J / ψ Production and Polarization within a Jet in pp Collisions

邢宏喜

Many thanks to my collaborators：
Yang－Ting Chien，Zhong－Bo Kang，Jian－Wei Qiu， Felix Ringer，Ivan Vitev，Hong Zhang

䓁南钎裺大掌
SOUTH CHINA NORMAL UNIVERSITY

量子物质研究院 Institute of Quantum Matter

＊ 5 more young scientists are going to join us soon．
Call for applications！
杰出人才；领军人才；青年拔尖（30－60万）；青年英才（25万起）；博士后（22万起）
More detailed information on http：／／talent．sciencenet．cn

Outline

\square Introduction

* Why heavy quarkonium?
. Theoretical frameworks and puzzle
\square Jet fragmentation functions
* J/Psi production within a jet
* J/Psi polarization within a jet
\square Summary

How hadrons are emerged from quarks and gluons?

Time evolution of new particle discovery

\square Probe hadron fragmentation mechanism

* Clean in electron-positron collision (CEPC).
* Take advantages of current RHIC and LHC runs.
* More opportunities in future EicC \& EIC.

Electron-positron collision

Heavy quarkonium production

\square Proton-proton collisions

Precision test of our understanding on QCD and hadronization.
\square Heavy ion collisions

Produced in the early stage of the collisions, provide information of quark-gluon plasma.
\square Polarized proton-proton and electron-proton collisions

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

Discover proton spin origin from gluon spin contribution.

QCD frameworks for J/Psi at collider energies

\square QCD frameworks

- Color Singlet Model, Einhorn, Ellis (1975) ...
- Color Evaporation Model, Fritsch (1977), Halzen (1977) ...
- Color Octet Model, Caswell, Lepage (1986), Bodwin, Braaten, Lepage (1995) ...
- CGC + NRQCD, Kang, Ma, Venugopalan (2014) ...
- SCET + NRQCD, Fleming, Leibovich, Mehen (2012) ...
\square NRQCD factorization Bodwin, Braaten, Lepage, PRD 51, 1125 (1995)

$$
d \sigma_{A+B \rightarrow H+X}=\sum_{n} d \hat{\sigma}_{A+B \rightarrow[Q \bar{Q}(n)]+X}\left\langle\mathcal{O}_{n}^{H}\right\rangle
$$

\square pQCD factorization

$$
n:{ }^{2 S+1} L_{J}^{(1,8)}
$$

- Leading power

Nayak, Qiu, Sterman, PRD 72, 114012 (2005)
$d \sigma_{A+B \rightarrow H+X}=\sum_{i} d \hat{\sigma}_{A+B \rightarrow i+X}\left(p_{T} / z, \mu\right) \otimes D_{H / i}\left(z, m_{c}, \mu\right)+\mathcal{O}\left(m_{H}^{2} / p_{T}^{2}\right)$

- Next-to-leading power Kang, Ma, Qiu, Sterman, PRD 90, 034006 (2014)

NLO NRQCD fits

Butenschoen et al. PRL (2011)

Gong et al. PRL (2012)

Quarkonium Polarization - ultimate test of NRQCD

\square Clear mismatch between theory prediction and data

$$
\frac{d \sigma^{J /} \psi\left(\rightarrow \ell^{+} \ell^{-}\right)}{d \cos \theta} \propto 1+\lambda_{\theta} \cos ^{2} \theta
$$

Longstanding puzzle!

New observable to probe fragmentation process
\square Jet substructure

Jet fragmentation function - light hadron

\square Hadron distribution inside a jet in proton-proton collisions

$$
F\left(z_{h}, p_{T}\right)=\frac{d \sigma^{h}}{d p_{T} d \eta d z_{h}} / \frac{d \sigma^{h}}{d p_{T} d \eta}
$$

\square Light hadrons work very well

Xing et.al., JHEP 1605, 125 (2016), Kang et.al., JHEP (2016)

Jet fragmentation function - heavy meson

Disagreement between theory and data for heavy meson in jet

Using ZM-VFNS scheme:
Chien, Kang, Ringer, Vitev, Xing,
1512.06851, JHEP 16
= = = - $D_{g}^{D}(z, \mu) \rightarrow 2 D_{g}^{D}(z, \mu)$

New fit by Stratmann, et.al., PRD 2017
puzzle = opportunity
New extraction of D-meson fragmentation from experimental data!

J/Psi in jet measurement from LHCb

* Disagreement between Pythia and data.
* Different shapes represent for different J/Psi production mechanism.
- Data prefers that the jet was initiated by a single parton fragmentation
- Pythia prefers that the jet was initiated by a produced heavy quark pair

Jet fragmentation function

\square Defined as the ratio of two physical observables

$$
F^{J / \psi}\left(z_{h}, p_{T}\right)=\frac{d \sigma^{J / \psi}}{d p_{T} d \eta d z_{h}} / \frac{d \sigma}{d p_{T} d \eta}
$$

\square Factorization framework

$$
\frac{d \sigma^{J / \psi}}{d p_{T} d \eta d z_{h}}=\sum_{a, b, c} f_{a} \otimes f_{b} \otimes \underbrace{H_{a b}^{c} \otimes \mathcal{G}_{c}^{J / \psi}}_{\text {expand in } \alpha_{s}}
$$

- Semi-inclusive fragmenting jet functions

$$
\begin{aligned}
\mathcal{G}_{i}^{J / \psi}\left(z, z_{h}, p_{\mathrm{jet}}^{+} R, \mu\right)= & \sum_{j} \int_{z_{h}}^{1} \frac{d z_{h}^{\prime}}{z_{h}^{\prime}} \mathcal{J}_{i j}\left(z, z_{h} / z_{h}^{\prime}, p_{\mathrm{jet}}^{+} R, \mu\right) \\
& \times D_{j}^{J / \psi}\left(z_{h}^{\prime}, \mu\right)+\mathcal{O}\left(m_{J / \psi}^{2} /\left(p_{\mathrm{jet}}^{+} R\right)^{2}\right)
\end{aligned}
$$

- J/Psi fragmentation functions

$$
D_{i \rightarrow J / \psi}\left(z_{h}^{\prime}, \mu_{0}\right)=\sum_{n}^{\sum_{i \rightarrow \mid Q \bar{Q}(n)]}\left(z_{h}^{\prime}, \mu_{0}\right)\left\langle\hat{O}_{[Q \bar{Q}(n)]}^{J / \psi}\right\rangle}
$$

Semi-inclusive fragmenting jet function

Kang, Ringer, Vitev (2016)
\square Definition of semi-inclusive fragmenting jet function in SCET

$$
\begin{array}{r}
\mathcal{G}_{q}^{h}\left(z, z_{h}, \omega_{J}, \mu\right)=\frac{z}{2 N_{c}} \delta\left(z_{h}-\frac{\omega_{h}}{\omega_{J}}\right) \operatorname{Tr}\left[\frac{\bar{n}}{2}\langle 0| \delta(\omega-\bar{n} \cdot \mathcal{P}) \chi_{n}(0)|(J h) X\rangle\langle(J h) X| \bar{\chi}_{n}(0)|0\rangle\right] \\
\begin{aligned}
& \mathcal{G}_{g}^{h}\left(z, z_{h}, \omega_{J}, \mu\right)=-\frac{z \omega}{(d-2)\left(N_{c}^{2}-1\right)} \delta\left(z_{h}-\frac{\omega_{h}}{\omega_{J}}\right)\langle 0| \delta(\omega-\bar{n} \cdot \mathcal{P}) \mathcal{B}_{n \perp \mu}(0)|(J h) X\rangle \\
& \times \times\langle(J h) X| \mathcal{B}_{n \perp}^{\mu}(0)|0\rangle
\end{aligned}
\end{array}
$$

\square NLO SCET Feynman diagrams

- RG evolution equation - resummation of single logarithm in R

$$
\mu \frac{d}{d \mu} \mathcal{G}_{i}^{h}\left(z, z_{h}, \omega_{J}, \mu\right)=\frac{\alpha_{s}(\mu)}{\pi} \sum_{k} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} P_{k i}\left(\frac{z}{z^{\prime}}\right) \mathcal{G}_{k}^{h}\left(z^{\prime}, z_{h}, \omega_{J}, \mu\right)
$$

- Matching onto standard collinear fragmentation functions

$$
\mathcal{G}_{i}^{h}\left(z, z_{h}, \omega_{J}, \mu\right)=\sum_{j} \int_{z_{h}}^{1} \frac{d z_{h}^{\prime}}{z_{h}^{\prime}} \mathcal{J}_{i j}\left(z, z_{h}^{\prime}, \omega_{J}, \mu\right) D_{j}^{h}\left(\frac{z_{h}}{z_{h}^{\prime}}, \mu\right)
$$

J/Psi production within a jet at the LHC

\square Nonperturbative parameters from global fits on inclusive J/Psi data
TABLE I. $\quad J / \psi$ NRQCD LDMEs from four different groups.

	$\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle$ GeV^{3}	$\left\langle\mathcal{O}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle$ $10^{-2} \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$ $10^{-2} \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle$ $10^{-2} \mathrm{GeV}^{5}$
Bodwin	0^{a}	9.9	1.1	1.1
Butenschoen	1.32	3.04	0.16	-0.91
Chao	1.16	8.9	0.30	1.26
Gong	1.16	9.7	-0.46	-2.14

\square Better discriminate different NRQCD parametrizations

J/Psi polarization in the jet

\square Angular distribution in helicity frame

$$
\frac{d \sigma^{J / \psi\left(\rightarrow \ell^{+} \ell^{-}\right)}}{d \cos \theta} \propto 1+\lambda_{F} \cos ^{2} \theta \quad \quad \lambda_{F}\left(z_{h}, p_{T}\right)=\frac{F_{T}^{J / \psi}-F_{L}^{J / \psi}}{F_{T}^{J / \psi}+F_{L}^{J / \psi}}
$$

\square Polarized fragmentation function

$$
\begin{aligned}
& \lambda_{F}\left(z_{h}, p_{T}\right)=\frac{F_{T}^{J / \psi}-F_{L}^{J / \psi}}{F_{T}^{J / \psi}+F_{L}^{J / \psi}}= \begin{cases}+1, & \text { Transverse } \\
-1, & \text { Longitudinal }\end{cases} \\
& \frac{d \sigma^{J / \psi}}{d p_{T} d \eta d z_{h}}=\sum_{a, b, c} f_{a} \otimes f_{b} \otimes H_{a b}^{c} \otimes \mathcal{G}_{c}^{J / \psi}
\end{aligned}
$$

$$
D_{i \rightarrow J / \psi}^{T, L}\left(z_{h}^{\prime}, \mu_{0}\right)=\sum_{n} \hat{d}_{i \rightarrow[Q \bar{Q}(n)]}^{T, L}\left(z_{h}^{\prime}, \mu_{0}\right)\left\langle\mathcal{O}_{[Q \bar{Q}(n)]}^{J / \psi}\right\rangle
$$

Kang, Xing, in preparation.

J/Psi polarization within a jet at the LHC

TABLE I. J / ψ NRQCD LDMEs from four different groups.

	$\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle$ GeV^{3}	$\left\langle\mathcal{O}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle$ $10^{-2} \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$ $10^{-2} \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle$ $10^{-2} \mathrm{GeV}^{5}$
Bodwin	0^{a}	9.9	1.1	1.1
Butenschoen	1.32	3.04	0.16	-0.91
Chao	1.16	8.9	0.30	1.26
Gong	1.16	9.7	-0.46	-2.14

Xing et al, PRL (2017)

J/Psi polarization within a jet is a very sensitive observable to constrain NRQCD LDMEs!

Summary

\square NRQCD has been successful in interpreting and predicting inclusive J/Psi pT spectrum, but failed to predict J/Psi polarization.
$\square \mathrm{J} /$ Psi production and polarization within a jet could be a very good observable to pin down the production mechanism.

