Strong decays of doubly charmed baryons and higer charmonium states in ³P₀ model

PRD97,074005(2018) EPJC78,605(2018)

肖立叶(北京大学)

Outline

hadron spectroscopy

³p₀ model

b doubly charmed baryons

> charmonium states

summary and outlook

Hadron spectroscopy: we know 6 quarks & 6 leptons

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,								
Leptons spin =1/2 Quarks spin =1/2								
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge		
VL lightest neutrino*	(0-0.13)×10 ⁻⁹	0		U up	0.002	2/3		
e electron	0.000511	-1		d down	0.005	-1/3		
𝒴 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3		
μ muon	0.106	-1		S strange	0.1	-1/3		
\mathcal{V}_{H} heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		top	173	2/3		
τ tau	1.777	-1		b bottom	4.2	-1/3		

We know four types of interactions

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\int 10^{-18} \text{ m}$	10-41	0.8	1	25
3×10 ⁻¹⁷ m	10-41	10-4	1	60

- Gravity is responsible for the structure of the Universe
- Electromagnetic interaction
 the molecules and atoms
- Weak interaction
 → the stars shine
- Strong interaction
 the structure of the nuclei, nucleons, hadronic matters from the building blocks ---quarks!
 but HOW?

We know quark pair makes mesons and three quarks makes baryons

M. Gell-Mann

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations $(q q q), (q q q q \bar{q}), etc., while mesons are made out$ of $(q\bar{q})$, $(q\bar{q}\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

> Published in Physics Letters 8, 214 (1964); Similar idea by G. Zweig, CERN-TH-401 (1964).

What did we observe?

Baryon Summary Table

6

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or 4-star status are included in the Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the table are not established baryons. The names with masses are of baryons that decay strongly. The spin-parity J^p (when known) is given with each particle. For the strongly decaying particles, the J^{P} values are considered to be part of the names.

p	1/2+ ****	$\Delta(1232)$	3/2+ ****	Σ^+	$1/2^{+}$	****	Ξ0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****
n	1/2+ ****	$\Delta(1600)$	3/2+ ****	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	A_(2595)+	$1/2^{-}$	***
N(1440)	1/2+ ****	A(1620)	1/2- ****	Σ^{-}	$1/2^{+}$	****	E(1530)	$3/2^{+}$	****	A-(2625)+	3/2-	***
N(1520)	3/2- ****	$\Delta(1700)$	3/2- ****	$\Sigma(1385)$	$3/2^{+}$	****	$\Xi(1620)$		*	A-(2765)+	-,-	*
N(1535)	1/2- ****	A(1750)	1/2+ *	Σ(1480)		*	E(1690)		***	$\Lambda_{-}(2860)^{+}$	$3/2^{+}$	***
N(1650)	1/2- ****	A(1900)	1/2- ***	Σ(1560)		**	$\Xi(1820)$	$3/2^{-}$	***	A.(2880)+	5/2+	***
N(1675)	5/2- ****	$\Delta(1905)$	5/2+ ****	$\Sigma(1580)$	$3/2^{-}$	*	$\Xi(1950)$	-7	***	A.(2940)+	3/2-	***
N(1680)	5/2+ ****	A(1910)	1/2+ ****	$\Sigma(1620)$	$1/2^{-}$	*	$\Xi(2030)$	$> \frac{5}{2}$?	***	5.(2455)	1/2+	****
N(1700)	3/2- ***	$\Delta(1920)$	3/2+ ***	$\Sigma(1660)$	$1/2^+$	***	=(2120)	- 2	*	$\Sigma_{*}(2520)$	3/2+	***
N(1710)	1/2+ ++++	A(1930)	5/2- +++	$\Sigma(1670)$	3/2-	****	=(2250)		**	$\Sigma_{c}(2800)$	5/1	***
N(1720)	3/2+ ++++	A(1940)	3/2 **	Σ(1690)	0/2	**	=(2370)		**	=+	1/2+	***
N(1860)	5/2+ **	A(1950)	7/2+ ****	$\Sigma(1730)$	$3/2^+$	*	=(2500)			=0	1 /2+	***
M(1875)	3/2 +++	A(2000)	5/2+ ++	5(1750)	1/2-	***	-(2000)			-c -/+	1/2	***
N(1880)	1/2+ ***	A(2150)	1/2 *	$\Sigma(1770)$	1/2+	*	0-	3/2+	****	=	1/2	171
M(1805)	1/2 ++++	A(2200)	7/2 +++	5(1775)	5/2-	****	0(2250)-	5/2	***	= c	1/2	111
N(1000)	2/2+ ****	A(2200)	0/2+ **	5(1940)	2/2+	*	0(2200)-		**	$\Xi_{c}(2645)$	$3/2^{+}$	***
N(1000)	7/0+ **	A(22500)	5/2 *	Z(1040)	1/2+	**	D(2470)-		**	$\Xi_{c}(2790)$	$1/2^{-}$	***
N(2000)	r/2 ***	A(2300)	3/2 .	Z(1000)	1/2		32(2470)			$\Xi_{c}(2815)$	$3/2^{-}$	***
N(2000)	3/2 *	A(2390)	0/0= **	Z(1900)	1/2					$\Xi_{c}(2930)$		*
N(2040)	5/2 ***	$\Delta(2400)$	9/2	2(1915)	5/2	*				$\Xi_{c}(2970)$		***
N(2000)	5/2 ***	$\Delta(2420)$	11/2 ***	2(1940)	3/2					$\Xi_{c}(3055)$		***
N(2100)	1/2 +++	$\Delta(2150)$	13/2 **	2(1940)	3/2					$\Xi_{c}(3080)$		***
N(2120)	3/2 ***	∆(2950)	15/2 ***	2 (2000)	1/2					$\Xi_{c}(3123)$		*
N(2190)	1/2		1/0+ ++++	$\Sigma(2030)$	7/2					Ω_c^0	$1/2^+$	***
N(2220)	9/2 ****	1	1/2 ****	2 (2070)	5/2	•				$\Omega_{c}(2770)^{0}$	$3/2^{+}$	***
N(2250)	9/2- ****	A(1405)	1/2 ****	$\Sigma(2080)$	$3/2^{+}$	**				$\Omega_{c}(3000)^{0}$		***
N(2300)	1/2 **	A(1520)	3/2 ****	$\Sigma(2100)$	$7/2^{-}$	•				$\Omega_{c}(3050)^{0}$		***
N(2570)	5/2 **	A(1600)	1/2 ***	$\Sigma(2250)$		***				$\Omega_{c}(3065)^{0}$		***
N(2600)	11/2- ***	A(1670)	1/2- ****	$\Sigma(2455)$		**				$\Omega_{c}(3090)^{0}$		***
N(2700)	13/2+ **	A(1690)	3/2- ****	$\Sigma(2620)$		**				$\Omega_{c}(3120)^{0}$		***
		A(1710)	1/2* *	$\Sigma(3000)$		*				. ,		
		A(1800)	1/2 ***	$\Sigma(3170)$		*				Ξ+		*
		A(1810)	1/2+ ***							=++		***
		A(1820)	5/2+ ****							CC.		
		A(1830)	5/2 ****							10	$1/2^{+}$	***
		A(1890)	3/2+ ****							A.(5912)0	1/2-	***
		A(2000)	*							A.(5920)0	3/2-	***
		A(2020)	7/2+ *							5	1/2+	***
		A(2050)	3/2 *							5*	3/2+	***
		A(2100)	7/2 ****							-b -0	1/2+	***
		A(2110)	5/2+ ***							= b, = b	1/2	
		A(2325)	3/2- *	1						= (5935)	1/2	
		A(2350)	9/2+ ***	1						=0(5945)	3/2+	***
		A(2585)	**	1						$=_{b}(5955)^{-}$	$3/2^{+}$	***
										Ω_b^-	$1/2^+$	***
										P (4380)+		
				1						D (4450)+		
							1			Pc(4450)		

Meson Summary Table

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section.

 Indicates particles that appear in the preceding Meson Summary Table, we do not regard the other entries as bein
--

cos enversión de la	LIGHT UN	FLAVORED		STRAN	IGE	CHARMED, S	TRANGE	c	Č
	(S = C = C)	= B = 0)	C DC	$(S=\pm 1, C=$	= B = 0)	(C = S =	±1)		$I^0(J^{PC})$
	$P(J^{e_{\mathcal{C}}})$		$P(J^{r_{\mathcal{C}}})$		$l(J^{r})$		$I(J^{r})$	• $\eta_c(1S)$	0+(0-+
• π^{\pm}	$1^{-}(0^{-})$	• $\phi(1680)$	0-(1)	● K [±]	$1/2(0^{-})$	• D_s^{\pm}	0(0_)	• $J/\psi(1S)$	0-(1
• π^0	$1^{-}(0^{-+})$	 ρ₃(1690) 	$1^+(3^{})$	• K ⁰	$1/2(0^{-})$	• D _s ^{*±}	0(?')	• $\chi_{c0}(1P)$	0+(0++
• 17	0+(0-+)	 ρ(1700) 	$1^+(1^{})$	• K ⁰ ₅	$1/2(0^{-})$	• $D_{s0}^*(2317)^{\pm}$	0(0+)	• $\chi_{c1}(1P)$	$0^+(1^{++})$
• f ₀ (500)	0+(0++)	$a_2(1700)$	$1^{-}(2^{++})$	• K ⁰ _L	$1/2(0^{-})$	 D_{s1}(2460)[±] 	$0(1^+)$	• $h_c(1P)$?! (1 + -
 ρ(770) 	$1^+(1^{})$	• $f_0(1710)$	0+(0++)	 K[*]₀(700) 	$1/2(0^+)$	 ● D_{s1}(2536)[±] 	$0(1^+)$	• $\chi_{c2}(1P)$	0+(2++
• ω(782)	0-(1)	$\eta(1760)$	$0^+(0^{-+})$	• K*(892)	$1/2(1^{-})$	 D[*]_{\$2}(2573) 	$0(2^+)$	• $\eta_c(2S)$	0+(0 - +
 η'(958) 	$0^+(0^{-+})$	• $\pi(1800)$	$1^{-}(0^{-+})$	• K ₁ (1270)	$1/2(1^+)$	• $D_{s1}^*(2700)^{\pm}$	$0(1^{-})$	• ψ(25)	0-(1
• f ₀ (980)	0+(0++)	$f_2(1810)$	$0^+(2^++)$	• K ₁ (1400)	$1/2(1^+)$	$D_{s1}^{*}(2860)^{\pm}$	$0(1^{-})$	• ψ(3770)	0-(1
• a ₀ (980)	$1^{-}(0^{+}^{+})$	X(1835)	?'(0)	• K*(1410)	$1/2(1^{-})$	$D_{s3}^{*}(2860)^{\pm}$	0(3-)	• $\psi_2(3823)$	0 (2)
 φ(1020) 	0 (1)	X(1840)	$C(C_{1})$	• $K_0^*(1430)$	$1/2(0^+)$	$D_{sJ}(3040)^{\pm}$	0(??)	$\chi_{c0}(3860)$	0+(0+++
• $h_1(1170)$	$0^{-}(1^{+})$	 φ₃(1850) 	0 (3)	• K [*] ₂ (1430)	$1/2(2^+)$	DOTT		• $\chi_{c1}(3872)$	0 (1
• $D_1(1235)$	$1 \cdot (1 \cdot)$	$\eta_2(1870)$	$0^{+}(2^{-})$	K(1460)	$1/2(0^{-})$	BOTTO		• Z _c (3900)	0+(0)(2+
• a1(1260)	1(1 + 1)	• $\pi_2(1880)$	1(2)	$K_2(1580)$	$1/2(2^{-})$	(b = ±		• X (3915)	0 + (0/2)
• <i>f</i> ₂ (1270)	0(2)	p(1900)	$1^{+}(1^{-})$	K(1630)	$1/2(?^{!})$	• B [±]	$1/2(0^{-})$	• Xc2(3930)	27(2??)
• /1(1265)	$0^{+}(1^{-})$	P2(1910)	$0^{+}(2^{+})$	$K_1(1650)$	$1/2(1^+)$	• B ⁰	1/2(0)	X(3940)	1+(2?-)
 η(1295) -(1200) 	$1^{-}(0^{-})$	$a_0(1950)$	1(0+)	• K*(1680)	$1/2(1^{-})$	• B [±] /B ⁰ ADN	IXTURE	• X (4020)	0 = (1 = -
• m(1000)	1 = (0 + 1)	• /2(1950)	$1^{\pm}(2^{-1})$	• K ₂ (1770)	$1/2(2^{-})$		p-paryon	+ φ(4040) X(4050)±	1-(2?+1
• $d_2(1320)$	1(2 + 1)	$\rho_3(1990)$	$1^{+}(3^{+})$	• K [*] ₃ (1780)	$1/2(3^{-})$	V _{ch} and V _{uh}	 CKM Ma	X(4050) X(4055)±	$1+(2^{2}-)$
• /0(1370) b. (1390)	$2^{-(1+-)}$	• /2(2010) £ (2020)	$0^{+}(2^{+})$	• K ₂ (1820)	$1/2(2^{-})$	trix Elements		× (4140)	0+(1++)
$\pi_1(1300)$	$1 = (1 = \pm)$	A(2020)	$1^{-}(4^{+}^{+})$	K(1830)	$1/2(0^{-})$	• B*	$1/2(1^{-})$	• */(4160)	$0^{-}(1^{-})$
• m(1405)	$0^+(0^-+)$	• f.(2050)	$0^+(4^++)$	$K_0^*(1950)$	$1/2(0^+)$	• $B_1(5721)^+$	$1/2(1^+)$	X(4160)	2? (2??)
2-(1420)	$1^{-}(1^{+}^{+})$	Tra (2100)	$1^{-}(2^{-}+)$	$K_2^*(1980)$	$1/2(2^+)$	• $B_1(5721)^0$	$1/2(1^+)$	Z-(4200)	1+(1+-
• £(1420)	$0^+(1^+)$	£(2100)	$n^+(n^++)$	• K [*] ₄ (2045)	$1/2(4^+)$	B* (5732)	?(?')	1/(4230)	0-(1
• w(1420)	$0^{-}(1^{-})$	£(2150)	$0^+(2^++)$	$K_2(2250)$	$1/2(2^{-})$	• B ₂ (5747)+	$1/2(2^+)$	Re0(4240)	1+(0
£(1430)	$0^+(2^+)$	0(2150)	$1^{+}(1^{-})$	$K_3(2320)$	$1/2(3^+)$	• B ₂ (5747) ⁰	$1/2(2^+)$	X(4250)±	$1^{-}(?^{?+})$
• an(1450)	$1^{-}(0^{+}^{+})$	• $\phi(2170)$	$0^{-}(1^{-})$	$K_{5}^{*}(2380)$	1/2(5 ⁻)	B _J (5840) ⁺	1/2(?!)	 ψ(4260) 	0 - (1
• p(1450)	$1^+(1^{})$	£(2200)	$0^+(0^{++})$	K4(2500)	$1/2(4^{-})$	B _J (5840) ⁰	1/2(?)	• $\chi_{c1}(4274)$	$0^+(1^+)$
 n(1475) 	$0^+(0^{-+})$	$f_1(2220)$	$0^{+}(2^{+})^{+}$	K(3100)	C(C, r)	• B _J (5970)+	1/2(?)	X(4350)	$0^+(?^{?+})$
• f ₀ (1500)	$0^+(0^{++})$		or 4 + +)	CHARM	1ED	• B _J (5970) ^o	1/2(?)	 ψ(4360) 	0-(1
$f_1(1510)$	$0^+(1^{++})$	$\eta(2225)$	$0^{+}(0^{-+})$	$(C = \exists$	E1)	BOTTOM, S	TRANGE	$\psi(4390)$	0-(1
 f'₂(1525) 	$0^+(2^{++})$	p3(2250)	$1^+(3^{})$	 D[±] 	$1/2(0^{-1})$	$(B = \pm 1, S)$	= ∓ 1)	• $\psi(4415)$	0-(1
f2(1565)	$0^+(2^{++})$	 f₂(2300) 	$0^+(2^{++})$	• D ⁰	$1/2(0^{-1})$	• B ⁰	$0(0^{-})$	• Z _c (4430)	$1^+(1^{+-}$
p(1570)	$1^+(1^{})$	f4(2300)	$0^{+}(4^{++})$	• D*(2007)0	$1/2(1^{-})$	• B*	$0(1^{-})$	$\chi_{c0}(4500)$	0+(0++
h1(1595)	$0^{-}(1^{+})$	f ₀ (2330)	$0^+(0^{++})$	 D*(2010)[±] 	$1/2(1^{-1})$	X(5568)±	7(7?)	• $\psi(4660)$	0-(1
• π ₁ (1600)	$1^{-}(1^{-+})$	 f₂(2340) 	$0^+(2^{++})$	 D*(2400)⁰ 	$1/2(0^{+})$	• Bet (5830)0	$0(1^{+})$	$\chi_{c0}(4700)$	$0^+(0^{++})$
$a_1(1640)$	$1^{-}(1^{++})$	$\rho_5(2350)$	1+(5)	$D_{0}^{+}(2400)^{\pm}$	$1/2(0^{+})$	· B* (5840)0	$0(2^+)$		7
$f_2(1640)$	$0^+(2^{++})$	$a_6(2450)$	$1^{-}(6^{++})$	• D1(2420)0	$1/2(1^+)$	B* (5850)	7(7?)	D	D
 η₂(1645) 	$0^+(2^{-+})$	$f_6(2510)$	$0^{+}(6^{++})$	$D_1(2420)^{\pm}$	$1/2(?^{?})$	80100000		• $\eta_b(15)$	0-(0
 ω(1650) 	0-(1)	OTHER	LIGHT	$D_1(2430)^0$	$1/2(1^+)$	BOTTOM, CI	HARMED	• T(15)	$0^{-}(1^{-})$
 ω₃(1670) 	0-(3)	Fronthau Ch		 D[*]₂(2460)⁰ 	$1/2(2^+)$	(B = C =	±1)	• Xb0(1P)	0'(0')
 π₂(1670) 	$1^{-}(2^{-+})$	Further St.	ates	 D[*]₂(2460)[±] 	$1/2(2^+)$	• B_c^+	0(0-)	• $\chi_{b1}(1P)$	$2^{2}(1 + -$
				D(2550)0	1/2(??)	$B_c(2S)^{\pm}$	0(0 ⁻)	• $n_b(1P)$	$(1)^{(1)}$
				D*(2600)	1/2(??)			• Xb2(1P)	$0^{+}(2^{-})$
				D*(2640)±	1/2(??)			η _b (25)	0-(1
				D(2740)0	1/2(??)			• 7 (25)	$0^{-}(2^{-})^{-}$
				$D_{3}^{*}(2750)$	$1/2(3^{-})$			• /2(1D)	$0^{+}(0^{+})^{+}$
				D(3000)0	$1/2(?^{?})$			• Xb0(2P)	$0^+(1^+)$
					2 A A			- (2P)	$2^{?}(1 + -$
								• Y 10(2P)	$0^{+}(2^{+})^{+}$
								• T(35)	0-(1
								• YM(3P)	$0^{+}(1^{+})$
								• Y(45)	0-(1
								• Zh(10610)	$1^+(1^+)$
2018-9	9-19							Z _b (10650)	1 + (1 + -
								• T(10860)	0-(1
1								• r(11020)	$0^{-(1)}$

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

肖立叶,北京大学

** Evidence of existence is only fair.

* Evidence of existence is poor.

From PDG 2018

We can put (all of) them in a simple picture!

We can put (all of) them in a simple picture!

2018-9-19

LHCb Collaboration (Roel Aaij (CERN) *et al.*). Jul 5, 2017. 10 pp. Published in **Phys.Rev.Lett. 119 (2017) no.11, 112001** LHCB-PAPER-2017-018, CERN-EP-2017-156 DOI: <u>10.1103/PhysRevLett.119.112001</u>

e-Print: arXiv:1707.01621 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

CERN Document Server; ADS Abstract Service; Link to conference slides; Interactions.org article; Link to Fulltext

20、 PRD66,014008 (2002).

TABLE I: Masses and possible two body strong decay channels of the 1*P* and 2*D* doubly charmed baryons (denoted by $|N^{2S+1}L_{\sigma}J^{P}\rangle$), where $|N^{2S+1}L_{\sigma}J^{P}\rangle = \sum_{L_{z}+S_{z}=J_{z}} \langle LL_{z}, SS_{z}|JJ_{z}\rangle^{N} \Psi_{LL_{z}}^{\sigma}\chi_{S_{z}}\phi$ [46]. The masses (MeV) are taken from the relativistic quark model [20].

State		41 (Ξ_{cc}	35 J	Ω_{cc}
$N^{2S+1}L_{\sigma}J^{P}$	Wave function	Mass [20]	Strong decay channel	Mass [20]	Strong decay channel
$ 0^2S\frac{1}{2}^+\rangle$	${}^{0}\Psi^{s}_{00}\chi^{\lambda}_{s}\phi$	3620		3778	
$ 0^4S\frac{3}{2}^+\rangle$	$^{0}\Psi_{00}^{s}\chi_{s_{z}}^{s}\phi$	3727		3872	
$ 1^2 P_{\rho} \frac{1}{2}^-\rangle$	$^{1}\Psi^{\rho}_{1L_{z}}\chi^{\rho}_{S_{z}}\phi$	3838		4002	
$ 1^2 P_{\rho} \frac{3}{2} \rangle$		3959		4102	
$ 1^2 P_{\lambda} \frac{1}{2}^-\rangle$	$^{1}\Psi_{1L}^{\lambda}\chi_{S}^{\lambda}\phi$	4136	$\Xi^{(*)}_{_{CC}}\pi$	4271	$\Xi_{cc}^{(*)}K$
$ 1^2 P_{\lambda} \frac{3}{2}^-\rangle$		4196	$\Xi_{cc}^{(*)}\pi$	4325	$\Xi^{(*)}_{\scriptscriptstyle CC}K$
$ 1^4 P_{\lambda} \frac{1}{2}^-\rangle$	$^{1}\Psi_{1L}^{\lambda}\chi_{S}^{s}\phi$	4053	$\Xi^{(*)}_{_{CC}}\pi$	4208	$\Xi_{cc}K$
$ 1^4 P_{\lambda} \frac{3}{2}^-\rangle$		4101	$\Xi^{(*)}_{_{CC}}\pi$	4252	$\Xi_{cc}^{(*)}K$
$ 1^4 P_{\lambda} \frac{\tilde{5}}{2}^-\rangle$		4155	$\Xi^{(*)}_{_{CC}}\pi$	4303	$\Xi_{cc}^{(*)}K$
$ 2^2 D_{\rho\rho} \frac{3}{2}^+\rangle$	$^{2}\Psi_{2L}^{\rho\rho}\chi_{S}^{\lambda}\phi$		$\Lambda_c D$		$\Xi_c D$
$ 2^2 D_{\rho\rho} \frac{5}{2}^+\rangle$			$\Lambda_c D, \Sigma_c^{(*)} D$		$\Xi_c D, \Xi_c^{\prime(*)} D$
$ 2^4 D_{\rho\rho} \frac{1}{2}^+\rangle$	$^{2}\Psi^{\rho\rho}_{2L_{z}}\chi^{s}_{S_{z}}\phi$		$\Lambda_c D$		$\Xi_c D$
$ 2^4 D_{\rho\rho} \frac{3}{2}^+\rangle$	i Davis Mon (i Davis		$\Lambda_c D, \Sigma_c D$		$\Xi_c D, \Xi_c' D$
$ 2^4 D_{\rho\rho} \overline{\frac{5}{2}}^+\rangle$			$\Lambda_c D, \Sigma_c^{(*)} D$		$\Xi_c D, \Xi_c^{\prime *} D$
$ 2^4 D_{\rho\rho} \frac{7}{2}^+\rangle$			$\Lambda_c D, \Sigma_c^{(*)} D, \Xi_c D_s, \Xi_c' D_s$		$\Xi_c D, \Xi_c^{\prime(*)} D, \Omega_c^{(*)} D_s$
$ 2^2 D_{\lambda\lambda} \frac{3}{2}^+\rangle$	$^{2}\Psi_{2L_{z}}^{\lambda\lambda}\chi_{S_{z}}^{\lambda}\phi$		$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime(*)}D_s$		$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Xi_c D \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s, \Omega_{cc}^{(*)}\eta'$
$ 2^2 D_{\lambda\lambda} \frac{5}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime(*)}D_s$		$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s, \Omega_{cc}^{(*)}\eta'$
$ 2^4 D_{\lambda\lambda} \frac{1}{2}^+\rangle$	$^{2}\Psi_{2L_{z}}^{\lambda\lambda}\chi_{S_{z}}^{s}\phi$		$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c' D_s$		$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c D_s$
$ 2^4 D_{\lambda\lambda} \frac{3}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime(*)}D_s$		$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Omega_{cc}\eta', \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s$
$ 2^4 D_{\lambda\lambda} \frac{5}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi,\Omega_{cc}^{(*)}K,\Lambda_c D,\Sigma_c^{(*)}D,\Xi_c D_s,\Xi_c^{\prime(*)}D_s$		$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Omega_{cc}\eta', \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s$
$ 2^4 D_{\lambda\lambda} \frac{7}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime(*)}D_s$		$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Omega_{cc}^{(*)}\eta', \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s$

20、

TABLE I: Masses and possible two body strong decay channels of the 1*P* and 2*D* doubly charmed baryons (denoted by $|N^{2S+1}L_{\sigma}J^{P}\rangle$), where $|N^{2S+1}L_{\sigma}J^{P}\rangle = \sum_{L_{z}+S_{z}=J_{z}} \langle LL_{z}, SS_{z}|JJ_{z}\rangle^{N} \Psi_{LL_{z}}^{\sigma} \chi_{S_{z}} \phi$ [46]. The masses (MeV) are taken from the relativistic quark model [20].

State		42.	Ξ_{cc}		Ω_{cc}
$N^{2S+1}L_{\sigma}J^{P}$	Wave function	Mass [20]	Strong decay channel	Mass [20]	Strong decay channel
$ 0^2S\frac{1}{2}^+\rangle$	${}^{0}\Psi^{s}_{00}\chi^{\lambda}_{s}\phi$	3620		3778	
$ 0^4S\frac{3}{2}^+\rangle$	⁰ Ψ ^S ₀₀ χ ^s φ	3727		3872	
$ 1^2 P_{\rho} \frac{1}{2}^-\rangle$	$^{1}\Psi^{\rho}_{1L_{z}}\chi^{\rho}_{S_{z}}\phi$	3838		4002	
$ 1^2 P_{\rho} \frac{3}{2} \rangle$		3959		4102	
$ 1^2 P_{\lambda} \frac{1}{2}^-\rangle$	${}^{1}\Psi_{1L}^{\lambda}\chi_{S_{z}}^{\lambda}\phi$	4136	$\Xi_{cc}^{(*)}\pi$	4271	$\Xi_{cc}^{(*)}K$
$ 1^2 P_{\lambda} \frac{3}{2}^-\rangle$		4196	$\Xi_{cc}^{(*)}\pi$	4325	$\Xi_{cc}^{(*)}K$
$ 1^4 P_{\lambda} \overline{\frac{1}{2}}^-\rangle$	$^{1}\Psi_{1L}^{\lambda}\chi_{S}^{s}\phi$	4053	$\Xi_{cc}^{(*)}\pi$	4208	$\Xi_{cc}K$
$ 1^4 P_\lambda \frac{3}{2}^-\rangle$		4101	$\Xi^{(*)}_{_{CC}}\pi$	4252	$\Xi_{cc}^{(*)}K$
$ 1^4 P_{\lambda} \frac{5}{2}^-\rangle$		4155	$\Xi_{cc}^{(*)}\pi$	101	$\Xi_{cc}^{(*)}K$
$ 2^2 D_{\rho\rho} \frac{3}{2}^+\rangle$	$^{2}\Psi_{2L_{z}}^{\rho\rho}\chi_{S_{z}}^{\lambda}\phi$		$\Lambda_c D$	mode	$\Xi_c D$
$ 2^2 D_{\rho\rho} \frac{5}{2}^+\rangle$			$\Lambda_c D, \Sigma_c^{(*)} D$ 3	2011.	$\Xi_c D, \Xi_c^{\prime(*)} D$
$ 2^4 D_{\rho\rho} \frac{1}{2}^+\rangle$	$^{2}\Psi_{2L_{z}}^{\rho\rho}\chi_{S_{z}}^{s}\phi$		$\Lambda_c D$		$\Xi_c D$
$ 2^4 D_{\rho\rho} \frac{3}{2}^+\rangle$			$\Lambda_c D, \Sigma_c D$		$\Xi_c D, \Xi_c' D$
$ 2^4 D_{\rho\rho} \overline{\frac{5}{2}}^+\rangle$			$\Lambda_c D, \Sigma_c^{(*)} D$		$\Xi_c D, \Xi_c^{\prime *} D$
$ 2^4 D_{\rho\rho} \frac{7}{2}^+\rangle$			$\Lambda_c D, \Sigma_c^{(*)} D, \Xi_c D_s, \Xi_c' D_s$		$\Xi_c D, \Xi_c^{\prime(*)} D, \Omega_c^{(*)} D_s$
$ 2^2 D_{\lambda\lambda} \frac{3}{2}^+\rangle$	$^{2}\Psi_{2L_{z}}^{\lambda\lambda}\chi_{S_{z}}^{\lambda}\phi$		$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{(*)}$	$^{*)}D_{s}$	$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Xi_c D \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s, \Omega_{cc}^{(*)}\eta'$
$ 2^2 D_{\lambda\lambda} \frac{5}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime (*)}$	$^{*)}D_{s}$	$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s, \Omega_{cc}^{(*)}\eta'$
$ 2^4 D_{\lambda\lambda} \frac{1}{2}^+\rangle$	$^{2}\Psi_{2L_{z}}^{\lambda\lambda}\chi_{S_{z}}^{s}\phi$		$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c'$	$_{c}D_{s}$	$\Xi_{cc}^{(*)}K,\Omega_{cc}^{(*)}\eta,\Xi_cD,\Xi_c^{\prime(*)}D,\Omega_cD_s$
$ 2^4 D_{\lambda\lambda} \frac{3}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime 0}$	$^{*)}D_s$	$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Omega_{cc}\eta', \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s$
$ 2^4 D_{\lambda\lambda} \frac{5}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi, \Omega_{cc}^{(*)}K, \Lambda_c D, \Sigma_c^{(*)}D, \Xi_c D_s, \Xi_c^{\prime (*)}$	$^{*)}D_{s}$	$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Omega_{cc}\eta', \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s$
$ 2^4 D_{\lambda\lambda} \frac{7}{2}^+\rangle$			$\Xi_{cc}^{(*)}\pi,\Omega_{cc}^{(*)}K,\Lambda_c D,\Sigma_c^{(*)}D,\Xi_c D_s,\Xi_c^{\prime(*)}$	$^{*)}D_s$	$\Xi_{cc}^{(*)}K, \Omega_{cc}^{(*)}\eta, \Omega_{cc}^{(*)}\eta', \Xi_c D, \Xi_c^{\prime(*)}D, \Omega_c^{(*)}D_s$

³P₀ model:

L. Micu, Nucl. Phys. B10,521(1969).

R. D. Carlitz and M. Kislinger, Phys. Rev. D2,336(1970).

³P₀ model:

$$\begin{split} \mathbf{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(A \to B+C) &= \sqrt{8E_{A}E_{B}E_{C}}\gamma\\ \sum \left\langle L_{A}M_{L_{A}}; S_{A}M_{S_{A}} \middle| J_{A}M_{J_{A}} \right\rangle \left\langle L_{B}M_{L_{B}}; S_{B}M_{S_{B}} \middle| J_{B}M_{J_{B}} \right\rangle \left\langle L_{C}M_{L_{C}}; S_{C}M_{S_{C}} \middle| J_{C}M_{J_{C}} \right\rangle\\ \times \left\langle 1m; 1-m \middle| 00 \right\rangle \left\langle \chi^{124}_{S_{B}M_{S_{B}}} \chi^{35}_{S_{C}M_{S_{C}}} \middle| \chi^{123}_{S_{A}M_{S_{A}}} \chi^{45}_{1-m} \right\rangle \left\langle \varphi^{124}_{B} \varphi^{35}_{C} \middle| \varphi^{123}_{A} \varphi^{45}_{0} \right\rangle I^{M_{L_{A}},m}_{M_{L_{B}},M_{L_{C}}} \end{split}$$

$$I_{M_{L_{B}},M_{L_{C}}}^{M_{L_{A}},m}(p) = \int d^{3}\vec{p}_{1}d^{3}\vec{p}_{2}d^{3}\vec{p}_{3}d^{3}\vec{p}_{4}d^{3}\vec{p}_{5}\delta^{3}(\vec{p}_{4}+\vec{p}_{5})\delta^{3}(\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}-\vec{p}_{A})\delta^{3}(\vec{p}_{3}+\vec{p}_{5}-\vec{p}_{C})\delta^{3}(\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{4}-\vec{p}_{B})$$

$$\times \psi_{n_{B}L_{B}M_{L_{B}}}^{*}(\vec{p}_{1},\vec{p}_{2},\vec{p}_{4})\psi_{n_{C}L_{C}M_{L_{C}}}^{*}(\vec{p}_{3},\vec{p}_{5})\psi_{n_{A}L_{A}M_{L_{A}}}(\vec{p}_{1},\vec{p}_{2},\vec{p}_{3})Y_{1}^{m}(\frac{\vec{p}_{4}-\vec{p}_{5}}{2})$$

³P₀ model:

baryon wave function

 $\begin{aligned} \left| A(N_{A}^{2S_{A}+1}L_{A}J_{A}M_{J_{A}})(p_{A}) \right\rangle \\ &= \sqrt{2E_{A}}\varphi_{A}^{123}\omega_{A}^{123}\sum_{M_{L_{A}},M_{S_{A}}} \left\langle L_{A}M_{L_{A}};S_{A}M_{S_{A}} \middle| J_{A}M_{J_{A}} \right\rangle \\ &\times \int d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}\delta^{3}(p_{1}+p_{2}+p_{3}-p_{A}) \\ &\times \bigvee_{N_{A}L_{A}M_{L_{A}}}(p_{1},p_{2},p_{3})\chi_{S_{A}M_{S_{A}}}^{123} \middle| q_{1}(p_{1})q_{2}(p_{2})q_{3}(p_{3}) \rangle \end{aligned}$

C. Hayne and N. Isgur, Phys.Rev. D25,1944(1982).

meson wave function

$$\begin{aligned} \left| C(N_{C}^{2S_{A}+1}L_{C}J_{A}M_{J_{C}})(p_{C}) \right\rangle \\ &= \sqrt{2E_{C}}\varphi_{C}^{ab}\omega_{C}^{ab}\sum_{M_{L_{C}},M_{S_{C}}} \left\langle L_{C}M_{L_{C}};S_{C}M_{S_{C}} \middle| J_{C}M_{J_{C}} \right\rangle \\ &\times \int d^{3}p_{a}d^{3}p_{b}\delta^{3}(p_{a}+p_{b}-p_{C}) \\ &\times \psi_{N_{C}L_{C}M_{L_{C}}}(p_{a},p_{b})\chi_{S_{C}M_{S_{C}}}^{ab} \middle| q_{a}(p_{a})q_{b}(p_{b}) \rangle \end{aligned}$$

SHO

$$\psi_{lm}^{0}(\vec{p}) = (-i)^{l} \left[\frac{2^{l+2}}{\sqrt{\pi}(2l+1)!!}\right]^{\frac{1}{2}} \left(\frac{1}{\alpha}\right)^{l+\frac{3}{2}} \exp(-\frac{\vec{p}^{2}}{2\alpha^{2}}) Y_{l}^{m}(\vec{p})$$

$$\Gamma[A \to B + C] = \pi^{2} \frac{|P|}{M_{A}^{2}} \frac{1}{2J_{A} + 1} \sum_{M_{J_{A}}, M_{J_{B}}, M_{J_{C}}} \left|M_{M_{J_{A}}M_{J_{B}}M_{J_{C}}}\right|^{2}$$

The decay widths of the $1P_{\rho}$ states should be fairly narrow !

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Xi_{cc} {}^2P_\lambda \frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda} \overline{\frac{3}{2}}^-\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^4P_\lambda \frac{1}{2}^-\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^4P_{\lambda}\frac{3}{2}^-\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^*K]$	Total	${\mathcal B}$
State	Mass	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda \frac{1}{2}^- angle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \frac{3}{2}^- \rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} \ {}^4P_\lambda {ar 12}^- \rangle$	4208	378		378	
$ \Omega_{cc} \ {}^4P_\lambda {ar{3}\over2}^- angle$	4252	2.02	154	156	0.01
$ \Omega_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Xi_{cc} {}^2P_\lambda \frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda} \overline{\frac{3}{2}}^-\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^4P_{\lambda} \overline{\frac{1}{2}}^-\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^{4}P_{\lambda}\frac{3}{2}^{-}\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^*K]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda rac{1}{2}^- angle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \overline{\frac{3}{2}}^- \rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} \ {}^4P_\lambda {ar 12}^- \rangle$	4208	378		378	
$ \Omega_{cc} {}^4P_\lambda \bar{3}^-\rangle$	4252	2.02	154	156	0.01
$ \Omega_{cc} {}^4P_\lambda \frac{5}{2}^-\rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Xi_{cc} {}^2P_{\lambda}\frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda} \overline{\frac{3}{2}}^-\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^4P_{\lambda} \overline{\frac{1}{2}}^-\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^4P_{\lambda}\frac{3}{2}^-\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^*K]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda rac{1}{2}^- angle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \overline{\frac{3}{2}}^- \rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} \ ^4P_\lambda \bar{1\over 2}^- \rangle$	4208	378		378	
$ \Omega_{cc} {}^4P_\lambda \bar{3}^-\rangle$	4252	2.02	154	156	0.01
$ \Omega_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	\mathcal{B}
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Xi_{cc} {}^2P_{\lambda}\frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda}\overline{3}^{-}\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^{4}P_{\lambda} \overline{\frac{1}{2}}^{-}\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^{4}P_{\lambda} \overline{\frac{3}{2}}^{-}\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_{\lambda} \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^*K]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda rac{1}{2}^- angle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \overline{\frac{3}{2}}^- \rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} \ ^4P_\lambda { ilde 12}^- angle$	4208	378		378	
$ \Omega_{cc} \ {}^4P_\lambda {ar 32}^- angle$	4252	2.02	154	156	0.01
$ \Omega_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Xi_{cc} {}^2P_{\lambda}\frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda} \overline{3}^-\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^4P_{\lambda} \overline{\frac{1}{2}}^-\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^4P_{\lambda}\frac{3}{2}^-\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_{\lambda} \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
-		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^*K]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda rac{1}{2}^- angle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \overline{\frac{3}{2}}^-\rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} \ ^4P_\lambda { extstyle {1\over 2}}^- angle$	4208	378		378	
$ \Omega_{cc} \ {}^4P_\lambda {ar{3}\over2}^- angle$	4252	2.02	154	156	0.01
$ \Omega_{cc} ^4 P_\lambda \overline{\frac{5}{2}}^- \rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	\mathcal{B}
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Xi_{cc} {}^2P_{\lambda}\frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda}\overline{3}^{-}\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^{4}P_{\lambda} \overline{\frac{1}{2}}^{-}\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^{4}P_{\lambda} \overline{\frac{3}{2}}^{-}\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^*K]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda \frac{1}{2}^- angle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \tilde{3}^-\rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} ^4 P_\lambda \tilde{1}^- \rangle$	4208	378		378	
$ \Omega_{cc} ^4 P_\lambda \tilde{3\over 2}^- angle$	4252	2.02	154	156	0.01
$ \Omega_{cc} ^4 P_\lambda \frac{\tilde{5}}{2}^- \rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$	$\Gamma[\Xi_{cc}^*\pi]$	Total	\mathcal{B}
State	Mass	${}^{3}P_{0}$	${}^{3}P_{0}$	${}^{3}P_{0}$	${}^{3}P_{0}$
$ \Xi_{cc} {}^2P_{\lambda}\frac{1}{2}^-\rangle$	4136	21.9	18.6	40.5	1.18
$ \Xi_{cc} {}^2P_{\lambda}\overline{3}^{-}\rangle$	4196	13.7	117	131	0.18
$ \Xi_{cc} {}^4P_{\lambda} \overline{\frac{1}{2}}^-\rangle$	4053	200	0.60	201	333
$ \Xi_{cc} {}^{4}P_{\lambda} \overline{\frac{3}{2}}^{-}\rangle$	4101	4.43	127	131	0.03
$ \Xi_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4155	45.9	12.6	58.5	3.64
		$\Gamma[\Xi_{cc}K]$	$\Gamma[\Xi_{cc}^{*}K]$	Total	${\mathcal B}$
State	Mass	${}^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$	$^{3}P_{0}$
$ \Omega_{cc} ^2 P_\lambda \frac{1}{2}^- \rangle$	4271	49.3	1.53	50.8	32.2
$ \Omega_{cc} ^2 P_\lambda \overline{\frac{3}{2}}^- \rangle$	4325	8.50	199	208	0.04
$ \Omega_{cc} \ ^4P_\lambda { ilde 12}^- angle$	4208	378		378	
$ \Omega_{cc} ^4 P_\lambda \tilde{3\over 2}^- angle$	4252	2.02	154	156	0.01
$ \Omega_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4303	29.1	2.62	31.7	11.1

		$\Gamma[\Xi_{cc}\pi]$		ΓΞ	$\Gamma[\Xi_{ac}^{*}\pi]$		Total		\mathcal{B}	
State	Mass	$^{3}P_{0}$	CQM	$^{3}P_{0}$	CQM	${}^{3}P_{0}$	CQM	$^{3}P_{0}$	CQM	
$ \Xi_{cc} {}^2P_{\lambda}\frac{1}{2}^-\rangle$	4136	21.9	15.6	18.6	33.9	40.5	49.5	1.18	0.46	
$ \Xi_{cc} ^2 P_\lambda \frac{\tilde{3}}{2}^-\rangle$	4196	13.7	21.6	117	101	131	123	0.18	0.21	
$ \Xi_{cc} {}^{4}P_{\lambda} \tilde{1}^{-}_{2}\rangle$	4053	200	133	0.60	1.22	201	134	333	110	
$ \Xi_{cc} {}^{4}P_{\lambda} \overline{\frac{3}{2}}^{-}\rangle$	4101	4.43	7.63	127	84.6	131	92.2	0.03	0.09	
$ \Xi_{cc} {}^4P_\lambda \tilde{5}^-\rangle$	4155	45.9	75.3	12.6	22.8	58.5	98.1	3.64	3.30	
3		$\Gamma[\Xi_{cc}K]$		$\Gamma[\Xi_{cc}^{*}K]$		Total			${\mathcal B}$	
State	Mass	${}^{3}P_{0}$	CQM	${}^{3}P_{0}$	CQM	$^{3}P_{0}$	CQM	${}^{3}P_{0}$	CQM	
$ \Omega_{cc} ^2 P_\lambda \frac{1}{2}^- \rangle$	4271	49.3	33.1	1.53	2.36	50.8	35.5	32.2	14.0	
$ \Omega_{cc} ^2 P_\lambda \tilde{3}^-\rangle$	4325	8.50	11.4	199	174	208	185	0.04	0.06	
$ \Omega_{cc} ^4 P_\lambda \tilde{1}^- \rangle$	4208	378	323			378	323			
$ \Omega_{cc} ^4 P_\lambda \tilde{3\over 2}^- angle$	4252	2.02	3.08	154	137	156	140	0.01	0.02	
$ \Omega_{cc} {}^4P_\lambda \overline{\frac{5}{2}}^-\rangle$	4303	29.1	41.5	2.62	4.38	31.7	45.9	11.1	9.47	

Result: $\Xi^{++}_{cc} \mathbf{1} \mathbf{P}_{\lambda}$

肖立叶,北京大学

Result: $\Omega_{cc} 1P_{\lambda}$

Result: $\Xi^{++}_{cc} 2D_{\rho\rho}$

The main decay channels are sensitive to the masses.

Result: $\Omega_{cc} 2D_{\rho\rho}$

The main decay channels are sensitive to the masses.

Result: $\Xi^{++}_{cc}\overline{2D_{\lambda\lambda}}$

肖立叶,北京大学

Result: $\Omega_{cc} 2D_{\lambda\lambda}$

The strong decay properties of the doubly charmed baryons: $\Xi^{++}{}_{cc}$ and Ω_{cc}

> For the 1P ρ mode states: $\Gamma \sim$ fairly narrow

For the 1P λ mode states: Γ ~ 100 MeV

For the 2D_{ρρ} states: They mainly decay via emitting a heavy-light meson Γ ∽ several tens MeV

 \succ For the 2D_{$\lambda\lambda$} states: $\Gamma > 100 \text{ MeV}$

Y(4660)→Λ_cΛ̄_c

Charmonium spectroscopy

Charmonium(like) spectroscopy

Y(4660) : first observation at Belle

Y(4660) : not be confirmed by BaBar

Y(4660) : confirmation by BaBar in 2012

Y(4630) : first observation at Belle

Y(4660) and Y(4630): interpretation in theory

Y(4660)

• As charmonium state:

 $\begin{array}{l} \succ \ \psi(6S) & \qquad \succ \ \psi(5D) \\ \succ \ \psi(5S) & \qquad \succ \ \psi(4D) \\ \succ \ \psi(4S) & \qquad \succ \ \psi(3D) \end{array}$

• As exotic state:

- \blacktriangleright ψ 'f₀(980) bound state
- ➢ tetraquark state
- hadro-charmonium state

Y(4630)

- As exotic state:
 - $\succ \Lambda_c \overline{\Lambda}_c$ bound state
 - ➢ tetraquark state

Y(4660) and Y(4630)

- As charmonium state:
 - ➢ tetraquark state
 - \succ ψ 'f₀(980) bound state

Phys. Rept. 639, 1-121 (2016)

$$H_{q\bar{q}} = \gamma \sum_{f} 2m_{f} \int d^{3}x \overline{\psi}_{f} \psi_{f}$$

$$T = \frac{9\gamma^{2}}{4m_{\mu}} \sum_{m,m'} \langle 1m; 1 - m|00\rangle \langle 1m'; 1 - m'|00\rangle \\ \times \int d^{3}\mathbf{p}_{3}d^{3}\mathbf{p}_{4}d^{3}\mathbf{p}_{5}d^{3}\mathbf{p}_{6}\delta^{3}(\mathbf{p}_{3} + \mathbf{p}_{4})\delta^{3}(\mathbf{p}_{5} + \mathbf{p}_{6}) \\ \times \varphi_{0}^{34}\omega_{0}^{34}\chi_{1,-m}^{34}\mathcal{Y}_{1}^{m}\left(\frac{\mathbf{p}_{3} - \mathbf{p}_{4}}{2}\right)a_{3i}^{\dagger}b_{4j}^{\dagger} \\ \times \varphi_{0}^{56}\omega_{0}^{56}\chi_{1,-m'}^{56}\mathcal{Y}_{1}^{56}\left(\frac{\mathbf{p}_{5} - \mathbf{p}_{6}}{2}\right)a_{5i}^{\dagger}b_{6j}^{\dagger}, \qquad \underbrace{\int \delta^{3}(\mathbf{p}_{A} - \mathbf{p}_{B} - \mathbf{p}_{C})M^{M_{J_{A}}M_{J_{B}}M_{J_{B}}}_{K_{J_{A}}}}{\frac{\delta^{3}(\mathbf{p}_{A} - \mathbf{p}_{B} - \mathbf{p}_{C})M^{M_{J_{A}}M_{J_{B}}M_{J_{B}}}}{E_{k} - E_{A}}.$$

$$Ek - EA \approx 0.6 GeV \approx 2m_q$$
 as a constant

 $\mathcal{Y}_l^m(\mathbf{p}),$

 $\lambda = \frac{\mathbf{r}_1 + \mathbf{r}_2 - 2\mathbf{r}_3}{\sqrt{6}}$

 $\alpha_{\lambda} = \left(\frac{3m_Q}{2m_q + m_Q}\right)$

 $\frac{\mathbf{p}_{\rho}^2}{2\alpha_{\rho}^2}$

 $\left[\frac{2^{l+2}}{\sqrt{\pi}(2l+1)!!}\right]$

 $\frac{\mathbf{p}_R^2}{2\beta^2}$

exp

4

 $\sqrt{\pi \alpha_{\lambda}^2}$

 \mathbf{q}_2

ρ-mode

 λ -mode

 Q_3

 \mathbf{q}_1

 $l + \frac{3}{2}$

 \mathbf{p}_{λ}^2

 $\overline{2\alpha_{\lambda}^2}$

 $^{1/4} lpha_
ho$

49

 $\left(\frac{1}{\beta}\right)$

C. Hayne and N. Isgur, Phys.Rev. D25,1944(1982). meson wave function

$$|A(N_A \ ^{2S_A+1}L_A J_A M_{J_A})(\mathbf{p}_A)\rangle = \sqrt{2E_A} \varphi_A^{12} \omega_A^{12}$$

$$\times \sum_{M_{L_A}, M_{S_A}} \langle L_A M_{L_A}; S_A M_{S_A} | J_A M_{J_A} \rangle$$

$$\times \int d^3 \mathbf{p}_1 d^3 \mathbf{p}_2 \delta^3(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{p}_A)$$

$$\times \Psi_{N_A L_A M_{L_A}(\mathbf{p}_1, \mathbf{p}_2)} \chi_{S_A M_{S_A}}^{12} | q_1(\mathbf{p}_1) q_2(\mathbf{p}_2) \rangle,$$
SHO wave function
$$\psi_{lm}^0(\mathbf{p}) = (-i)^l$$

$$\times \exp\left(\frac{1}{2} \left(\frac{1}{\pi \alpha_\rho^2}\right)^{\frac{3}{4}} \left(\frac{1}{\pi \alpha_\rho^2}\right)$$

$$|B(N_B \ ^{2S_B+1}L_B J_B M_{J_B})(\mathbf{p}_B)\rangle = \sqrt{2E_B \varphi_B^{135}} \omega_B^{135}$$

$$\times \sum_{M_{L_B}, M_{S_B}} \langle L_B M_{L_B}; S_B M_{S_B} | J_B M_{J_B} \rangle$$

$$\times \int d^3 \mathbf{p}_1 d^3 \mathbf{p}_3 d^3 \mathbf{p}_5 \delta^3 (\mathbf{p}_1 + \mathbf{p}_3 + \mathbf{p}_5 - \mathbf{p}_B)$$

$$\times \Psi_{N_B L_B M_{L_B}(\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}_5)} \chi_{S_B M_{S_B}}^{135} | q_1(\mathbf{p}_1) q_3(\mathbf{p}_3) q_5(\mathbf{p}_5) \rangle.$$
Harding the set of the s

$$\Gamma[A \to BC] = \pi^2 \frac{|\mathbf{p}|}{M_A^2} \frac{1}{2J_A + 1}$$
$$\times \sum_{M_{J_A}, M_{J_B}, M_{J_C}} |\mathcal{M}^{M_{J_A}M_{J_B}M_{J_C}}|^2$$

$$\mathcal{M}_{4S} = \frac{1}{3\sqrt{35}} \left(15\beta \frac{\partial}{\partial \beta} + 6\beta^2 \frac{\partial^2}{\partial \beta^2} + 2\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

$$\mathcal{M}_{5S} = \frac{1}{18\sqrt{70}} \left(63 + 72\beta \frac{\partial}{\partial \beta} + 96\beta^2 \frac{\partial^2}{\partial \beta^2} + 24\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

$$\mathcal{M}_{4D} = \frac{1}{3\sqrt{231}} \left(27\beta \frac{\partial}{\partial \beta} + 6\beta^2 \frac{\partial^2}{\partial \beta^2} + 2\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1D},$$

$$\mathcal{M}_{4D} = \frac{1}{3\sqrt{231}} \left(27\beta \frac{\partial}{\partial \beta} + 6\beta^2 \frac{\partial^2}{\partial \beta^2} + 2\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1D},$$

$$\mathcal{M}_{5D} = \frac{1}{6\sqrt{6006}} \left(231 + 120\beta \frac{\partial}{\partial \beta} + 144\beta^2 \frac{\partial^2}{\partial \beta^2} + 24\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1D},$$

$$\mathcal{M}_{5D} = \frac{1}{6\sqrt{6006}} \left(231 + 120\beta \frac{\partial}{\partial \beta} + 144\beta^2 \frac{\partial^2}{\partial \beta^2} + 24\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1D},$$

$$\mathcal{M}_{6S} = \frac{1}{45\sqrt{77}} \left(\frac{675}{2}\beta \frac{\partial}{\partial \beta} + 240\beta^2 \frac{\partial^2}{\partial \beta^2} + 120\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

$$\mathcal{M}_{6S} = \frac{1}{45\sqrt{77}} \left(\frac{675}{2}\beta \frac{\partial}{\partial \beta} + 240\beta^2 \frac{\partial^2}{\partial \beta^2} + 120\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

$$\mathcal{M}_{6S} = \frac{1}{45\sqrt{77}} \left(\frac{675}{2}\beta \frac{\partial}{\partial \beta} + 240\beta^2 \frac{\partial^2}{\partial \beta^2} + 120\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

$$\mathcal{M}_{6S} = \frac{1}{45\sqrt{77}} \left(\frac{675}{2}\beta \frac{\partial}{\partial \beta} + 240\beta^2 \frac{\partial^2}{\partial \beta^2} + 120\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

$$\mathcal{M}_{6S} = \frac{1}{45\sqrt{77}} \left(\frac{675}{2}\beta \frac{\partial}{\partial \beta} + 240\beta^2 \frac{\partial^2}{\partial \beta^2} + 120\beta^3 \frac{\partial^3}{\partial \beta^3} \right) \mathcal{M}_{1S},$$

2018-9-19

肖立叶,北京大学

50

Result:

 $M(Y(4660)) = 4643 \pm 9MeV$ $\Gamma_{tot}(Y(4660)) = 72 \pm 11MeV$

TABLE I: The $\Lambda_c \bar{\Lambda}_c$ partial decay widths (MeV) of the vector charmonium with a mass of M = 4643 MeV. \mathcal{B} represents the branching ratio of the $\Lambda_c \bar{\Lambda}_c$ pair.

State	$\psi(4^{3}S_{1})$	${\mathscr B}$	$\psi(5^3S_1)$	${\mathscr B}$	$\psi(6^{3}S_{1})$	\mathcal{B}
$\Gamma_{\Lambda_c \bar{\Lambda}_c}$	6.57	9%	2.44	3%	0.84	1%
State	$\psi(3^3D_1)$	${\mathscr B}$	$\psi(4^3D_1)$	${\mathcal B}$	$\psi(5^3D_1)$	${\mathcal B}$
$\Gamma_{\Lambda_c \bar{\Lambda}_c}$	0.33	0.4%	0.19	0.3%	0.09	0.1%
	$\Gamma(\psi(4S/5S))$ $\Gamma(\psi(3D/4D))$	$(6S) \rightarrow \Lambda_c$ $(5D) \rightarrow \Lambda_c$	$(\overline{\Lambda}_c) \sim a \text{ fe}$ $(\overline{\Lambda}_c) \sim \text{ less}$	w MeV than one N	ЛеV	

If the enhancement Y(4630) in the $\Lambda_c \overline{\Lambda}_c$ invariant-mass distribution is the same atructure as Y(4660), the Y(4660) resonance is most likely to be a S-wave charmonium state.

Result:

ñ		15 A					
State	QM [47]	QM [48]	QM [49]	SSE/EA[50]	NR/GI [51]	SP [10]	LP/SP [52]
$\psi(4^3S_1)$	4625	4450	4389	4398/4426	4406/4450	4273	4412/4281
$\psi(5^3S_1)$			4641	4642/4672		4463	4711/4472
$\psi(6^3S_1)$				4804/4828		4608	
$\psi(3^3D_1)$		4520	4426	4464/4477		4317	4478/4336
$\psi(4^3D_1)$	•••		4641	4690/4707			
$\psi(5^3D_1)$				4840/4855		•••	

TABLE II: The possible assignments of the Y(4660) with the predicted masses (MeV) from various models.

- 10, PRD79,094004 (2009).
- 50, arXiv:0810.2875.
- 47、 PRD72,094004 (2005).
- 51、 Phys. Atom. Nucl.72,638 (2009).
- 48、 PRD21,203 (1980).
- 52、 PRD72,054026 (2005).

49、 PRD32,189 (1985).

Fig. 3 The variation of the $\Lambda_c \overline{\Lambda}_c$ decay width with the mass of the S-wave vector charmonium. The blue, black, and red lines correspond to the predictions with different values of the harmonic oscillator strength $\beta = 450$, 500, and 550 MeV, respectively

Result:

• The $\Lambda_c \overline{\Lambda}_c$ partial decay width of the excited vector charmonium states around 4.6 GeV:

★
$$\Gamma(\psi(4S/5S/6S) \rightarrow \Lambda_c \overline{\Lambda}_c)$$
 ∽ a few MeV
★ $\Gamma(\psi(3D/4D/5D) \rightarrow \Lambda_c \overline{\Lambda}_c)$ ∽ less than one MeV

- If the enhancement Y(4630) in the $\Lambda_c \overline{\Lambda}_c$ invariant-mass distribution is the same atructure as Y(4660), the Y(4660) resonance is most likely to be a S-wave charmonium state.
- This OZI allowed mode provides a new tool to explore the higer charmonium, which can be produced abundantly at Belle-II.

Outlook

Evidence of a resonant structure in the $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ cross section between 4.05 and 4.60 GeV

(BESIII Collaboration)

arXiv:1808.02847

Outlook

D^{0}	D^+	D_s^+
$\pi^0/\pi^+/k^+$	$\pi^{ extsf{-}}/\pi^0/\overline{k}^{ extsf{0}}$	$k^{ extsf{-}}/k^0/\eta$
	$\overline{D}{}^{0}/D{}^{ extsf{-}}/ extsf{D}{}^{ extsf{-}}_{ extsf{S}}$	

Thanks