Dark Matter direct detection & Sub-10 ps ToF

Junhui LIAO

Brown University

Junhui LIAO

EPC, IHEP, CAS

outline

1

DM direct detection: "theoretical" stuff

- The existence of DM
- The strategies of DM detection
- The key features of DM direct detection
- Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- 3 Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
 - High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
 - Sub-10 ps ToF for CMS
 - A little detour to the LHC

Junhui LIAO

- GASTOF
- GASTOF study

outline

1

DM direct detection: "theoretical" stuff

- The existence of DM
- The strategies of DM detection
- The key features of DM direct detection
- Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- \sim Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Constituents of today's universe, Planck 2015, XIII

Velocities of galaxies in the M33 cluster

< □ > < □ >
 Sep 26, 2018

Constituents of today's universe, Planck 2015, XIII

Velocities of galaxies in the M33 cluster

< □ > < □ >
 Sep 26, 2018

∃ >

Constituents of today's universe. Planck 2015, XIII

Velocities of galaxies in the M33 cluster.

Constituents of today's universe, Planck 2015, XIII

To interpret the discrepancy of velocities, $m\frac{v^2}{r} = ma \neq G\frac{mM}{r^2}$. Two proposed ideas: Fritz Zwicky proposed more invisible matter - DM in 1930s;

Mordehai Milgrom proposed Modified Newtonian Dynamics (MOND) in 1980s, DM was not necessary.

iunhui liao@brown.edu

• • • • • • • • • • • • •

"Judgment Day": 2016

Observations of Bullet Cluster

- Observations of two clusters passing through each other after a collision.
- Normal matter found from X-ray.
- Total matter from Gravitational lensing.
- Bullet results : TAJ, 648:L109-113, 2006. Contrary to MOND prediction.

The data "adjudged": DM exists in the Bullet Cluster.

Other evidence of the existence of DM

CMB simulation and observation

- Left plot: Simulation of galaxies formation. DM has been added in the simulation; without DM, galaxies can not be formed like that.
- Right plot: temperature plot of CMB (Cosmic Microwave Background), Planck 2015 data. Temperature distribution \rightarrow mass distribution \rightarrow DM exists.

The existence of DM

Most of physicists in the filed believe DM exists, very few doesn't

The debate of the existence of DM is still going on and on ...

KITP Conference: Dark matter detection and detectability: paradigm confirmation or shift? (Apr 30 - May 4, 2018)

Coordinators: Laura Baudis, Mike Boylan-Kolchin, and Simona Murgia Scientific Advisors: Graciela Gelmini, Julio Navarro, and Josh Simon

•	Conferen	ce Overview talks Podcasta Schedule PDF Schedule Program Overview	
DM		Monday, Apr 30, 2018 The theory of dark matter, Chair: Graciela Gelmini (UCLA)	
Overview Program page This Week Next Week Talks Online newest	8:50am Mark Bowick (KITP) 9:00am Celine Boehm (Durham) 9:30am Alex Kusenko (UCLA) 10:00am All Participants 10:30am	Welcome[Podcast][Aud][Cam] Debate 1 (Theory)[Podcast][Aud][Cam] Debate 1 (Theory)[Sildes][Podcast][Aud][Cam] Discussion Morning Break	
Podcasta help? Conference > Participants	11:00am Erik Verlinde (UvA) 11:30am Dan Hooper (U Chicago) 12:00pm	Emergent Gravity or Dark Matter[Podcast][Aud][Cam] In Defense of Dark Matter[Slides][Podcast][Aud][Cam] Lunch Break	
		< 口 > < 酉 > < 差 > < 差 >	

EPC, IHEP, CAS

outline

1

DM direct detection: "theoretical" stuff

- The existence of DM
- The strategies of DM detection
- The key features of DM direct detection
- Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Understanding the nature of DM besides Gravitation

Strategies of DM searches with indirect detection: $\chi\chi \xrightarrow{annihilate}$ SM SM.

- $\chi\chi \rightarrow \nu$, from the Sun To measure: higher energy ν . Experiments: SuperK, IceCube. Status: no signal, limit $\sigma_A \nu \sim 10^{-23} cm^3 s^{-1}$
- $\chi\chi \rightarrow e^+e^-$, in galaxies To measure: excess of e^+ . Experiments: AMS, Fermi-LAT, PAMELA, DAMPE (Wukong). Status: no signal. Hard to rule out Pulsars (AMS02 take data until 2030).

• $\chi \chi \to \gamma$, in Milky Way.

To measure: excess of γ . Experiments: Fermi-LAT, H.E.S.S. Status: no convincing signal ...

イロン 不通 と イヨン イヨン

9/88

Understanding the nature of DM besides Gravitation

Strategies of DM searches Collider experiments: SM SM $\xrightarrow{annihilate} \chi \chi$

collider experiments

• SM SM $\xrightarrow{heavyMediator} \chi\chi$ To measure: "missing energy". Experiments: ATLAS, CMS. Status: no signal. limits: $\sim (10^{-41} - 10^{-45}) cm^2$, channels dependent.

• SM SM <u>mainlyLightMediator</u>

To measure: other possible "hidden" sectors, like dark photon etc. Technology: beam hits on a fix target. Experiments: SHiP (https://ship.web.cern.ch/ship/), LDMX (sub-GeV, arXiv: 1808.05219) Status: construction or early stage of proposal.

The strategies of DM detection

Understanding the nature of DM besides Gravitation

Strategies of DM searches DM direct detection: scattering χ from SM particles.

11/88

Understanding the nature of DM besides Gravitation

DM direct detection is faster than the Moore's law since 2000.

12/88

outline

DM direct detection: "theoretical" stuff

- The existence of DM
- The strategies of DM detection
- The key features of DM direct detection
- Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Event rate

Standard Spin Independent (S.I.) and EFT, (Kg day keV)⁻¹

•
$$\frac{dE}{dR_{SI}} = \frac{\sigma_{XP}^{SI}A^2}{m_{red}^2(m_p)} \times N_T F_{SI}^2(E) \times \frac{\rho_X}{2m_\chi} \int_{v_{min}}^{\infty} \frac{f_1(v)}{v} dv$$

• $\frac{\sigma_{\chi p}^{-}A^{-}}{m_{rod}^{2}(m_{p})}$, particle physics.

イロン イロン イヨン イヨン

Event rate

Standard Spin Independent (S.I.) and EFT, (Kg day keV)⁻¹

•
$$\frac{dE}{dR_{SI}} = \frac{\sigma_{\chi p}^{SI} A^2}{m_{red}^2 (m_p)} \times N_T F_{SI}^2(E) \times \frac{\rho_{\chi}}{2m_{\chi}} \int_{v_{min}}^{\infty} \frac{f_1(v)}{v} dv$$

• $\frac{\sigma_{\chi p}^{Sl} A^2}{m_{red}^2(m_p)}$, particle physics. $\sigma_{\chi p}^{Sl}$, cross-section of WIMPs and a proton; *A*, atomic number of target nucleus; $m_{red}(m_p)$, reduced mass of WIMPs and a nucleon.

 $N_T F_{Sl}^2(E)$, nuclear physics.

 N_T , # of target nucleon per kg detector, $F_{SI}^2(E)$, form factor.

 $\frac{\rho_{\chi}}{2m} \int_{V}^{\infty} \frac{f_1(v)}{v} dv$, astrophysics.

 ρ_{χ} , observed dark matter mass density, a factor of 2 uncertainty. m_{χ} , mass of dark matter. *v_{min}*, minimum speed of WIMPs could deposit detectable energy, $f_1(v)$, local speed distribution of WIMPs.

With the latest Gaia data, arXiv: 1807.02519 addressed a discrepancy to the Standard Halo Model. If it's correct, the local WIMP speed would be slightly smaller than typically expected. As a result, the event rate of DM direct detection will be changed.

Backgrounds

Reducible Backgrounds

- Backgrounds due to cosmic rays.
 Solution: Deep underground; outer detector as a veto.
- Radioactive materils.
 Solution: selecting low radioactive material (and screening)

Reject Background events

- ER background Key solution: S2 / S1 band for LXe; PSD for LAr; none for TES readout detectors like SuperCDMS.
- NR backgrounds (neutrons) Solution: veto, fiducial volume cut etc.

Model remained Backgrounds

- Modeling background to know as precisely as possible.
- Comparing background events with WIMPs search data.

outline

1

DM direct detection: "theoretical" stuff

- The existence of DM
- The strategies of DM detection
- The key features of DM direct detection
- Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Theoretical models: standard SI / SD and EFT

- Assuming heavy mediator, two main stream models: SI / SD and Effective Field Theory (EFT).
- Comparing to traditional SI/SD, EFT provides a more complete frame-work to characterize two Fermions' elastic scattering.
- There are other possible models: light mediator, axion and axion-like-particles, ...

Event rate, standard Spin Independent (SI) and EFT, (Kg day keV)⁻¹

•
$$\frac{dE}{dR}_{SI} = N_T \cdot \frac{\rho_{\chi}}{2m_{\chi}} \cdot \frac{A^2}{m_{red}^2(m_p)} \cdot \sigma_{\chi p}^{SI} \cdot F_{SI}^2(E) \cdot \int_{v_{min}}^{\infty} \frac{f_1(v)}{v} dv$$

•
$$\frac{dE}{dR_{EFT}} = N_T \cdot \frac{\rho_{\chi}}{2m_{\chi}} \cdot \frac{A^2}{m_{red}^2(m_p)} \cdot \mathcal{Os} \cdot \int_{v_{min}}^{\infty} \frac{f_1(v)}{v} dv$$
 [~naïvely~]

• Os represents the nuclear response of a detector to WIMPs.

EFT successfully described a weak-interaction, beta decay in 1930s

The Fermi model of weak interaction is an EFT

- In the experiments of nuclear beta decay, physicists observed the energy spectrum of the electron is continuous. To interpret it, Pauli introduced the neutrino.
- Fermi proposed the Lagrangian to describe the beta decay.
- It has been widely considered as a "brilliantly successful" theory until 1960s the weak interaction theory arose.

Phenomenological model based on four-point interactions (Fermi, 1932).

$$\mathcal{L}_{\rm Fermi} = -2\sqrt{2}G_{\!F} \Big[\bar{\Psi}_d ~\gamma_\mu \frac{1-\gamma^5}{2} ~\Psi_u\Big] \Big[\bar{\Psi}_{\nu_e} ~\gamma^\mu \frac{1-\gamma^5}{2} ~\Psi_e\Big] + {\rm h.c.}~.$$

• Does this indicate we can understand DM only until 2040s ? Since 2040s - 2010s \sim = 30 years = 1960s - 1930s $\ddot{\frown}$.

 •	70	•
ж.		
υ.		u

Sep 26, 2018

EFT successfully described a weak-interaction, beta decay in 1930s

The Fermi model of weak interaction is an EFT

- In the experiments of nuclear beta decay, physicists observed the energy spectrum of the electron is continuous. To interpret it, Pauli introduced the neutrino.
- Fermi proposed the Lagrangian to describe the beta decay.
- It has been widely considered as a "brilliantly successful" theory until 1960s the weak interaction theory arose.

Phenomenological model based on four-point interactions (Fermi, 1932).

$$\mathcal{L}_{\rm Fermi} = -2\sqrt{2}G_{F} \Big[\bar{\Psi}_{d} \ \gamma_{\mu} \frac{1-\gamma^{5}}{2} \ \Psi_{u}\Big] \Big[\bar{\Psi}_{\nu_{e}} \ \gamma^{\mu} \frac{1-\gamma^{5}}{2} \ \Psi_{e}\Big] + {\rm h.c.} \ .$$

Solution: a gauge theory (Glashow, Salam, Weinberg, 60-70, [Nobel prize, 1979]).

- * Four fermion interactions can be seen as a s-channel diagram.
- * Introduction of a new gauge boson W_µ.
- * This boson couples to fermions with a strength gw.

* Prediction: $g_w \sim \mathcal{O}(1) \Rightarrow m_w \sim 100$ GeV. B. Fuks & M. Traubenberg

• Does this indicate we can understand DM only until 2040s ? Since 2040s - 2010s \sim = 30 years = 1960s - 1930s $\ddot{\sim}$.

EPC, IHEP, CAS

EFT *Os*

$$\begin{array}{l} \mathcal{O}_1 = \mathbf{1}_{\chi}\mathbf{1}_N \quad (\text{Standard Spin Independent}) \\ \mathcal{O}_3 = i\vec{S}_N \cdot \left[\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right] \\ \mathcal{O}_4 = \vec{S}_{\chi} \cdot \vec{S}_N \quad (\text{Standard Spin Dependent}) \\ \mathcal{O}_5 = i\vec{S}_{\chi} \cdot \left[\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right] \\ \mathcal{O}_6 = \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}\right] \left[\vec{S}_N \cdot \frac{\vec{q}}{m_N}\right] \\ \mathcal{O}_7 = \vec{S}_N \cdot \vec{v}^{\perp} \\ \mathcal{O}_9 = i\vec{S}_{\chi} \cdot \vec{v}^{\perp} \\ \mathcal{O}_9 = i\vec{S}_{\chi} \cdot \left[\vec{S}_N \times \vec{q}^{\perp}\right] \\ \mathcal{O}_{10} = i\vec{S}_{\chi} \cdot \left[\vec{S}_N \times \vec{v}^{\perp}\right] \\ \mathcal{O}_{12} = \vec{S}_{\chi} \cdot \left[\vec{S}_N \times \vec{v}^{\perp}\right] \\ \mathcal{O}_{13} = i \left[\vec{S}_{\chi} \cdot \vec{w}^{\perp}\right] \\ \mathcal{O}_{14} = i \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}\right] \left[\vec{S}_N \cdot \vec{v}^{\perp}\right] \\ \left[\vec{S}_N \times \vec{v}^{\perp}\right] \\ \left[\vec{S}_N \times \vec{v}^{\perp}\right] \\ \left[\vec{S}_N \times \vec{v}^{\perp}\right] \\ \mathcal{O}_{15} = - \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}\right] \\ \left[\vec{S}_N \times \vec{v}^{\perp}\right] \\ \end{array} \right]$$

- The first paper listed all of the O_s for F-F interactions. (JHEP11(2006) 005).
- The first paper applying "JHEP11(2006) 005" into DM, arXiv: 1308.6288.
- Galilean-invariant (NR). Elastic scattering.
- Four parameters: DM velocity, $\overrightarrow{\nu} \sim 10^{-3}c$; momentum transfer, \overrightarrow{q} ; DM spin, $\overrightarrow{S}_{\chi}$; nucleon spin; \overrightarrow{S}_{N} .
- \mathcal{O}_1 and \mathcal{O}_4 , tree level; \mathcal{O}_1 = standard S.I. ; \mathcal{O}_4 = standard S.D. others \mathcal{O}_s , LO, NLO, N²LO, N³LO.
- The Fermi interpretation on the weak interaction in 1930s is one of the most famous examples of EFT (previous slide.).

< D > < P > < E > <</pre>

The key difference between EFT and standard SI / SD (naïvely)

Whether or not considered the transferred momentum of a DM-detector scattering

- Left picture: a long wavelength corresponds to a small momentum transferred scattering; EFT and Standard SI/SD is the same for this kind of scattering.
- Right picture: a short wavelength corresponds to big momentum transferred scattering; standard SI/SD uses a form factor to characterize the "reduced" recoil energy to the hit nuclei while ignore the interactions caused by the transferred momentum; EFT fully characterizes all of possible interactions with operators.

EPC, IHEP, CAS

The key difference between EFT and standard SI / SD

- Left picture: the interactions between DM and detector by considering the transferred momentum under EFT.
- Right picture: as a result, by considering the "extra" interactions caused by EFT operators, the recoil energy of EFT operators are higher than standard SI/SD.

Junhui LIAO

TABLE I. The upper energy threshold E_{max} (in keV_{nr}) for each of the effective field theory operators, such that an energy window from 0 to E_{max} captures either 50% or 90% of WIMPneutron recoil events for the given operator and WIMP mass.

Nicole Larson's EFT draff paper

	50-GeV	WIMP	500-GeV	WIMP
Operator	$E_{max}^{50\%}$	$E_{max}^{90\%}$	$E_{max}^{50\%}$	$E_{max}^{90\%}$
	(keV _{nr})	(keVnr)	(keV _{nr})	(keV _{nr})
SI	10.8	27.3	16.6	44.7
\mathcal{O}_1	6.8	21.7	11.8	43.8
\mathcal{O}_3	26.4	49.1	148.1	344.4
SD	8.6	21.6	11.9	37.5
\mathcal{O}_4	7.0	24.0	32.8	299.6
O_5	16.2	38.6	65.5	328.9
\mathcal{O}_6	33.6	64.0	267.3	433.7
O_7	5.0	16.2	25.2	279.9
O_8	6.8	22.2	14.5	64.8
\mathcal{O}_9	13.7	37.2	276.7	464.7
O_{10}	21.7	48.6	112.6	340.4
O_{11}	15.5	34.4	39.0	279.9
O_{12}	17.4	38.1	34.8	176.5
O_{13}	28.2	53.2	54.5	219.7
O_{14}	11.9	27.9	240.9	400.0
O_{15}	34.3	59.1	261.2	433.7

▲ロト▲圖ト▲臣ト▲臣ト 臣 のの(

21/88

The EFT interactions in the space of particle physics (relativistic)

j	$\mathcal{L}_{\mathrm{int}}^{j}$	Nonrelativistic reduction	$\sum_i c_i O_i$	P/T
1	$\bar{\chi}\chi\bar{N}N$	$1_{\chi}1_N$ N. Anard etc, arXi	v: 1308.6288 <i>O</i> 1	E/E
2	$i \bar{\chi} \chi \bar{N} \gamma^5 N$	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$	O_{10}	0/0
3	$i \bar{\chi} \gamma^5 \chi \bar{N} N$	$-i\frac{\vec{q}}{m_{\chi}}\cdot\vec{S}_{\chi}$	$-\frac{m_N}{m_\chi}O_{11}$	0/0
4	$\bar{\chi}\gamma^5\chi\bar{N}\gamma^5N$	$-\frac{\vec{q}}{m_{N}} \cdot \vec{S}_{\chi} \frac{\vec{q}}{m_{N}} \cdot \vec{S}_{N}$	$-\frac{m_N}{m_{\pi}}O_6$	E/E
5	$\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}N$	$1_{\chi}1_N$	$\tilde{\mathcal{O}}_1$	E/E
6	$\bar{\chi}\gamma^{\mu}\chi\bar{N}i\sigma_{\mulpha}rac{g^{lpha}}{m_{\rm M}}N$	$\tfrac{\vec{q}^2}{2m_Nm_{\rm M}} 1_{\chi} 1_N + 2 \big(\tfrac{\vec{q}}{m_{\chi}} \times \vec{S}_{\chi} + i \vec{v}^{\perp} \big) \cdot \big(\tfrac{\vec{q}}{m_{\rm M}} \times \vec{S}_N \big)$	$\frac{\tilde{g}^2}{2m_N m_M} \mathcal{O}_1 - 2 \frac{m_N}{m_M} \mathcal{O}_3 \\ + 2 \frac{m_N^2}{m_M m_\chi} \left(\frac{q^2}{m_\chi^2} \mathcal{O}_4 - \mathcal{O}_6 \right)$	E/E
7	$\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}\gamma^{5}N$	$-2\vec{S}_N \cdot \vec{v}^{\perp} + \frac{2}{m_{\chi}}i\vec{S}_{\chi} \cdot (\vec{S}_N \times \vec{q})$	$-2O_7 + 2\frac{m_N}{m_{\chi}}O_9$	O/E
8	$i \bar{\chi} \gamma^{\mu} \chi \bar{N} i \sigma_{\mu \alpha} \frac{q^{\alpha}}{m_M} \gamma^5 N$	$2i\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_N$	$2 \frac{m_N}{m_M} O_{10}$	O/O
9	$\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\chi\bar{N}\gamma_{\mu}N$	$-\tfrac{\vec{q}^{2}}{2m_{\chi}m_{M}}1_{\chi}1_{N}-2\bigl(\tfrac{\vec{q}}{m_{N}}\times\vec{S}_{N}+i\vec{v}^{\perp}\bigr)\cdot\bigl(\tfrac{\vec{q}}{m_{M}}\times\vec{S}_{\chi}\bigr)$	$-\frac{\bar{g}^2}{2m_{\chi}m_M}O_1 + \frac{2m_N}{m_M}O_5$ $-2\frac{m_N}{m_M}(\frac{\bar{g}^2}{m_N}O_4 - O_6)$	E/E
10	$\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{M}}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{M}}N$	$4\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\cdot\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{N}\right)$	$4\left(\frac{\vec{q}^{2}}{m_{M}^{2}}\mathcal{O}_{4}-\frac{m_{N}^{2}}{m_{M}^{2}}\mathcal{O}_{6}\right)$	E/E
11	$\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{\rm M}}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$4i\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\cdot\vec{S}_N$	$4 \frac{m_N}{m_M} O_9$	O/E
12	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{\rm M}}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{\rm M}}\gamma^5N$	$-\left[i\frac{\vec{q}^{2}}{m_{\chi}m_{\rm M}}-4\vec{v}^{\perp}\cdot\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\right]\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{N}$	$-\frac{m_N}{m_\chi}\frac{\vec{q}^2}{m_M^2}\mathcal{O}_{10} - 4\frac{\vec{q}^2}{m_M^2}\mathcal{O}_{12} - 4\frac{m_N^2}{m_M^2}\mathcal{O}_{15}$	0/0
13	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma_{\mu}N$	$2\vec{v}^{\perp} \cdot \vec{S}_{\chi} + 2i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$	$2\mathcal{O}_8 + 2\mathcal{O}_9$	O/E
14	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{M}}N$	$4i \vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_M} \times \vec{S}_N \right)$	$-4\frac{m_N}{m_M}O_9$	O/E
15	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$-4\vec{s}_{\chi}\cdot\vec{s}_{N}$	$-4O_4$	E/E
16	$i \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{N} i \sigma_{\mu \alpha} \frac{q^{\alpha}}{m_{M}} \gamma^{5} N$	$4i \vec{v}^{\perp} \cdot \vec{S}_{\chi} \frac{\vec{q}}{m_{\rm M}} \cdot \vec{S}_{N}$	$4 \frac{m_N}{m_M} O_{13}$	E/O
17	$i \bar{\chi} i \sigma^{\mu\nu} \frac{q_{\nu}}{m_M} \gamma^5 \chi \bar{N} \gamma_{\mu} N$	$2i \frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi}$	$2 \frac{m_N}{m_M} O_{11}$	0/0
18	$i \bar{\chi} i \sigma^{\mu\nu} \frac{q_{\nu}}{m_{\rm M}} \gamma^5 \chi \bar{N} i \sigma_{\mu\alpha} \frac{q^{\alpha}}{m_{\rm M}} N$	$\frac{\vec{q}}{m_{\rm M}} \cdot \vec{S}_{\chi} \left[i \frac{\vec{q}^2}{m_N m_{\rm M}} - 4 \vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_{\rm M}} \times \vec{S}_N \right) \right]$	$\frac{\bar{q}^2}{m_M^2}O_{11} + 4\frac{m_N^2}{m_M^2}O_{15}$	0/0
19	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{\rm M}}\gamma^5\chi\bar{N}\gamma_{\mu}\gamma^5N$	$-4i \frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi} \vec{v}_{\perp} \cdot \vec{S}_N$	$-4\frac{m_N}{m_M}O_{14}$	E/O
20	$i\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{ m M}}\gamma^5\chi\bar{N}i\sigma_{\mu\alpha}rac{q^{lpha}}{m_{ m M}}\gamma^5N$	$4\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{\chi}\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_N$	$4rac{m_N^2}{m_M^2}\mathcal{O}_6$	E/E
			• • • • • • • • • • • • • • • • • • •	<.≣⇒

< ∃⇒

22/88

DM direct detection: "theoretical" stuff

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
 - DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- Low-mass (~ 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

The progress of DM direct detection, by Sep 2017

- CDMS-Si, CoGeNT and DAMA/LIBRA claimed observations have been excluded.
 - High mass (~ 10 1000 GeV/c²) searches : DarkSide, DEAP, LUX, PandaX, XENON and XMASS etc. LXe, S2 / S1 band for ER, NR.

LAr TPC, PSD

 Low mass (~ 1 - 10 GeV/c²) : CDEX, (Super)CDMS, CRESST, DAMIC, EDELWEISS, PICO and SIMPLE etc.

Heat and / or ionization.

Junhui LIAO

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field

Low-mass (\sim 1 - 10 GeV/c²) WIMPs direct detection, DAMIC

DAMIC and CCD introduction

- Detector calibration
- Limits setting with SI and EFT for DAMIC
- Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Dark Matter In CCDs (DAMIC) science

- Left plot : Region Of Interest(ROI) : low mass WIMP (\sim 1 10 GeV / c²), complementary to high-mass noble liquid detectors.
- Right plot : DAMIC collaboration (not the latest).

DAMIC CCDs

CCD charge readout

• Charge reading in controlled sequences. Deposited charge in each pixel can be reconstructed offline.

signals measured by a DAMIC CCD

• Image of a 2k×4k CCDs (Top view). A cell indicates (naively) a pixel.

signals measured by a DAMIC CCD

• Image of a 2k×4k CCDs (Top view).

CCDs low noise \Rightarrow good for low mass WIMP hunting

- Left plot : 1.8 e^- noise(RMS) $\Rightarrow 5\sigma$ noise ≈ 40 eV.
- Right plot: Red curve : event rates, 5 GeV WIMPs, Si detector, S.I.. pink curve : event rates, 35 GeV WIMPs, Si detector, S.I.. agua line : $E_B = 240 \text{ eV}$, translate from 5σ noise of CCDs, 40 eV. blue broken line : $E_B = 3.0 \text{ keV}$, CDMS Si detector.

32/88

DAMIC-100 in Snolab

- DAMIC-100 CCDs: high-resistivity, 675 μm, 16 M Pix, 5.6 g per piece. Developed by LBNL Microsystems Lab. 18 CCDs: 18 × 5.6g = 100.8g.
- Commission since April, 2016 (data analysis now).
- Snolab, world's second-deepest underground lab, 6010 MWE shielding.

Background study

- Left plot : In 2015, quite a few configurations to understand bkdgs.
- Right plot : 5 dru ((keV kg day)⁻¹) has been reached, close to our goal : 1 dru.

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field

Low-mass (\sim 1 - 10 GeV/c²) WIMPs direct detection, DAMIC

- DAMIC and CCD introduction
- Detector calibration
- Limits setting with SI and EFT for DAMIC
- Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

EPC, IHEP, CAS

DAMIC CCDs: energy response

CCD energy calibrations with variant X-rays

- Left: energy response linearity: 300 eV 30 keV.
- Right: energy measured with fluorescence X-rays.

Quenching Factor (QF) measurement for Si at low E_R : QF = E_i / E_r

- An incoming WIMP deposits energy, *E*_r, in the detector. Part of the *E*_r can be measured by a CCD, *E*_i.
- Can't find a WIMPs source to calibrate our CCDs ∵
- Fast neutrons scatter a detector same as WIMPs ⇒ calibrate the detector with fast neutrons.

- Lindhard, a classic model for QF.
- For silicon, QF for *E_R* > 4 keV, measured.
- DAMIC has launched two tests on QF:
 - 1. $E_R :\sim 1.5$ KeV 20.0 KeV.
 - 2. $E_R :\sim 0.6$ KeV 2.0 KeV.

QF Beam Test (BT)

- Left plot : schematic drawing; right plot : a picture of BT.
- *E_i* measured by the SDD directly.
- With kinematics, one can figure out $E_r = E_{NR} = f(\Delta t, \theta)$.
- Beam test at University of Notre Dame, IN, USA (Thanks.).
- SDD (*E_i*), neutron beam and scintillator bars (*E_r*) were calibrated before BT.

EPC, IHEP, CAS

Characterize Silicon Drift Detector (SDD) for E_i

• SDD calibration (for E_i) with ⁵⁵ Fe in Fermilab.

Characterization on neutron beams (for E_r)

- Left plot : Geant4 simulation.
- Right plot : Characterize neutron beam @ Notre Dame. Dots : data, histogram : Geant4 simulation.

Characterize a scintillator bar (for E_r) in lab

- Plastic scintillator, EJ-200, 2.5 × 2.5 × 25.0 cm³. Light output : 64 % Anthracene. Wavelength of Max. emission : 425 nm ⇒ fits PMTs well, ET9954B (retired from CDF, Tevatron).
 Density of Hydrogen / Carbon = 1.1 ⇒ good for fast neutron detection. Fast rise time (0.9 ns) + long optical attenuation ⇒ good for Time of Flight.
- Left plot : charge calibration, $N_{phe} = 1.5$ phe; fit : Gaussian \otimes Poisson. Right plot : timing calibration, σ_T of $T_1 - T_2 \approx 2.0$ ns; fit : Gaussian.

Geant 4 simulation and data comparison

- Right plot : Setup shown in Geant4 simulation.
- Lower plot: Comparison of (experimental) data and simulation.
- *E_i* measured by the SDD, *E_r* reconstructed from the ToF of scattered neutrons.

Measured QF

- Results of the QF for E_R of [1.5, 20] keV. Discrepancy to the Lindhard model exists for $E_R \sim 1.5$ 5.0 keV.
- For details: 2017 JINST 12 P06014.

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field

Low-mass (\sim 1 - 10 GeV/c²) WIMPs direct detection, DAMIC

- DAMIC and CCD introduction
- Detector calibration
- Limits setting with SI and EFT for DAMIC
- Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Events selection with ΔLL

- Left plot : CCD noise
- Right plot : CCD noise + signals
- We used a log-likelihood distribution, ΔLL, to select signal candidates from noise.

Surface events selection and detection efficiency

- Left plot : Fiducial selection of signal events.
- Right plot : detection efficiency.

Upper limit, 90% C.L., 0.6 Kg*day, standard S.I.

PRD 94, 0282006 (2016), arXiv:1607.07410.

Low noise CCDs are suited for Effective Field Theory (EFT) analysis

- Event rates of all S.I. EFT \mathcal{O}_1 and \mathcal{O}_5 , 5 GeV WIMPs, silicon detector.
- Cyan vertical lines: 5σ noise of DAMIC CCDs + Lindhard QF; Green: 5σ noise of DAMIC CCDs + DAMIC measured QF.
- Other two S.I. $\mathcal{O}s: \mathcal{O}_8$ and \mathcal{O}_{11} have similar features.

90% C.L. upper limits, all EFT S.I. Os and standard S.I.

- 0.6 kg*day data, QF measured by DAMIC.
- $\mathcal{O}_{11} = i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}$, is the most sensitive operator.

Limits of EFT S.I. Os and the standard S.I., DAMIC 0.6 Kg*day, QF : DAMIC Measured

90% C.L. upper limits of all EFT S.D. Os

• 0.6 × 5% = 0.028 kg*day data of Si-29, QF measured by DAMIC. $\mathcal{O}_{15} = -\left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}\right) \left[\left(\vec{S}_N \times \vec{v}^{\perp}\right) \cdot \frac{\vec{q}}{m_N}\right]$ is the most sensitive one.

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field

Low-mass (\sim 1 - 10 GeV/c²) WIMPs direct detection, DAMIC

- DAMIC and CCD introduction
- Detector calibration
- Limits setting with SI and EFT for DAMIC
- Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

- DAMIC CCDs have very low noise which is good for low mass WIMIP hunting. DAMIC has measured the quenching factor of silicon down to 100s keV recoil energy. A discrepancy comparing to the Lindhard model has been observed.
- All EFT Os have been studied and analyzed with DAMIC ~ 0.6 kg*day data. No signal has been observed. 90% C.L. upper limits with have been set.
- We find the most sensitive EFT operators of WIMP-nuclear interaction, O_{11} for S.I. and O_{15} for S.D..
- Publication 1: WIMPs search, PRD 94, 0282006 (2016), arXiv:1607.07410.
- Publication 2 : QF calibration for Silicon, 2017 JINST 12 P06014.

- DAMIC CCDs have very low noise which is good for low mass WIMIP hunting. DAMIC has measured the quenching factor of silicon down to 100s keV recoil energy. A discrepancy comparing to the Lindhard model has been observed.
- All EFT Os have been studied and analyzed with DAMIC ~ 0.6 kg*day data. No signal has been observed. 90% C.L. upper limits with have been set.
- We find the most sensitive EFT operators of WIMP-nuclear interaction, \mathcal{O}_{11} for S.I. and \mathcal{O}_{15} for S.D..
- Publication 1: WIMPs search, PRD 94, 0282006 (2016), arXiv:1607.07410.
- Publication 2 : QF calibration for Silicon, 2017 JINST 12 P06014.

- DAMIC CCDs have very low noise which is good for low mass WIMIP hunting. DAMIC has measured the quenching factor of silicon down to 100s keV recoil energy. A discrepancy comparing to the Lindhard model has been observed.
- All EFT Os have been studied and analyzed with DAMIC ~ 0.6 kg*day data. No signal has been observed. 90% C.L. upper limits with have been set.
- We find the most sensitive EFT operators of WIMP-nuclear interaction, O_{11} for S.I. and O_{15} for S.D..
- Publication 1: WIMPs search, PRD 94, 0282006 (2016), arXiv:1607.07410.
- Publication 2 : QF calibration for Silicon, 2017 JINST 12 P06014.

- DAMIC CCDs have very low noise which is good for low mass WIMIP hunting. DAMIC has measured the quenching factor of silicon down to 100s keV recoil energy. A discrepancy comparing to the Lindhard model has been observed.
- All EFT Os have been studied and analyzed with DAMIC ~ 0.6 kg*day data. No signal has been observed. 90% C.L. upper limits with have been set.
- We find the most sensitive EFT operators of WIMP-nuclear interaction, O_{11} for S.I. and O_{15} for S.D..
- Publication 1: WIMPs search, PRD 94, 0282006 (2016), arXiv:1607.07410 .
- Publication 2 : QF calibration for Silicon, 2017 JINST 12 P06014.

- DAMIC CCDs have very low noise which is good for low mass WIMIP hunting. DAMIC has measured the quenching factor of silicon down to 100s keV recoil energy. A discrepancy comparing to the Lindhard model has been observed.
- All EFT Os have been studied and analyzed with DAMIC ~ 0.6 kg*day data. No signal has been observed. 90% C.L. upper limits with have been set.
- We find the most sensitive EFT operators of WIMP-nuclear interaction, O_{11} for S.I. and O_{15} for S.D..
- Publication 1: WIMPs search, PRD 94, 0282006 (2016), arXiv:1607.07410 .
- Publication 2 : QF calibration for Silicon, 2017 JINST 12 P06014.

52/88

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- \sim Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC

High-mass (\sim 10 - 1000 GeV/c²) WIMPs direct detection, LZ

- LZ review
- Brown's contribution to LZ: PMTs assembly
- LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

LZ detector

- LZ: LUX (US) + ZEPLIN (UK).
- LUX: Large Underground Xenon experiment; ZEPLIN: ZonEd Proportional scintillation in Llquid Noble gases

LZ Bkg

WIMP backgrounds summary 5.6 tonnes x 1000 days; ~1.5 to ~6.5 keV

Background Source	ER	NR
	(cts)	(cts)
Detector Components	9	0.07
Surface Contamination	40	0.39
Laboratory and Cosmogenics	5	0.06
Xenon Contaminants	819	0
222Rn	681	0
220Rn	111	0
natKr (0.015 ppt g/g)	24	0
natAr (0.45 ppb g/g)	3	0
Physics	322	0.51
136Xe 2vββ	67	0
Solar neutrinos (pp+7Be+13N)	255	0
Diffuse supernova neutrinos	0	0.05
Atmospheric neutrinos	0	0.46
Total	1195	1.03
with 99.5% ER discrim., 50% NR eff.	5.97	0.51

junhui_liao@brown.edu

Junhui LIAO

Sep 26, 2018

EPC. IHEP. CAS

55/88

LZ projected sensitivity

LZ members

LZ collaboration

38 institutions; 250 scientists, engineers, and technicians

- 1) IBS-CUP (Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) Royal Holloway University of London (UK)
- 6) STFC Rutherford Appleton Lab (UK)
- 7) University College London (UK)
- 8) University of Bristol (UK)
- 9) University of Edinburgh (UK)
- 10) University of Liverpool (UK)
- 11) University of Oxford (UK)
- 12) University of Sheffield (UK)
- 13) Black Hill State University (US)
- 14) Brandeis University (US)

- 15) Brookhaven National Lab (US) 16) Brown University (US)
- 17) Fermi National Accelerator Lab (US)
- 18) Lawrence Berkeley National Lab (US)
- 19) Lawrence Livermore National Lab (US)
- 20) Northwestern University (US)
- 21) Pennsylvania State University (US)
- 22) SLAC National Accelerator Lab (US)
- South Dakota School of Mines and Technology (US)
- 24) South Dakota Science and Technology Authority (US)
- 25) Texas A&M University (US)
- 26) University at Albany (US)

- 27) University of Alabama (US)
- 28) University of California, Berkeley (US)
- 29) University of California, Davis (US)
- 30) University of California, Santa Barbara (US)
- 31) University of Maryland (US)
- 32) University of Massachusetts (US)
- 33) University of Michigan (US)
- 34) University of Rochester (US)
- 35) University of South Dakota (US)
- 36) University of Wisconsin Madison (US)
- 37) Washington University in St. Louis (US)
- 38) Yale University (US)

LZ timeline

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- 3) Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC

High-mass (\sim 10 - 1000 GeV/c²) WIMPs direct detection, LZ

- LZ review
- Brown's contribution to LZ: PMTs assembly
- LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

PMTs assembly at Brown

PMT dressing in Brown clean room (class 100)

Sector 1 PMT Dressing

Dressing fully completed within 3 hours, parts fit together smoothly

6

PMTs assembly at Brown

PMT assembly with a particle counter at the bottom of the PALACE, glass and PTFE slides monitoring dusts deposition

PALACE

Glass slides and PTFE slides both set up near the location of sector 1 during the whole exposure.

PTFE witness plates (exposed for sector 1 and will be shipped to SDSMT) and particle counters were placed at the bottom of PALACE interior

61/88

junhui_liao@brown.edu

EPC, IHEP, CAS

PMTs assembled on the bottom array at Brown

62/88

junhui_liao@brown.edu

EPC, IHEP, CAS

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- 3) Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC

High-mass (\sim 10 - 1000 GeV/c²) WIMPs direct detection, LZ

- LZ review
- Brown's contribution to LZ: PMTs assembly
- LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study
Lowest calibration energy on LXe: understanding ⁸ neutrino Bkg events

- Deuterium-Deuterium (DD) generator generates (mono-E) 2.45 MeV neutrons isotropically, some hit the reflector, then reflected to the bar1 in the water tank.
- At a certain small angle, the E of reflected neutrons is tunable and mono-E. We set it to 160 degree and get 300 keV neutrons.
- Reflector material: in this simulation, EJ315 (CD); will change to LXe later.

Preliminary simulation results

 We see the neutrons have two peaks, being scattered from C and D, respectively. Which demonstrates that we can use ToF to select interested 300 keV neutrons.

Bar1_Time1_1stHit {Bar1_N_of_Hits > 0 && Reflector_N_of_Hits > 0 && Bar1_Time1_1stHit > 10 && Reflector_Time_1stHit > 1}

 A not novel but useful technique has been developed during the simulation: run high-statistic simulation on HPC, visualizing an interested event on a local PC with a unique pair of seeds numbers.

EPC, IHEP, CAS

Visualized trajectories on a local PC

- Left plot: The trajectory of an event having the Bar1_Time1_1stHit of 69 ns (< 95 ns), turns out to be "accidental coincidence": the neutron and it produced secondary particle(s) satisfy the cut condition.
- Right plot: The trajectory of an event having the Bar1_Time1_1stHit of 166 ns, slower than the population being scattered by C, faster than D, is double-scattering on C.

Visualized trajectories on a local PC

- Left plot: The trajectory of an event having the Bar1_Time1_1stHit of 225 ns (210 < 225 < 240), is an expected event: a 2.45 MeV neutron hits on the reflector once then being reflected to the Bar1 in the central place of the water tank.
- Right plot: The trajectory of an event having the Bar1_Time1_1stHit of 249 ns (> 240), slower than the population being scattered by D once, that is because the neutrons hits the water near the Bars first then being reflected to the Bar1.

Tips for visualizing trajectories on a local PC

- To run on a HPC: you should have an executable file to run your simulation there, that means you don't need / want to recompile your scripts. (Working on a Brown HPC, we are able to submit 1000 jobs with \sim 1 minute.)
- Seeds number can be only placed in particle generator; not Begin_of_event(), it's too late there.
- Be cautious to the possible repetitive events (that means N jobs = 1 job).
- We used the "systime()" which is the UNIX time of a machine as the source of seeds.
- The scripts run on a HPC and a local PC must be exactly the same, including the macro file(s).
- A paper has been submitted to JINST: JINST_027P_0718 (under review).

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- 3) Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

Brief introduction on the LHC

Four main experiments of the LHC: ALICE, ATLAS, CMS, LHCb.

 LHC, Large Hadron Collider. 70 meters underground, Switzerland France board, close to Geneva. Length: 27 km.

The LHC is the energy highest ever built machine.

Higgs is there !

GASTOF

outline

- - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- - Brief review of the experiments in the field
- Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- - I 7 review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

GASTOF

What is GASTOF, Why we need it

GASTOF is "GAS Time Of Flight". It's a sub-10 ps time resolution gas Cherenkov detector. It's one of the most important timing detectors for the FP420 and HPS (upgrade projects of ALTAS and CMS), stands for Forward Physics 420 (meters) and High Performance Spectrometer respectively.

 According to simulation, Cherenkov photons only contribute ~ 2 ps, DAQ contributes ~ 4 ps, so the time resolution of our detector system depends mainly on the one of MCP-MPT under the context of 10 ps timing.

• • • • • • • • • • • •

Cherenkov photons

- Cherenkov photons will be produced if a charged particle goes through a media with a velocity faster than the speed of light in this media. Just like a supersonic jet produces a sonic boom.
- GASTOF has been filled with 1.1 atm C₄F₁₀, the refraction index is 1.0014. The beam utilized in our beam test is 120 GeV Pion.

GASTOF

Why we need GASTOF ? 1/2

Central exclusive channel [pXp]

The collision of p p results X (e^+e^- , Higgs etc) in a central detector (CMS, for instance) while two protons remain intact(lost less than 2% of their longitudinal momentum) flying back to back.

GASTOF

Why we need GASTOF ? 2/2

GASTOF is supposed to improve the ratio of S/N (1 order or more).

- Two GASTOF detectors will be put 220 meters away from the IP of CMS (ATLAS), ~4-7 mm away from beam center.
- ٠ Imaging two "back-flying" protons arrived at two GasToFs with time variation $\Delta T = T_l - T_R$, assuming the two protons come from the same interaction, then the Z-position of this interaction could be obtained $Z_{DD} = 1/2^* \Delta T^* c$ (c = the speed of light).
- The uncertainty of Z_{DD} , $\delta Z_{DD} = (c/\sqrt{2})^* \delta T$. $\delta T = 10 \text{ ps} \Leftrightarrow \delta Z_{DD} = 2.1 \text{ mm}$. The Z-position of the vertex related two protons, Z_{vertex} , could be obtained from a central detector ($\delta Z_{vertex} \approx 50$ μm).
- Finally, we require a match between Z_{DD} and Z_{vertex} to exclude (many) backgrounds.
- Better δT = better physics. 10 ps is the balance between physics benefit and current detector reachable performance.

outline

- DM direct detection: "theoretical" stuff
 - The existence of DM
 - The strategies of DM detection
 - The key features of DM direct detection
 - Characterize DM signals in direct detection: SI / SD and EFT
- DM direct detection: experimental stuff
 - Brief review of the experiments in the field
- Low-mass (\sim 1 10 GeV/c²) WIMPs direct detection, DAMIC
 - DAMIC and CCD introduction
 - Detector calibration
 - Limits setting with SI and EFT for DAMIC
 - Summary for DAMIC
- High-mass (\sim 10 1000 GeV/c²) WIMPs direct detection, LZ
 - LZ review
 - Brown's contribution to LZ: PMTs assembly
 - LXe calibration with mono-energetic 300 keV neutrons
- Sub-10 ps ToF for CMS
 - A little detour to the LHC
 - GASTOF
 - GASTOF study

GASTOF study

GASTOF charge measurement 1/2 - (MCP laser test)

The Laser beam is split in ~ 50/50.

Neutral density filters are used to attenuate laser light.

MCP-PMT laser test setup

Typical signal of Photek 210 MCP measured with laser

Charge measurement and fit (Photek 210)

$$Sum_0 = e^{-\mu} * [Gauss((x - x_{shift}) \cdot x_{scale}, 0, \sigma_0)]$$

$$\begin{split} Sum_n = & \sum_{n=1}^{N} \frac{e^{-\mu}}{n!} \mu^n * [Gauss((x - x_{shift}) \cdot x_{scale}, \ n, \ \sqrt{n}\sigma_1)] \\ & Fit_function = y_{scale} \cdot (Sum_0 + Sum_n) \end{split}$$

Charge fit function

78/88

EPC, IHEP, CAS

GASTOF charge measurement 2/2 - (MCP beam test)

GASTOF time analysis 1/7, a couple of useful techniques

Technique 1 : signal reconstruction

Technique 2 : CFD(Constant Fraction Discriminator) algorithm

 According to our analysis, comparing to "leading-edge timing + time walk correction", CFD algorithm can result better time resolution and more events.

GASTOF time analysis 2/7: method 1

Time resolution obtained by "method 1".

- Step 1 : Get the timing of two detectors with the CFD algorithm : T2 and T3.
- Step 2 : Get the histogram of "T2 - T3".
- Step 3 : Get the sigma of above histogram with a Gaussian fit
- From the left figure, the time resolution is 14.1 ± 0.25 ps(For two detectors)
- Next slides will explain how to figure out the time resolution of two detectors individually.

Sep 26, 2018

81/88

GASTOF time analysis 3/7 : method 2, motivation

The motivation of knowing individual time resolution

- The time resolution of an individual detector is more interesting.
- To do a crosscheck with the results of method 1 by an independent analysis method. ۲
- To reach a deeper understanding on the performance of GASTOF detectors.

The basic of method 2 : Poisson statistics

- In our system : $\sigma^2 = \sigma_2^2 / N_2 + \sigma_3^2 / N_3$ (with same cut as method 1).
- σ is the time resolution of two detectors; σ_2 and σ_3 are "the time resolution per photoelectron" of each GASTOF separately; N_2 and N_3 are the average number of phe of corresponding detectors.

GASTOF time analysis 4/7 : method 2, figure out σ_i^2 VS 1/ N_i

- In the left plot, the slope of a linear fit, "p1", represents the time resolution per phe of GASTOF 2 : ~ 22ps ($\sqrt{488.9}$).
- In the right plot, the slope of a linear fit, "p1", represents the time resolution per phe of ۲ GASTOF 3 : ~ 15ps ($\sqrt{214.3}$).

< ロ > < 同 > < 回 > < 回 >

BROWN

GASTOF study

GASTOF time analysis 5/7 : method 2, an example data point

- As shown in the left plot, we select a charge interval of GASTOF3, get its mean value of 1/phe : 0.35. Using the cut of such a charge interval, we get a histogram of "T2-T3" then make a Gaussian fit to get $\sigma = 13.31$ ps, as the right plot.
- "0.35" and $\sigma^2 = 13.31^2 = 177$ are the X and Y coordinates of the middle point of the right plot of previous slide.

84/88

GASTOF study

GASTOF time analysis 6/7: method 2, average N₂ and N₃.

Average phe G2 : $N_2 = 3.6$

Average phe G3 : $N_3 = 3.2$

GASTOF time analysis 7/7 : method 2, very well consistent with method 1.

Substitute the values obtained above, we get

$$\sqrt{\frac{\sigma_2^2}{N_2} + \frac{\sigma_3^2}{N_3}} = \sqrt{\frac{488.9 \pm 71.5}{3.6} + \frac{214.3 \pm 50.2}{3.2}} = 14.2 \pm 0.89 \text{ ps.}$$

This is consistent very well with the result we obtained by method 1 : 14.1 \pm 0.25 ps .

Accordingly, we can get the time resolution of GASTOF_2 ,

$$\sigma_{ch2} = \sqrt{\frac{\sigma_2^2}{N_2}} = \sqrt{\frac{488.9 \pm 71.5}{3.6}} = 11.7 \pm 0.85 \ ps$$

And GASTOF_3,

$$\sigma_{ch3} = \sqrt{\frac{\sigma_3^2}{N_3}} = \sqrt{\frac{214.3 \pm 50.2}{3.2}} = 8.2 \pm 0.96 \text{ ps}$$

86/88

BROWN

Summary on GasToF

Summary

- Very good understanding on charge and timing for GASTOF detector.
- (Sub-)10 ps time resolution has been achieved: $\sigma \sim = 8$ and 12 ps . Best time resolution among similar gas detectors ever since.
- A relation of " σ^2/N_{phe} " has been figured out for both detectors.
- Paper: NIM(A) 762 (2014) 77-84.

Outlook

- Strategies to increase GASTOF's time resolution.
 - (1) Increasing the number of photoelectrons.
 - (2) Increasing the rise time of signals.

After the application of above improvements, we've expected to get \sim 5 ps time resolution(σ).

- The efficiency of GASTOF detectors should be studied further.
- The life of MCP. For instance, using SiPM(Of course, one of the drawbacks is that SiPM has a worse noise than MCP).

Thanks

junhui_liao@brown.edu

EPC, IHEP, CAS

Sep 26, 2018

▲日 → ▲圖 → ▲ 画 → ▲ 画 →

ŝ.