

热烈祝贺华南师范大学量子物质研究院成立!

Heavy-ion physics with LHCb

朱相雷 (清华大学)

On behalf of the LHCb Collaboration

QCD and Quark Matter Physics 11-13 November 2018 Guangzhou, China

Outline

- The LHCb detector
- Heavy quarkonium production in *p*Pb
- Open heavy flavor production in pPb
- Fixed-target experiments
- PbPb collisions
- Summary

The LHCb detector

A single arm general purpose detector at forward rapidity !

pseudorapidity acceptance $2 < \eta < 5$

The LHCb detector

central • forward coverage for ٠ muon only > ATLAS & CMS central detectors •

≻ LHCb

- forward detector •
- tracking, particle-ID and ٠ calorimetry in full acceptance !

LHCb pPb datasets

- *y**: rapidity in nucleon-nucleon cms
- $y_{\rm cms} = \pm 0.465$
- Forward: $1.5 < y^* < 4.0$
- Backward: $-5.0 < y^* < -2.5$
- Common region: $2.5 < |y^*| < 4.0$

$$\sqrt{s_{NN}} = 5.02 \text{ TeV} (2013, \text{Run I})$$

• *p*Pb (1.06 nb⁻¹) + Pb*p* (0.52 nb⁻¹)

• *p*Pb (13.6 nb⁻¹) + Pb*p* (21.8 nb⁻¹)

LHCb: frontier experiment in phase space

Thanks to boost, resolution, $low-p_T$ reach and fast read-out

- disentangle initial state from other phenomena
- constrain initial state
- \blacktriangleright sensitive to physics of the saturation scale

Heavy quarkonium production in *p*Pb collisions

Separation of prompt J/ψ and J/ψ -from-*b*

- 2016 *p*Pb collision data, 8.16 TeV
- Prompt J/ψ and J/ψ -from-b are extracted by simultaneous fit of mass and pseudo-proper time: $t_Z = (Z_{J/\psi} Z_{PV}) \times M_{J/\psi}/p_Z$ Forward Backward

Mass distribution:

Signal: Crystal Ball Background: exponential

t_Z distribution:

Signal: $\delta(t_Z)$ for prompt J/ψ ; Exponential for J/ψ -from-b. Background: empirical function from sideband

Total yields:

 $\begin{array}{ccc} \text{prompt} & \text{from-}b \\ \text{Forward:} &\sim 3.8 \times 10^5; \sim 6.7 \times 10^4 \\ \text{Backward:} &\sim 5.6 \times 10^5; \sim 7.1 \times 10^4 \\ \text{[PLB 774(2017) 159-178]} \end{array}$

Prompt $J/\psi R_{pPb}$ in pPb at 8.16 TeV

Nuclear modification factor is defined as:

$$R_{\rho \mathrm{Pb}}(p_{\mathrm{T}}, y^{*}) \equiv \frac{1}{A} \frac{\mathrm{d}^{2} \sigma_{\rho \mathrm{Pb}}(p_{\mathrm{T}}, y^{*})/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^{*}}{\mathrm{d}^{2} \sigma_{\rho \rho}(p_{\mathrm{T}}, y^{*})/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^{*}}, A = 208$$

- In Fwd: suppression at low p_T up to 50%, converging to unity at high p_T
- In Bwd: R_{pPb} closer to unity. Intriguing low values in Bwd at low p_T
- Overall agreement with theoretical models. Compatible with pPb 5 TeV results.

J/ψ -from- $b R_{pPb}$ in pPb at 8.16 TeV

Nuclear modification factor is defined as:

$$R_{\rho \mathrm{Pb}}(p_{\mathrm{T}}, y^{*}) \equiv \frac{1}{A} \frac{\mathrm{d}^{2} \sigma_{\rho \mathrm{Pb}}(p_{\mathrm{T}}, y^{*})/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^{*}}{\mathrm{d}^{2} \sigma_{\rho \rho}(p_{\mathrm{T}}, y^{*})/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^{*}}, A = 208$$

- In Fwd: suppression at low p_T up to 30%, converging to unity at high p_T
- In Bwd: R_{pPb} slightly above unity
- Overall agreement with theoretical model. Compatible with pPb 5 TeV results.

$J/\psi R_{FB}$ in pPb at 8.16 TeV

Υ (nS) signals in *p*Pb at 8.16 TeV

11/13/2018

$\Upsilon(2S) R_{pPb}$ in pPb at 8.16 TeV

$\Upsilon(nS)$ to $\Upsilon(1S)$ ratios in pPb at 8.16 TeV

Υ (nS) double ratios in *p*Pb at 8.16 TeV

Open heavy flavor production in pPb collisions

Prompt D^0 measurement in *p*Pb at 5 TeV

- Reconstructed through decay channel: $D^0 \rightarrow K^- \pi^+$
- Inclusive *D*⁰ mesons from fitting invariant mass dist.:
 - Signal:
 - Crystal Ball+Gaussian
 - Background: linear
- Prompt *D*⁰fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - *D*⁰-from-*b*: simulation
 - Background: sideband in data

JHEP 10 (2017) 090

arXiv: 1809.01404

11/13/2018

Prompt D^0 differential cross-section in *p*Pb

- Data consistent with nPDF predictions
- Theoretical calculation with Helac-Onia:
 - Fit to existing LHC *pp* cross-section measurement
 - Incorporate nPDF
- nCTEQ15 under predicts cross-section at lowest $p_{\rm T}$
- Data more precise than nPDFs

JHEP 10 (2017) 090

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

Prompt D^0 at 5 TeV forward-backward production ratio

- $R_{\rm FB}$ does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs
 - Model parameterisation constrained by existing LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- Data show smaller uncertainties than nPDF calculations

 $R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$

JHEP 10 (2017) 090

Prompt Λ_c^+ at 5 TeV forward-backward production ratio

- $R_{\rm FB}$ does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs

10

• Model parameterisation constrained by LHC pp cross-section measurements

 $R_{
m FB}$

(b)

- Consistent with nPDF predictions within uncertainty
- Data uncertainties comparable to nPDF calculations

Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

LHCb $p Pb \sqrt{s_{NN}} = 5 TeV$

 $R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|v^*|, p_{\rm T})}$

Prompt D^0 at 5 TeV nuclear modification factor in *p*Pb

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

$$R_{pPb}(y^*, p_{T}) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_{T}, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_{T}, \sqrt{s_{NN}})/dx}, A=208$$

- pp reference directly measured by LHCb
- R_{pPb} suppressed at forward rapidity
 - slight increase with increasing $p_{\rm T}$
- R_{pPb} closer to 1 at backward rapidity

• Measurements consistent with models with nPDF, CGC

JHEP 10 (2003) 046

• Data has smaller uncertainties than theory

Prompt D^0 at 5 TeV nuclear modification factor in *p*Pb

JHEP 10 (2003) 046 Eur. Phys. J. C77 (2017) 1

Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

$$R_{pPb}(y^*, p_{T}) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_{T}, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_{T}, \sqrt{s_{NN}})/dx}, A=208$$

- *pp* reference directly measured by LHCb
- forward
 - significant suppression
- backward
 - closer to 1
 - hint of enhancement at large rapidity
- Measurements consistent with models with nPDF, CGC
- Data has smaller uncertainties than theory

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5 TeV

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\mathrm{T}})}{\sigma_{D^0}(y^*, p_{\mathrm{T}})}$$

- Sensitive to charm hadronisation mechanisms
- Model based on measured *pp* cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower.
- Slight increase with increasing $p_{\rm T}$
- Forward:
 - Consistent at lower $p_{\rm T}$
 - Below theories at higher p_{T}
- Backward:
 - Consistent for all $p_{\rm T}$

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5 TeV

$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\mathrm{T}})}{\sigma_{D^0}(y^*, p_{\mathrm{T}})}$$

- Sensitive to charm hadronisation mechanisms
- Model based on measured *pp* cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower
- Flat across *y**
- Consistent with theories for all *y*^{*}

arXiv: 1809.01404

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

Open beauty signals at 8.16 TeV

Extract yields by fitting invariant mass distribution and obtain cross section σ as a function of $p_{\rm T}$ and y

Open beauty R_{pPb} at 8.16 TeV

- Forward: suppressed, increases with $p_{\rm T}$
- Backward: ≈ 1
- Data are consistent with nPDF calculations and J/ψ from b decay
- Beauty suppression is comparable to charm

LHCb-CONF-2018-004

Open beauty forward-backward ratio at 8.16 TeV

- $R_{\rm FB}$ for B mesons < 1
 - \blacktriangleright No strong dependence on $p_{\rm T}$ is observed
 - Consistent with nPDF calculations
- $R_{\rm FB}$ for B^0 and B^+ are similar
- $R_{\rm FB}$ for $\Lambda_{\rm b}^{0}$ suffers larger statistical uncertainty

Open beauty particle ratios at 8.16 TeV

• $R_{pPb}^{\Lambda_b^0/B^0} \equiv R_{pPb}^{\Lambda_b^0}/R_{pPb}^{B^0} \approx 1$ and is independent of p_T at forward rapidity, suffers larger fluctuations due to higher level of background at backward rapidity

The LHCb fixed-target experiment

Unique fixed-target configuration at the LHC JINST 9 (2014) P12005 Inject noble gases (He, Ne, Ar, ...) inside the Vertex Locator $\sim 10^{-7}$ mbar

Parasitic to collider data taking

Fully benefit from LHCb excellent performance

 \rightarrow New physics opportunities with *p*-nucleus and Pb-nucleus collisions

Heavy-ion and cosmic ray related physics

Fixed-target kinematic region

 $\sqrt{s_{NN}} \in [69, 115] \; {
m GeV}$

backward rapidity region

Charm production in fixed target *p*He collisions

• $J/\psi \rightarrow \mu^+\mu^-$ and $D^0 \rightarrow K^{\mp}\pi^{\pm}$ inclusive cross sections in *p*He @86.6 GeV

PbPb collisions with LHCb

Ion-Ion runs: 10 μ b⁻¹ PbPb at 5.02 TeV (2015) and 0.4 μ b⁻¹ XeXe

 \rightarrow 2018 PbPb run aiming for a factor 10 more

LHCb centrality

- Measured by the calorimeter
- Reaches the detector limitation
- \rightarrow Saturation in the Vertex Locator for the most central PbPb collisions

LHCb current tracking algorithm efficient up to 50% most central collisions

Physics studies limited to 50% less central events

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

D^0 in PbPb (a first look)

Reconstructed through $D^0 \rightarrow K^-\pi^+ + CC$ decays

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Summary

- The current heavy flavor measurements in *p*Pb collisions and fixed-target collisions provide precise and unique constraints on nuclear modifications in proton-nucleus collisions at lowx & high-x
- More measurements with the current dataset, especially with the high statistics $\sqrt{s_{NN}} = 8.16$ TeV *p*Pb data are still yet to come...

backup

LHCb detector upgrades phase I (2021-)

- replace full tracker for 5 times higher pile-up in *pp*
- inspect 30 MHz rate in software trigger in *pp*
- magnet stations for low- $p_{\rm T}$ tracks & TOF for low momentum PID in consideration for Phase I consolidation or Phase II

Fixed-target upgrade

Current LHCb fixed-target setup will be upgraded for Run 3

Plan for a storage cell, placed upstream

- \rightarrow Injection of noble gases but also $H_2,\,D_2$ as references
- \rightarrow 10–100 times larger instantaneous luminosity per unit length

Other upgrades (crystal target, polarised target, wire target) under discussion

Open charm measurements in pPb 8 TeV

1840

80000

70000

60000

MeV/c²

2

1860

1880

1900

 $Mass(K^{-}\pi^{+}\pi^{+}) (MeV/c^{2})$

LHCb preliminary

Pb-p, $\sqrt{s_{NN}} = 8 \text{ TeV}$

~17 nb⁻¹

1920

- Precision measurements of charmed hadrons in *p*Pb
- Accuracy improvement in $R_{\Lambda_c^+/D^0}$
- Measurements as functions of multiplicity
- Analyses ongoing

J/ψ and $\psi(2S) R_{pPb}$ in pPb at 5 TeV

\rightarrow nuclear modification factor

- I results require interpolation of pp cross-section to $\sqrt{s} = 5 \text{ TeV}$
- $\square R_{pPb} \neq 1$: the nucleus is not a loose collection of independent nucleons
- I tighter bound *B*-mesons less affected than prompt J/ψ
- energy loss and shadowing are about equally important
- $\Box J/\psi$ data agree with "energy loss + NLO shadowing"
- consistent results from ALICE and LHCb for stronger $\psi(2S)$ suppression
- \blacksquare more data needed to confirm differences between J/ψ and $\psi(2S)$

$\psi(2S)$ relative suppression wrt J/ψ

• Relative suppression is calculated as:

- Intriguing stronger suppression of prompt $\psi(2S)$ than that of prompt J/ψ
- Expect similar suppression for $\psi(2S)$ from *b* and J/ ψ from *b*
 - \rightarrow R compatible with 1 within large uncertainties
- Results for inclusive $\psi(2S)$ compatible with ALICE measurement

LHCb ГНСр

J/ψ and $\psi(2S) R_{FB}$ in pPb at 5 TeV

→ forward-backward asymmetry

LHCb: JHEP 03 (2016) 033

- cross-section interpolation NOT required
- many systematic uncertainties cancel
- $\Box J/\psi$ and $\psi(2S)$ consistent within uncertainties
- I trend towards smaller asymmetry for $\psi(2S)$
- expect to resolve with 2016 pPb data

Ferreiro et al. PRC88(2013)04791 Arleo, Peigne JHEP03(2013)122 Albacete et al. IJMPE22(2013)133007

Υ production in pPb at 5TeV

Low statistics due to low production rate

LHCb: JHEP 07 (2014) 094

- no differential measurements possible
- inematic range: $p_T < 15 \,\text{GeV}/c$, 1.5 < y < 4.0 and -5.0 < y < -2.5
- study nuclear effects in common rapidity range 2.5 < |y| < 4.0
- Solution equation of $\Upsilon(2S)$ and $\Upsilon(3S)$
- 2016 data expected to allow measurements for all states

 \rightarrow focus on $\Upsilon(1S)$

Υ production in pPb at 5TeV

 \rightarrow Y(1S) nuclear modification factor and fwd/bwd asymmetry

LHCb: JHEP 07 (2014) 094

- large uncertainties
- less suppression for Upsilon than for prompt J/ψ production
- backward data consistent with expectations of anti-shadowing
- I Upsilon consistent with J/ψ from b

more data needed for firm conclusions

Two particle correlations in *p*Pb collisions

Definition of event activity

- Data sample used in analysis:
 - Minimum-bias events: 1.1×10^8 for *p***+Pb** and **Pb+p** each.
 - High-multiplicity events: events with VELO hits larger than 2200, 1.1×10^8 for **p**+Pb and 1.3×10^8 for Pb+p.
- Use VELO-hit multiplicity to measure the event activity
 - proportional to number of charged particles
- Hit-multiplicity in Pb+p greater than p+Pb
- Relative activity classes
 - from low (50-100%) to very high (0-3%) event activity
- Common absolute activity classes for Pb+p and *p***+Pb**
 - 5 bins in $2200 < \mathcal{N}_{VELO}^{hits} < 3500$

Phys. Lett. B762 (2016) 473

The ridge in p+Pb collisions

*p*_T range : 1.0 - 2.0 GeV/c

Phys. Lett. B762 (2016) 473

At low event activity (50-100%)

- $\Delta \phi = \pi$: away side ridge present
- $\Delta \phi = 0$: No sign of near-side ridge

At high event activity (0-3%)

- $\Delta \phi = \pi$: away side ridge present
- $\Delta \phi = 0$: near-side ridge is evolving and clearly visible!

The ridge in Pb+p collisions

*p*_T range : 1.0 - 2.0 GeV/c

Phys. Lett. B762 (2016) 473

At low event activity (50-100%)

- $\Delta \phi = \pi$: away side ridge present
- $\Delta \phi = 0$: No sign of near-side ridge

At high event activity (0-3%)

- $\Delta \phi = \pi$: away side ridge present
- $\Delta \phi = 0$: near-side ridge elongated over large $\Delta \eta$!

The ridge evolution

• Average the 2D-yield in the range of $2.0 < \Delta \eta < 2.9$, to exclude short-range correlations (jet peak)

$$Y(\Delta \phi) \equiv \frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta \phi} = \frac{1}{\Delta \eta_b - \Delta \eta_a} \int_{\Delta \eta_a}^{\Delta \eta_b} \frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \eta d\Delta \phi} d\Delta \eta$$

- Subtract the zero-yield-at-minimum (ZYAM)
- The correlation yield increases with event activity.
- \blacktriangleright The away-side ridge decreases towards higher $p_{\rm T}$
- \triangleright On the near side, the second ridge emerges with a maximum in the range $1 < p_T < 2$ GeV/c.
- \triangleright Near side is more pronounced in **Pb**+*p* than in *p***+Pb**.

Phys. Lett. B762 (2016) 473

Relative activity class

The ridge evolution

- *LHCb* ГНСр
- Compare both hemispheres (Pb or *p* direction) in common absolute activity ranges.
- Five identical activity ranges for the *p*+Pb and Pb+*p* configurations (2200 < $\mathcal{N}_{VELO}^{hits}$ < 3500), the same particle production in 2.0 < η < 4.9.

Strength of near-side ridges in both hemispheres are compatible with each other!

Different probed rapidity ranges in both beam configurations show no sizable effect. $p+Pb: 1.5 < y < 4.4; \quad Pb+p: -5.4 < y < -2.5$

LHCb heavy-ion collider mode: a wealth of data

	year	$\sqrt{s_{NN}}$			
<i>p</i> Pb/Pb <i>p</i>	2013	5.02 TeV	$1.6 \ \mathrm{nb}^{-1}$		
PbPb <i>p</i> Pb/Pbp	2015 2016	5.02 TeV 8.16 TeV	$10~\mu \mathrm{b^{-1}}$ $34~\mathrm{nb^{-1}}$		21 ×2013
XeXe	2017	5.44 TeV	0.4 $\mu \mathrm{b^{-1}}$		
PbPb	2018	5.02 TeV		8	10 ×2015

► fast detector

full inelastic luminosity in PbPb and XeXe full rate in pPb/Pbp in HLT

- tracking 50-100 % centrality in PbPb
- data full of peaks and phenomena to explore