

Anomalies in B decays

谢跃红(华中师范大学)

- Introduction
- > Anomalies
 - ✓ $b \rightarrow c l \overline{\nu}$: lepton universality test
 - ✓ $b \rightarrow sl^+l^-$: lepton universality test & angular analysis
- Summary and outlook

华南师范大学, 2018年11月12日

Introduction

Standard Model of particle physics

- Successful but many things unexplained
 - Gravity
 - Dark matter, dark energy
 - Smallness of Higgs mass
 - Neutrino mass
 - Matter-antimatter imbalance
 - Why three generations

- Hunting for new physics beyond the SM at the LHC
 - Direct search at energy frontier (ATLAS, CMS)
 - Indirect search in flavor physics (LHCb)

LHCb Collaboration

1263 members, 77 institutes, 17 countries 中国:清华大学,华中师大,国科大,武汉大学,高能所,华南师大

LHCb experiement

Design for flavor physics

- Charge-parity violation
- Rare B, D and K decays
- Lepton universality test
- Hadron spectroscopy

Already a general purpose detector in forward region

- Electroweak physics
- Heavy ion collisions

LHCb running (pp collisions)

- > 9 fb⁻¹ accumulated after Run-2
- Results presented here based on Run-I data:
 1 fb⁻¹ at 7 TeV + 2 fb⁻¹ at 8 TeV

LHCb highlights

$CP破坏关键参数\phi_s的精确测量$

PRL 114 (2015) 041801

五夸克态的发现 PRL 115 (2015) 072001

观察到极稀有衰变 $B_s \rightarrow \mu^+ \mu^-$

PRL118 (2017) 191801

双粲重子的**发现** PRL 119 (2017) 112001

$b \rightarrow c l \bar{v}_l$: lepton universality test

Lepton universality (LU)

• SM: couplings of gauge bosons are identical for $l = e, \mu, \tau$

 Branching fractions to different lepton generations differ only due to lepton masses

$$R_{W} = \frac{B(W \to \tau \overline{\nu}_{\tau})}{B(W \to \mu \overline{\nu}_{\mu})}$$
$$R_{D^{(*)}} = \frac{B(B \to D^{(*)} \tau \overline{\nu}_{\tau})}{B(B \to D^{(*)} \mu \overline{\nu}_{\mu})}$$

$$R_Z = \frac{B(Z \to \tau^+ \tau^-)}{B(Z \to \mu^+ \mu^-)}$$

$$R_{K^{(*)}} = \frac{B(B \to K^{(*)}\mu^+\mu^-)}{B(B \to K^{(*)}e^+e^-)}$$

Previous LU tests

- Lepton couplings have been thoroughly tested at LEP, NA42, BESIII, CLEO and many other experiments
 - > Neutral currents: universal within 2% precision
 - > Charged currents: universal within 2% for $l = e, \mu$

LEP: 2.8 σ upward tension in $W \rightarrow \tau \overline{\nu}_{\tau}$ CERN-PH-EP/2005-051

Assuming only partial lepton universality the ratio between the tau fractions and the average of electrons and muons can also be computed:

 $2\mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / (\mathcal{B}(W \to e \overline{\nu}_{e}) + \mathcal{B}(W \to \mu \overline{\nu}_{\mu})) = 1.077 \pm 0.026$

resulting in a poor agreement at the level of 2.8 standard deviations, with all correlations included.

Tree-level LU tests

$$R(D^{(*)}) = \frac{B(B \to D^{(*)}\tau \overline{\nu}_{\tau})}{B(B \to D^{(*)}l \overline{\nu}_{l})} \qquad (l = e, \mu)$$

- Tree-level $b \rightarrow cl^-\overline{\nu}_l$ transitions are well understood in SM
- Sensitive to extended Higgs sector or Leptoquarks, which are expected to couple predominantly to 3rd generation leptons

$$B \to D^* \tau \overline{\nu}_{\tau}$$
 with $\tau^- \to \mu^- \overline{\nu}_{\mu} \nu_{\tau}$

Vertices => B flight direction => B momentum=> missing mass

$R(D^*)$ with $\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}$

 2σ above SM prediction: $R^{SM}(D^*) = 0.258 \pm 0.005$

 $R(D^*)$ with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$

1σ above SM prediction

$R(D^*)$ results

LHCb combination

 $R(D^*) = 0.310 \pm 0.016 \pm 0.021$

LHCb, Babar and Belle results consistent with each other, all above SM predicitons

World average: $R(D^*) = 0.306 \pm 0.013 \pm 0.007$

 3σ above SM prediction: $R^{SM}(D^*) = 0.258 \pm 0.005$

$b \rightarrow c l^- \overline{\nu}_l$ LU tests: overall status

- $R(D^*)$ and R(D)R(D*) BaBar, PRL109,101802(2012) 0.5 $\Delta \chi^2 = 1.0$ contours Belle, PRD92,072014(2015) LHCb. PRL115,111803(2015) Average of SM predictions $R(D^*)$: Babar, Belle, LHCb 0.45 Belle, PRD94,072007(2016) $R(D) = 0.299 \pm 0.003$ Belle, PRL118,211801(2017) LHCb, PRL120,171802(2018) $R(D^*) = 0.258 \pm 0.005$ Average 0.4 R(D): Babar, Belle 0.35 4σ **Tension with SM predictions** 2σ 0.3 \checkmark 3.0 σ in $R(D^*)$ 0.25 \checkmark 2.3 σ in R(D)HFLAV Summer 2018 0.2 \checkmark 3.8 σ combined $P(\chi^2) = 74\%$ 0.2 0.3 0.4 0.5 0.6 R(D)
 - Recent LHCb result of $R_{J/\psi}$

 $R(J/\psi) = \frac{B(B_c^+ \to J/\psi\tau\overline{\nu}_{\tau})}{B(B_c^+ \to J/\psi\mu\overline{\nu}_{\mu})}$

 $R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$

PRL 120 (2018) 121801

 2σ above SM prediction: $R^{SM}(J/\psi) = 0.12 \sim 0.28$

 $b \rightarrow sl^+l^-$: lepton universality test & angular analysis

$b \rightarrow s l^+ l^-$

• $b \rightarrow sl^+l^-$ decay rates sensitive to heavy non-SM particles

- Cannot compute hadronic form factors reliably
- Theoretically robust observables
 - ✓ BR ratios between e and μ
 - ✓ Special angular observables

Dependence on $q^2 = m_{l^+l^-}^2$

- Veto J/ψ and $\psi(2S)$ regions
- Significant interference of short- and long-distance contributions remains and have been observed

$b \rightarrow sl^+l^-$ branching fractions

- Measured values consistently below SM predictions
- But: significant theory uncertainties from hadronic form factors

LU test with $R(K^{(*)})$

$$R(K^{(*)}) = \frac{B(B \to K^{(*)}\mu^+\mu^-)}{B(B \to K^{(*)}e^+e^-)}$$

- Theoretical uncertainties in form factors largely cancel in ratio
- $R(K^{(*)})$ close to unity, predicted with precision of O(10⁻³) in SM
- Experimental challenge: electron reconstruction

 $K^{+}e^{+}e^{-}$ vs $K^{+}\mu^{+}\mu^{-}$

 $B^0 \rightarrow K^* \mu^+ \mu^-$

 $B^0 \rightarrow K^* e^+ e^-$

LHCb

5500

 $\cdots B^0 \rightarrow K^{*0} e^+ e^-$

 $B \rightarrow Xe^+e^-$

 $B^0 \rightarrow K^{*0} J/\psi$

6000

 $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/c²]

Combinatorial

Electron modes suffer from

- Lower trigger efficiency
- Higher background
- ✓ Worse resolution
- Contamination from radiation tail of $J/\psi \rightarrow e^+e^-$

R(K)

 $R_K = 0.745^{+0.090}_{-0.074} \pm 0.036; 1 < q^2 < 6 \text{ GeV}^2$

2.6 σ below SM prediction

$R(K^*)$

$$R_{K^*} = 0.66^{+0.11}_{-0.07} \pm 0.03; \quad 0.045 < q^2 < 1.1 \,\,{
m GeV^2}$$

 $R_{K^*} = 0.69^{+0.11}_{-0.07} \pm 0.05; \quad 1.1 < q^2 < 6.0 \,\,{
m GeV^2}$

2. 1σ and 2. 4σ below SM predictions JHEP 08 (2017) 055

Angular analysis: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_I \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell - F_I \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi_\ell} \right]$$

Eight independent observables

- ✓ F_L: fraction of longitudinal polarization ✓ S₆ = 4/3 A_{FB}: forward-backward asymmetry of the $\mu^+\mu^-$ system
- ✓ S_{3,4,5,7,8,9}: remaining CP-averaged observables

F_L and A_{FB}

Measured values agree well with SM predictions

P_5' puzlle

Form factors cancel at leading order in new observable

Local deviations from SM : 2.8 σ for 4< q^2 < 6 GeV² ; 3.0 σ for 6< q^2 < 8 GeV² . Global deviation from SM: 3.4 σ

27

Possible explanations

• Statistical fluctuation?

More data will shed light

• Experimental artefacts?

e and τ are difficult to reconstruct

- Underestimated SM charm loop effect? Possible, but LU observables should be robust ...
- New physics if all above are excluded
- Z' or leptoquark could explain the anomalies

Interplay with direct search

- If the flavor anomalies are due to exchange of a new particle, it could be searched for at high p_T
- No sign seen yet

Example: leptoquark search at LHC

• May need HL-LHC to see them if they are there ...

Summary and outlook

• Intriguing tension with Standard Model predictions

Many possibilities remain

Outlook

 Significant progress expected in next five years with new measurements from the LHC and from Belle II

• LHCb will run at 5X higher instant luminosity after LS2, and has expressed interest to further increase it by 10X after LS4 at 2031

Backup slides

$R(D^*)$ with $\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$

- With neutrinos missing, B momentum is estimated using D^* and μ^- , and flight direction
- Look at variables in B rest frame

	<i>D</i> *+ τ ⁻ ν _τ	<i>D</i> *+ μ ⁻ ν _μ
E _M*	Softer	harder
m ² miss	> 0	≈ 0
q ²	> <i>m</i> ² _T	> 0

Angular analysis: $\Lambda_b^0 \rightarrow \Lambda^0 \mu^+ \mu^-$

Results compatible with SM predictions

[Boër et al, JHEP 01 (2015) 155] [Detmold et al. PRD 93 (2016) 074501]

➤ 5 angles

- > q^2 -dependent observables K_i
- Method of moment
- > Signals only observed in $15 < q^2 < 20$ GeV2

arXiv: 1808^{.0}0264

Run 1+II, 5 fb⁻¹

35

Effective theory for $b \rightarrow sl^+l^-$

Described by an effective Hamiltonian

Global fit to $b \rightarrow sl^+l^-$ results

- Include angular and LU results in $b \rightarrow sl^+l^-$ transitions
- Allow for $C_{ie}^{NP} \neq C_{i\mu}^{NP}$
 - ✓ Preference for $C_{9\mu}^{NP} \neq 0$
 - ✓ Data disagree with SM by more than 3.5σ

