Workshop @ Guangzhou

Nov. 11~13, 2018

Chiral Anomaly in Heavy Ion Collisions

Jinfeng Liao

Research Supported by U.S. NSF & DOE and by NSFC

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Check for

(McGill; PhD @ IUB)

Yin Jiang (Beihang), Yi Yin (MIT), Elias Lilleskov (REU)

Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics

SEVIER

Shuzhe Shi ^{a,*}, Yin Jiang ^{b,c}, Elias Lilleskov ^{d,a}, Jinfeng Liao ^{a,e,*}

arXiv:1711.02496

The EBE-AVFD "Warriors"

XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018)

Chiral Magnetic Effect in Isobaric Collisions from Anomalous-Viscous Fluid Dynamics (AVFD)

Shuzhe Shi^a, Hui Zhang^{b,a}, Defu Hou^b, Jinfeng Liao^{* a,b}

^aPhysics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA. ^bInstitute of Particle Physics and Key Laboratory of Quark & Lepton Physics (MOE), Central China Normal University, Wuhan, 430079, China.

Shuzhe Shi

Defu Hou

Exciting Progress: See Recent Reviews

Prog. Part. Nucl. Phys. 88, 1 (2016)[arXiv:1511.04050 [hep-ph]].

J. Liao, Pramana 84, no. 5, 901 (2015) [arXiv:1401.2500 [hep-ph]].

Chiral Symmetry & Chiral Anomaly

Symmetry

- * Spacetime symmetry
- * Global symmetry: conserved quantum numbers
- * Gauge symmetry: SU(3) strong force; SU(2)*U(1) electroweak force

$$J_5^{\mu} = \bar{\Psi} \gamma^{\mu} \gamma^5 \Psi$$

Axial current

Classically conserved

 $\partial_{\mu}J_5^{\mu} = 0$

In this case, chirality becomes well defined.

$$\begin{array}{c} \underset{(\mathsf{RH})}{\mathsf{Right}} & \overbrace{\mathbf{s}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{s}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{s}} & \overbrace{\mathbf{p}} & \overbrace{\mathbf{s}} & \overbrace{\mathbf{s}$$

d
$$\Psi_R = rac{1+\gamma^5}{2} \Psi$$
 $\Psi_L = rac{1-\gamma^5}{2} \Psi$

$$\mathcal{L} \to \bar{\Psi}_L \gamma^\mu \partial_\mu \Psi_L + \bar{\Psi}_R \gamma^\mu \partial_\mu \Psi_R$$

Phase symmetries: independent U(1) for RH and LH sectors!

Chiral Symmetry: Explicit Breaking If a nonzero Lagrangian mass term is added: axial symmetry is explicitly broken.

$$m\bar{\Psi}\Psi = m\left(\bar{\Psi}_L\Psi_R + \bar{\Psi}_R\Psi_L\right)$$

RH and LH get coupled together. Axial current is no longer conserved:

$$\partial_{\mu}J_{5}^{\mu} = 2im\bar{\Psi}\gamma^{5}\Psi$$

The mass controls the degree of such breaking.

In QCD, for light flavors (u & d), Lagrangian mass is small:

$$m_{u,d} \ll \Lambda_{QCD}$$

QCD has chiral symmetry (to very good approximation)!

Chiral Symmetry: Spontaneous Breaking

I GAP

Dirac

Sea

 $m_{\pi} \approx 140 MeV, \ m_n \approx 940 MeV$

λ

 $\Omega (\sqrt{\sqrt{2}})$

$$M' = m - 2G \langle \psi \psi \rangle$$

Constituent
mass
Lagrangian
(SM) mass
Vacuum
condensate
It accounts for 99% of
the mass of our visible
matter in universe.

Chiral Symmetry Restoration

* Spontaneously broken chiral symmetry in the vacuum is a fundamental property of QCD.

* A chirally symmetric quark-gluon plasma at high temperature is an equally fundamental property of QCD!

Could we see direct experimental evidence for that?

"Little Bang" in High Energy Nuclear Collision

* Quark-gluon plasma (QGP) is created in such collisions. * It is PRIMORDIALLY HOT ~ trillion degrees ~ early universe. * Is chiral symmetry restored?

Chiral Symmetry: Quantum Anomaly Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

Classical symmetry:

$$egin{aligned} \mathcal{L} &= i ar{\Psi} \gamma^\mu \partial_\mu \Psi \ \mathcal{L} & o i ar{\Psi}_L \gamma^\mu \partial_\mu \Psi_L + i ar{\Psi}_R \gamma^\mu \partial_\mu \Psi_R \ \Lambda_A &: \Psi o e^{i \gamma_5 heta} \Psi \ \partial_\mu J_5^\mu &= 0 \end{aligned}$$

Broken at QM level:

$$\begin{aligned} \partial_{\mu}J_{5}^{\mu} &= C_{A}\vec{E}\cdot\vec{B} \\ \frac{dQ_{5}}{dt} &= \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B} \end{aligned}$$

* C_A is universal anomaly coefficient* Anomaly is intrinsically QUANTUM effect

[e.g. pi0—> 2 gamma]

Recap: Chiral Symmetry in QCD

Look for pure quantum anomaly effect in hot QGP with chiral symmetry restoration!

Chiral Magnetic Effect (CME)

From Micro. Laws To Macro. Phenomena

WHAT ABOU the "SEMI"-SYMMETRY??? i..e ANOMALY?! — classical symmetry that is broken in quantum theory

The Chiral Magnetic Effect (CME)

Intuitive Picture of CME

Intuitive understanding of CME:

Magnetic polarization —> correlation between micro. SPIN & EXTERNAL FORCE

Chiral imbalance —> correlation between directions of SPIN & MOMENTUM

Transport current along magnetic field

 $\vec{J} = \frac{Q^2}{2-2} \,\mu_5 \,\vec{B}$

CME <=> Chiral Anomaly

Anomaly -->
$$\partial^{\mu} j_{\mu}^{5} = \frac{q^{2}}{2\pi^{2}} E \cdot B$$
 $\frac{dN_{5}}{dtd^{3}x} = \frac{q^{2}}{2\pi^{2}} E \cdot B$
Chirality --> $\int d^{3}x j_{el} \cdot E = \mu_{5} \frac{dN_{5}}{dt} = \frac{q^{2}\mu_{5}}{2\pi^{2}} \int d^{3}x B \cdot E$
 $E \rightarrow 0$ $j_{el} = (q^{2}\mu_{5}/2\pi^{2})B$

* This is a non-dissipative current!
* Indeed the chiral magnetic conductivity is P-odd but T-even!
(In contrast the Ohmic conductivity is T-odd and dissipative.)

Searching for CME in Laboratories

CME was observed via negative magnetoresistance in semimetals.

Observe CME for the subatomic chiral matter in heavy ion collisions?

(nearly) chiral quarks
 chirality imbalance
 strong magnetic field

CME and Beam Energy Scan

Restoration of chiral symmetry only at high enough beam energy -> beam energy dependence is crucial!

* We'd like to see a chiral QGP above certain threshold energy via CME * We'd like to see its turning off at low enough energy

From Gluon Topology to Quark Chirality

$$N_5(t \to +\infty) - N_5(t \to -\infty) = \frac{g^2}{16\pi^2} \int dt d^3 \mathbf{r} \, G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

QCD anomaly: gluon topology —> chirality imbalance

$$N_R - N_L = N_5 = 2Q_w$$

Rotation & Magnetic Fields in Heavy Ion Collisions

Fascinating New Frontiers

"Rotating" Quark-Gluon Plasma

$$L_y = \frac{Ab\sqrt{s}}{2} \sim 10^{4\sim 5}\hbar$$

QGP's way of accommodating this angular momentum: forming fluid vorticity!

 $\vec{\omega} = \frac{1}{2} \nabla \times \vec{\mathbf{v}}$ $v \sim 0.1 c \quad \partial \sim \mathrm{fm}^{-1}$

Global Polarization in the Most Vortical Fluid

Rotational Suppression of Fermion Pairing

Let us consider pairing phenomenon in fermion systems. There are many examples:

superconductivity, superfluidity, chiral condensate, diquark, ...

We consider scalar pairing state, with J=0.

$$\vec{S} = \vec{s}_1 + \vec{s}_2 \qquad \vec{J} = \vec{L} + \vec{S}$$

Rotation tends to polarize ALL angular momentum, both L and S, thus suppressing scalar pairing.

Strong Electromagnetic Fields

Large angular momentum together with large (+Ze) nuclear charge —> strong magnetic field!

Strong Electromagnetic Fields Out-of-plane Y в $\begin{array}{cc} \mathbf{X} & E, B \sim \gamma \frac{Z \alpha_{EM}}{R_{\Lambda}^2} \sim 3 m_{\pi}^2 \end{array}$ B field Common Strongest Compact Magnet Steady B-field Astro-objects at RHIC Earth

• Strongest B field (and strong E field as well) naturally arises! [Kharzeev,McLerran,Warringa;Skokov,et al; Bzdak-Skokov; Deng-Huang; Skokov-McLerran;Tuchin; ...]

10^13-15

10^17

• "Out-of-plane" orientation (approximately) [Bloczynski-Huang-Zhang-Liao]

10^5

100

0.6

Strong Electromagnetic Fields

Quantitative simulations confirm the existence of such extreme fields!

[STAR measurements of di-electron — direct hint?! PRL2018]

CME Signal in Heavy Ion Collisions

From CME Current to Charge Separation

[Kharzeev 2004; Kharzeev, McLerran, Warringa, 2008;...]

$$\frac{dN_{\pm}}{d\phi} \propto \dots + a_{\pm} \sin(\phi - \Psi_{RP})$$

$$< a_{\pm} > \sim \pm < \mu_5 > B$$

Very difficult measurement:

- * Zero average, only nonzero variance;
- * Correlation measurement with significant backgrounds;
- * Signal likely very small

Experimental Observable

charge separation \Rightarrow charge dept. two-particle correlation Voloshin, 2004 $\gamma = \langle \cos(\Delta \phi_i + \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle - \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$ $\delta = \langle \cos(\Delta \phi_i - \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle + \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$

 $\gamma = \kappa v_2 F - H$ $\delta = F + H$

F: Bulk Background H: Possible Pure CME Signal = $(a_{1,CME})^2$

Bzdak, Koch, JL, 2012

Recent Exp. Search Status

Fluid Dynamics with Chiral Anomaly

[Not discussed here: calculations based on transport framework, e.g. works by X. Huang, G. Ma, Y. Ma, J. Xu, C.M. Ko,]

Fluid Dynamics That Knows Left & Right

Microscopic quantum anomaly emerges as macroscopic anomalous hydrodynamic currents!

It would be remarkable to actually "see" this new hydrodynamics at work in real world materials!

Anomalous Viscous Fluid Dynamics (AVFD)

AVFD: Anomalous-Viscous Fluid Dynamics

The AVFD Framework

We now have a versatile tool to quantitatively understand and answer many important questions about CME in heavy ion collisions!

The AVFD Framework

[[]We now also have MUSIC-AVFD!]

Demonstrating the AVFD

Upper: NO magnetic field Lower: with B field (along y+ direction)

Demonstrating the AVFD

Upper: Left-Handed (LH), with B field (along y+ direction) Lower: Right-Handed (RH), with B field (along y+ direction)

The Charge Separation from AVFD

B field ⊗ µ₅ ⇒ current ⇒ dipole (charge separation) dN_±/d $\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + ...$

 $H_{SS}-H_{OS} \leftrightarrow 2(a_1)^2$

AVFD Predictions v.s Experimental Data

Table 1. Centrality dependence of magnetic field peak strength and the initial chirality imbalance. The n_5/s shown here is obtained with a saturation scale $Q_s^2 = 1.25 \text{GeV}^2$.

EBE-AVFD Predictions for CME in Isobaric Collisions (Newest results!)

Shi, Zhang, Hou, JL, in final preparation, to appear soon; Shi, Zhang, Hou, JL, contribution in QM18 proceedings.

Event-By-Event AVFD

Include EBE fluctuations:

- Initial Conditions
- Statistic @ Freeze-out
- Hadron Cascade

Important for better understanding: * Interplay between signal and BKG; * Experimental analysis methods

Using Isobaric Collisions for CME Search

Key idea: contrasting two systems with identical bulk, varied magnetic fields.

Charge Asymmetry Correlation Measurement

How to Choose Identical Systems?

Eccentricity is guaranteed the same!

B field differs by 12~20% !

Joint multiplicity-geometry cut: Vanishing difference in bulk properties, Sizable difference in magnetic fields!!!

Correlation Observables of Isobars from AVFD

Difference in correlations is very sensitive to CME contribution!

Both gamma and delta are important to look at!

Correlation Observables of Isobars from AVFD

Exp. statistics are expected to shrink error bar by a factor of ~10

Both gamma and delta are important to look at!

Absolute Difference between Isobars from AVFD

Summary & Outlook

Summary

AVFD: A versatile tool for an era of quantitative study of CME signals in heavy ion collisions !

EBE-AVFD for the Isobars: 1) Event selection for truly identical bulk! 2) Both gamma & delta needed! 2) Absolute difference in correlations sensitive to CME!

Mapping Out the Phases of QCD Matter

* Establishing a chiral QGP at higher energy via anomalous chiral effects * IF hints of CME at 200GeV —> Isobar exp. at BES energies is crucial!

Beam Energy Scan Theory (BEST) Collaboration: BNL, IU, LBNL, McGill U, Michigan State U, MIT, NCSU, OSU, Stony Brook U, U Chicago, U Conn, U Huston, UIC