1 invisible particle mass	400 GeV 657 GeV			Dr production, $\mathcal{B}(H_{\ell}^{**} \rightarrow \ell \tau) = 1$ $a_{\text{con-star}} = 0.2$	1411.2921 1410.5404
											Multi-charged particles Magnetic monopoles	_	-	_	20.3 7.0	multi-charged particle mass monopole mass	785 GeV 1.34	TeV		DY production, $ g = 5e$ DY production, $ g = 1g_D$, spin 1/2	1504.04188 1509.08059
												√s = 8 Te	v √s =	13 TeV		10-1			1	⁰ Mass scale [TeV]	1
										*(Only a selection of the a	ailable mass	limits on n	iew stat	es or phei	nomena is shown.				Mass scale [164]	
										+3	Small-radius (large-radi	sl ints are de	nated by II	he letter	r i 6.0						

Exotics search — signature-based

Scan phase space for all possible signatures and be as much model-independent as possible

di-jet resonance search

- Di-jet final states are "classic signatures" to search for NP with strong interactions
 - Searching for signatures in the di-jet mass spectrum (m_{jj})
 - Narrow resonance
 - Very high mass event
 - New Gauge Boson Z' & W', excited quark, DM mediator and

di-jet resonance search

- Collect events using fully efficient single jet trigger
 - L1 single jet trigger (low mass region) & HLT single jet trigger (high mass region)
 - m_{jj} threshold limited by jet trigger threshold
 - Reject QCD multi-jet by cutting on y*= (y_{jet1}-y_{jet2})/2 of the di-jet system
 - QCD multi-jet normally have large y*

|y[∗]| < 0.3 (0.6), 0.4 TeV < m_{jj} < 2 TeV

di-jet resonance search with b-tagging

- Some predicted particles prefer to decay into bb or bg rather than the light quarks
 - Tag the b jet(s) -> increase the sensitivity!

di-b-jet resonance search

 HLT double b-jet trigger (low mass region) & HLT single jet trigger (high mass region)

di-jet + ISR search

- NP may hide in the low mass region which has not been well explored
 - Collect event using triggers on other objects: *photon*, electron, muon and ...

Lepton + di-jet search

- NP may hide in the low mass region which has not been well explored
 - Collect event using triggers on other objects: photon, *electron, muon* and ...

23

ATLAS TDAQ

Jet reconstruction and triggering

- Built from calorimeter information to capture collimated showers of particles
- Defined by the reconstruction algorithm (anti-kT) and their radius (R) in the eta-phi plane

b-jet triggering

b-jet trigger

- b-jet tagging efficiency are evaluated using a high purity ttbar data sample
- Operation points are defined based on integrated (Fixed) / p_T-dependent (Flat) b-jet tagging efficiency

b-jet trigger

- Code/Algorithms are in common for online b-tagging and offline b-tagging
 - Training is performed on different objects : Trigger Jets (online) vs Calibrated Jets (offline)
 - OPs are not fully correlated between online and offline

90

100

ATLAS TDAQ

Rui Wang

Argonne

Jet trigger performance

- Trigger efficiency turn on curves indicate the relative resolution difference between HLT and offline jets
 - eg. HLT_j60 is fully efficient for offline jets with pT > 90 GeV
- Sizable performance gain on resolution from combining calorimeter and tracking information, using HLT tracks (computed for current b-jet triggers)

b-jet triggering with FTK tracks

IM — hit clustering

IM (Input mezzanine)

- Input from Inner tracker + hit clustering
- Receive hit information @ 100kHz L1 trigger rate
- Total 128 boards

ATCA (Advanced Telecommunication Computing Architecture) mezzanine card

DF — Parallelize hits

DF (Data Formater)

- Organizing clustered data into towers
- Total 32 boards (4 ATCA shelves)

Parallelize hits:

- Divide the detector into 64 overlapping η-φ towers (4x16)
- Access appropriate ID data via ATCA full mesh 40 Gbps backplane (intrashelf) and fibre links (inter-shelf)
- Send data from each tower to separate processing units

ATCA (Advanced Telecommunication Computing Architecture) mezzanine card

Processing unit — patten matching + fit

Divide each layer into coarse chunks

Define patterns of these chunks that correspond to tracks

Compare fired patterns to a stored bank of track-like patterns

? ?

Perform a linearized fit

For matched patterns, retrieve all full resolution hits

Processing unit — AMB&AUX

AMB (associative memory board)

- Matching clusters to predefined patterns
- 128 AMBs with 4*16 AM chips each

AUX (Auxiliary card)

- 8-layer 1st stage track fitting
- Total 128 boards

- Events are loaded on the AMB serial link processor at a maximum rate of 100 kHz corresponding to a maximum input bandwidth of 1.6 GB/s
- Each board can read out up to an average rate of 8000 matched patterns per event, for a maximum output bandwidth of ~3.2 GB/s.

- Receives hits from the DF boards (up to 6 Gb/s)
- Stores the hits and sends them to the AMB with coarser resolution
- Receive matched pattens address from AMB and retrieve all the hits
- Fit 8-layer hits

Customized VME cards

Processing unit — AM chips

AM (associative memory) chip

- Custom designed ASIC using 65nm technology
- Content Addressable Memory (CAM) with 128000 patterns / chip (1 billion in system)
- Low voltage (1.2 V) / low power (3 W)
 - Energy usage: 2.3 fJ / comparison / bit
 - Important effort, to minimize heat
- Stores the pre-calculated tracks and makes bit-wise comparisons

All possible patterns determined from simulation

Custom associative memory (AM) chips are used to compare hits to O(10⁹) patterns simultaneously

Processing unit — AM chips

AM (associative memory) chip

- Custom designed ASIC using 65nm technology
- Content Addressable Memory (CAM) with 128000 patterns / chip (1 billion in system)
- Low voltage (1.2 V) / low power (3 W)
 - Energy usage: 2.3 fJ / comparison / bit
 - Important effort, to minimize heat
- Stores the pre-calculated tracks and makes bit-wise comparisons

SSB — track fitting

SSB* (Second Stage Board)

- 8-layer to 12-layer extrapolation + 12-layer fit
- Total 32 boards
- Receives 8-layer data from 4 AUX cards
- Receives IBL and stereo SCT hits from DF (2 towers)
- Extrapolates 8-layer fits, retrieving candidate hits to use in the 12-layer track fitting
- Performs 12-layer fit
- Retrieves intra- and inter-crate SSB 12layer tracks, removing duplicates
- Merges FTK data and outputs to FLIC

Adding nearby hits in remaining 4layers and refit

41

SSB Main board

Customized VME cards

Rui Wang

FLIC — data reformatting

FLIC (FTK to Level-2 Interface Card)

- Reformat hits & track data for HLT
- Total 2 boards + 1 ATCA processor blade
- Receive data from 1/ 16th of the detector per channel (2 SSB)
- Baseline: 300 tracks per event @ 100 kHz
- Convert FTK identifiers to ATLAS global identifiers using SRAM lookup
- Repackage event record into standard ATLAS format
- Communicate with HLT
- Duplicate data through fabric FPGA to ATCA Blades for monitoring and processing via backplane

2 processing FPGAs + 2 fiberic FPGAs

2 FLICs in ATCA shelf together with ATCA blade

Customized ATCA (Advanced Telecommunication Computing Architecture) board

FTK status

- Part of the system has been integrated with ATLAS in Feb 2018
 - FTK triggers are in the 2018 physics menu
 - Prescaled L1 triggers: L1MU_FTK, L1MU6_FTK, L1FTK-J(topo), L1FTK-EM(topo)
- Full system is under commissioning, to be ready for Run 3

Inner detector lifetime

Good agreement between I_{leak} monitoring and MC simulation

LHC upgrade plan

LHC upgrade plan

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Sensors, readout chips, cables and other device need to be irradiated and tested
 - Lab testing
 - Source
 - Laser
 - Pulse injection
 - Testbeam
 - 800 MeV proton beam at Los Alamos National Lab
 - 4 GeV electron beam at DESY
 - 24 GeV proton beam at CERN
 - 120 GeV proton beam at Fermilab

R&D

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Different sensor technologies been investigated
 - 3D silicon sensor
 - Successfully used in IBL
 - Radiation hard design

Sensor characterization

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Different sensor technologies been investigated
 - Diamond sensor
 - Used in beam monitoring (DBM)
 - Extremely radiation hard

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Different sensor technologies been investigated
 - Diamond sensor
 - Used in beam monitoring (DBM)
 - Extremely radiation hard

Module characterization

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Sensors, readout chips, cables and other device need to be irradiated and tested
 - FEI4b pixel sensor readout chip
 - Currently used for IBL

Telescope — Fermilab test beam

180nm CMOS

Module characterization

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Sensors, readout chips, cables and other device need to be irradiated and tested
 - FEI4b pixel sensor readout chip
 - Currently used for IBL

Module characterization

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Sensors, readout chips, cables and other device need to be irradiated and tested
 - RD53A readout chip
 - Designed for ITK readout

HL-LHC era will be challenging with high pileups

Operational parameters:

- Center of mass energy: $\sqrt{s} = 14$ TeV
- Instantaneous luminosity: 5.0 \times 10³⁴ cm⁻²s⁻¹
- Average interactions per bunch crossing: $\langle \mu \rangle = 200$
- Integrated luminosity: 3 ab⁻¹

ITk performance

- Lots of improvement comparing to Run 2
 - Better track parameter resolution
 - Enhanced reconstruction efficiency for tracks in jets
 - Higher b-tagging efficiency and rejection power

MV2 tagger

Argonne 🚽

di-jet searches at HL-LHC

Great physics program is foreseen with 3ab-1

Exclusion limits of Gaussians ($\sigma_G / M_G = 10\%$) of various di-jet searches

Summary and outlook

ATLAS at full speed on upgrade to cope with that

Summary and outlook

Great physics program is foreseen with 3ab-1

b-tagging OP definition

- b-jet tagging efficiency are evaluated using a high purity ttbar data sample
- Operation points are defined based on integrated (Fixed) / p_T-dependent (Flat) b-jet tagging efficiency

Offline b-tagging calibration

- b-jet calibration is done using high purity ttbar sample
- Including track impact parameter resolution (dominate), the fraction of poorly measured tracks, the description of the detector material, and the track multiplicity per jet
 - 0.01mm bias in track transverse impact parameter leads to ~25% increase in light jet mistag rate
- measured using data for jet p_T < 300 GeV and are extrapolated to jet p_T > 300 GeV using MC simulation

Argonne 🚽

di-b-jet search — selections

High mass search

- 2015+2016 data, 36.1fb⁻¹
- Single jet trigger
- Leading jet p_T > 430 GeV, |η| < 2</p>
- Sub-leading jet p_T > 80 GeV, |η| < 2</p>

- y*|<0.8 (reject QCD background)</pre>
- m_{jj} > 1.2TeV
- >=1 b-tag & 2 b-tag (85% Fixed OP)

Low mass search

- 2016 data, 24.3fb⁻¹
- Double b-jet trigger
- Leading jet $p_T > 150$ GeV, $|\eta| < 2$
- Sub-leading jet p_T > 80 GeV, |η| < 2</p>

- y*|<0.6 (reject QCD background)</pre>
- 0.57 TeV < m_{jj} < 1.5 TeV
- 2 b-tag (70% Fixed OP)

Benchmark model limit

With $A^* \varepsilon$ corrected

Gaussian limits

- There are many signal candidates other the b* and Z' which are picked as benchmarks
- These signals can be approximated by an Gaussian shape after reconstruction
- 95% CL. upper limits are set on
 Gaussian shapes with widths of detector resolution, 3%, 7%, 10% and 15% relative to the signal mass
- Useful in reinterpretation

With b-jet trigger and offline b-tagging efficiency corrected

DM models used at ATLAS

Effective field Theory

- m_{DM}, M*, underlying coupling type, DM types
- Valid when mediator of the interaction between SM and DM particles are very heavy

Argonne 🧲

cletails in <u>Wencly Taylor's talk</u>

Simplified model

- Standardized for ATLAS&CMS Run2
- Relatively light mediator (TeV-scale)
- Mediator has minimal decay width
- Minimal flavor violation
- Minimal set of parameters
 - Coupling structure, М_{мер}, т_{рм}, g_{sм} (g_q), g_{Dм}

<u>LHC DM forum and working group</u> — <u>Antonio Boveia's talk</u>

2 b-tagged dijet event with highest mass

SWIFT — Concept

Rui Wang

- Fit data distribution in small, over-lapping windows using dijet functions
 -> smaller windows allow functions to model data well
- Sliding Window Fits is a resonance search method
 - -> performs likelihood ratio based local p-value search: model-dependent
 - -> sets 95% CL limits using profiled likelihood method
 - -> creates background estimation over full mass range using new technique
- In Full SWIFT method, SWIFT background is used to calculate global p-values, expected 95% CL limits from pseudo-experiments
 - -> To perform a model-independent search, SWIFT background used with BUMPHUNTER

SWIFT — Window Selection

- Biggest question: how do you pick window sizes ?
 - -> Answer: "Pick the largest window that gives good background-only fits"
 - -> Multiple ways of doing this. Evolution of the process:
 - 1) Require background-only fit in each window to pass a combination of goodness-of-fit measures
 - High Mass Dijet Analysis: Chi2/NDF, KS and Wilks p-value
 - Dibjet Analysis: Chi2 p-value and a looser Wilks p-value
 - 2) Use global Chi2 p-value by comparing complete SWiFt background and data
 - Trigger Level Analysis
 - 3) Require Chi2 p-value for each window to be the best
 - Automatically scan range of windows & pick one with the best Chi2 p-value for the background-only fit
 - Allows the window size to grow and shrink depending on how well the fit does
 - New SWIFT code uses this method
- Once window sizes are picked, a background estimation is produced using the SWIFT background method

SWIFT Background

- SWIFT background making procedure:
 - -> Use a background-only function: eg. 3 parameter dijet function
 - -> In each window, evaluate background-only fit at window center
 - -> Obtain bkg estimation for that bin
 - -> For first & last windows, in addition to the window centers, evaluate background-only fit at edge bins
 - -> stitch together bin-by-bin bkg
- At the end of the slide, the SWIFT background is produced

Intermediate Windows

SWIFT Background – Uncertainties

- There are two uncertainties considered on the background:
 - 1) <u>Statistical</u>: accounts for the uncertainties on the background fit parameters
 - -> Evaluated using pseudo-experiments (PEs) from the SWIFT background
 - -> From each PE, a SWIFT background is produced
 - -> Uncertainty: RMS of bkgs from PEs in each mass bin
 - 2) <u>Function Choice</u>: accounts for the difference in bkg if an alternate function was used
 - -> Evaluated using PEs from the SWIFT background
 - -> From each PE, two SWIFT backgrounds are produced: one using the nominal bkg function and another using an alternate bkg function
 - -> Uncertainty: Mean difference of nominal and alternate in each bin

FTK LEVEL-2 INTERFACE CRATE (FLIC)

- FLIC is the final component of the FTK
- Receive event records from upstream FTK system, 1/16th of the detector per channel
 - Full bandwidth output from the FLIC to HLT
 - Baseline: 300 tracks per event @ 100 kHz
- Convert FTK identifiers to ATLAS global identifiers using SRAM lookup
- Repackage event record into standard ATLAS format
- Communicate with HLT
 - Sends records
 - receives xoff signal and propagates it upstream to FTK
- Monitoring and Processing on ATCA Blades via backplane

RTM - Rear Transition Module

ATCA

- Advanced Telecommunication Computing Architecture (ATCA) for data acquisition
 - Each FLIC implements four 10 Gb Ethernet channels
 - Allows for data distribution to up to four commercial processor blades
 - For trigger processing and complex data quality monitoring
 - ATCA shelf allows data from either FLIC to any blade
 - Data transfer to blades occurs in parallel with flow-through data processing

PERFORMANCE - EVENT SENDING TO HLT

- FLIC sending constant bandwidth to HLT
 - Size of event record varies with number of tracks
- Sending 200 MB/s of data to HLT using one channel
- Running above design spec, no limitation on the total data rate of the FTK system

- Full system test running at design specification
 - Running above 100 kHz
 - Testing with constant event record size to the HLT
 - No effect from parallel channels

Module characterization

Lots of R&D work to find new material, technology and design that can improve the resolution under the harsh radiation environment

- Different sensor technologies been investigated
 - CMOS silicon sensor
 - Much smaller pixel size and thickness, modularized
 - Industrialized production

Inject pulse & output signal

MC sample

- 10 M CPU hours (10 days) on supercomputers at NERSC
- 100 billion events are generated in each of these three categories:
 - Light jet QCD including bb production (exclude tt)
 - Vector and scalar boson production that includes the W, Z and H⁰ boson processes
 - tt and single top quark production
- The combined Monte Carlo dijet mass spectrum provides a better precision than will be achievable for data at 3 ab⁻¹
- LO order Pythia8 generation with the
- default parameter settings and the ATLAS A14 tune for minimum-bias events
- 14 TeV and 27 TeV for the HL-LHC and HE-LHC

http://www.nersc.gov/