Recent Results on Hypernucleus Physics in Heavy-Ion Collisions from STAR Exp.

Jinhui Chen (陈金辉)

Shanghai Institute of Applied Physics, CAS

QCD与夸克物质物理研讨会 2018.11.11-13

Hyperons in neutron stars

Myperon puzzle

- Hyperons are predicted to exist inside neutron stars at densities exceeding 2-3p₀
- The inner core of NS is so dense, Pauli blocking prevents hyperons from decaying by limiting the phase space available to nucleons
- The presence of hyperon reduces the maximum mass of neutron stars \sim 0.5-1.2M₀
- However, new observation for large mass of NS!

P. Demorest et al., Nature 467 (2010) 1081; Antoniadis et al., Science 340 (2013) 448

- » Rijken and Schulze: inclusion of YY interactions increase the mass of NS
- » Lonardoni et al., repulsive YNN interactions increase the mass of NS

GW from NS merger, provides new information on NS EoS, and new constrains on radius and mass

B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017); Phys. Rev. Lett. 121, 161101 (2018)

Heavy ion collider as a hyperon factory

0-5% central collisions, Au+Au @ 200 GeV, Pb-Pb @ 2.76 TeV

$$\frac{dN_Y}{dy}\Big|_{y=0} \simeq \begin{cases} 16.7, & 26, & \Lambda \text{ (S=-1)} \\ 2.2, & 3.3, & \Xi \text{ (S=-2)} \\ 0.3, & 0.6, & \Omega \text{ (S=-3)} \end{cases}$$

RHIC, a QCD machine, small bang

Hyperon rate is high, lab. for Y-N interaction

Excellent secondary vertex reconstruction in STAR and ALICE

(Hyper-)nuclei production in HIC

STAR. Science 328, 58 (2010)

Particle type	Ratio
$\frac{3}{\Lambda}\overline{H}/_{\Lambda}^{3}H$	$0.49 \pm 0.18 \pm 0.07$
$^{3}\overline{\text{He}}/^{3}\text{He}$	$\textbf{0.45}~\pm~\textbf{0.02}~\pm~\textbf{0.04}$
$\frac{3}{\Lambda}\overline{H}/^{3}\overline{He}$	$0.89\pm0.28\pm0.13$
$^{3}_{\Lambda}$ H/ ³ He	$0.82 \pm 0.16 \pm 0.12$

The production reduction factor is up to 10³ at RHIC and 300 at LHC, limited to A<4 system

Focus on the hypertriton lifetime (1)

The lifetime measurements are interest especially in view of the short values from early experiments :

- The 1st measurements is (0.95^{+0.19}-0.15)*10⁻¹⁰s from helium bubble chamber, by Block et al., presented in the proceeding of Conference on Hyperfragments at St, Cergue, 1963, p.62
- Results from AGS nuclear-emulsion experiments: (0.9^{+2.2}-0.4)*10⁻¹⁰s,

Phys. Rev.136B,1803 (1964), from Bevatron and AGS: 2-body (3 in flight, 4 at rest) (0.8^{+1.9}-0.3)*10⁻¹⁰s 2-body combined with 3-body (5 in flight, 18 at rest) (3.4^{+8.2}-1.4)*10⁻¹⁰s

 Nuclear-emulsion with maximum likelihood procedure, Nucl. Phys. B16,46 (1970), (1.28^{+0.35}-0.26)*10⁻¹⁰s

Focus on the hypertriton lifetime (2)

Mathematical States and States a

Helium bubble chamber from Argonne ZGS:

(2.32^{+0.45}-0.34)*10⁻¹⁰S, Phys. Rev. Lett. 20,819 (1968)

(2.64^{+0.84}-0.52)*10⁻¹⁰S, Phys. Rev. D 1,66 (1970)

 $(2.46^{+0.62}_{-0.41})^*10^{-10}$ s, Nucl. Phys. B 67,269 (1973)

Nuclear-emulsion from Bevatron:

2-body is (2.00^{+1.10}-0.64)*10⁻¹⁰s and 3-body (3.84^{+2.40}-1.32)*10⁻¹⁰s,

and a combined of (2.74^{+1.10}-0.72)*10⁻¹⁰s

```
Phys. Rev. Lett. 20,1383 (1968)
```

Theoretical side, the hypertriton being a loosely-bound nuclear system, its mean lifetime should not be significantly different from that of Lambda's

The hypertriton lifetime data are not sufficiently accurate to distinguish between model, more precise measurements are needed

Updates on hypertriton analysis at STAR

☑ Data sets for 2-body and 3-body analysis

TABLE I.	Data set for the two-body decay channel analysis, with	h
³ He and $^{3}_{\Lambda}$ H s	tatistics.	

Energy	Events (×10 M)	³ He	³ He	${}^3_{\Lambda}H + {}^3_{\overline{\Lambda}}\overline{H}$
7.7 GeV	0.4	6388 ± 80	0	52 ± 17
11.5 GeV	1	5330 ± 73	0	44 ± 16
19.6 GeV	3	$4941~\pm~70$	0	42 ± 14
27 GeV	5	4179 ± 65	19 ± 4	45 ± 16
39 GeV	12	$5252~\pm~72$	133 ± 12	86 ± 21
200 GeV	22	6850 ± 83	2213 ± 47	85 ± 20

TABLE II. Data set for the three-body decay channel analysis, with $^3_{\Lambda}$ H statistics.

Energy	Events (×10 M)	$^{3}_{\Lambda}$ H
27 GeV	5	42 ± 16
39 GeV	13	53 ± 13
200 GeV	52	128 ± 30

✓ High statistics sample with good signal to background ratio in both channels: ~25% & ~15%

STAR. Phys. Rev. C 97, 054909 (2018)

Updates on lifetime measurement at STAR

M The lifetime is determined from a combine analysis of 2-body and 3-body decay modes

$$\tau = 142^{+24}_{-21}$$
 (stat.) ± 29 (syst.) ps

STAR. Phys. Rev. C 97, 054909 (2018)

Updates on world data of lifetime

 \mathbf{M} The discrepancy may be related to the Lambda separation energy, the B_{\wedge}?

Updates on lifetime measurement @ALICE

 \blacksquare ALICE new measurement : $\tau = 223 \pm_{33}^{41} (stat.) \pm 20 (syst.) ps$

M It is 2σ higher than the latest STAR published data (in term of the STAR uncertainty)

The decay branching ratio is related to B_{Λ}

STAR. Phys. Rev. C 97, 054909 (2018)

**Curve is from Phys. Rev. 113,1604 (1959) with B_{Λ} =0.25 MeV, spin 1/2 scenario

Can we measure B_{Λ} better?

The early data suffers from large statistical uncertainty!

"I feel that we are far from seeing the end of this road. A good deal of theoretical work on this 3-body system would still be well justified." R.H. Dalitz Nucl. Phys. A 754, 14 (2005)

The Heavy Flavor Tracker at STAR (HFT)

PXL: PiXeL IST: Intermediate Silicon Tracker SSD: Silicon Strip Detector

Detector	Radius (cm)	Hit Resolution (R × φ) / Z (μm/μm)	Thickness
SSD	22	30/860	1% X 0
IST	14	170/1800	< 1.5% X0
PXL	8	6.2/6.2	0.5% X 0
	2.8	6.2/6.2	0.4% X 0

☑ Data : ~1.2 billion Au+Au collision events in 2014, and ~3.4 billion Au+Au collision events in 2016

The particle identification in STAR

Invariant mass distr. with energy loss correction

Energy loss in the material in front of and in TPC

The B_{Λ} data

The B_{Λ} data with re-calibration

Compared to LQCD calculations

Phys. Rev. D 87, 034506 (2013)

NPLQCD calculations, up: the effective baryon mass plots (EMPs) for ³He and HT of spin 1/2; bottom: for HT of spin 3/2 being somewhat more bound than the 1/2 state.

☑ AFDMC calculations: -1.2 MeV in 2014, 0.23 MeV in 2018.

Phys. Rev. C 89, 014314 (2014), arXiv:1711.07521

Mass difference measurement

19

Summary

An updated hypertriton lifetime using the two- and three-body decay channels is shorter than the Lambda's

 $\tau = 142 \pm_{21}^{24} (stat.) \pm 29(syst.)$ ps

✓ Ratio between the 2-body and the 3-body mesonic decay prefers a spin = 1/2 assignment for hypertriton

 $R_3 = 0.32 \pm 0.05(stat.) \pm 0.08(syst.)$

The mass and binding energy of (anti)hypertriton have been measured

 ${}^{3}_{\Lambda}H: 2990.90 \pm 0.11(stat.) \pm 0.15(syst.) MeV/c^{2}$ ${}^{3}_{\bar{\Lambda}}\bar{H}: 2990.59 \pm 0.25(stat.) \pm 0.15(syst.) MeV/c^{2}$ $B_{\Lambda}: 0.44 \pm 0.10(stat.) \pm 0.15(syst.) MeV$

Mass difference between hypertriton and antihypertriton is estimated $(\frac{\Delta(m/|z|)}{m/|z|})_{\Lambda H}^{3} = (1.0 \pm 0.9(stat.) \pm 0.7(syst.)) \times 10^{-4}$

Outlook (1)

Outlook (2)

MOn the lifetime measurements:

 Proposed (π-,K⁰) reaction on nuclear targets for precise determination of the lifetime of the hydrogen hyper-isotopes and other neutron-rich Λ-hypernuclei at J-PARC

M. Agnello et al., Nucl. Phys. A 954 (2016) 176 A. Feliciello, HYP2018, USA

 New experiment to measure decay-pion time spectrum w/MM tag at ELPH-Tohoku with tagged gamma

S. Nagao, HYP2018, USA

On the mass measurements:

Decay-pion spectroscopy at MAMI

P. Achenbach, Hadron 2017, Spain

 Plans to measure at JLab with e-beam, ³He target (LoI for JLab PAC46)

S. Nakamura, HYP2018, USA

Back-up slides

The Solenoidal Tracker at RHIC (STAR)

STAR: uniform and large acceptance, HFT: precise vertex measurement

Future direction (2)

Proposed (π-,K⁰) reaction on nuclear targets for precise determination of the lifetime of the hydrogen hyperisotopes and other neutron-rich Λ-hypernuclei at J-PARK

M. Agnello et al., NPA 954 (2016) 176

Future direction (3)

