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Preface
These lecture notes were produced to assist the participants of a short course held
at the Beijing University of Technology. They cover some fundamental aspects of
topological fluid dynamics, starting from the basic equations. Focus is put on the
construction of conservation laws from a lagrangian viewpoint, and on the role of
geometric and topological features in the dynamics of vortex and magnetic fields
in ideal conditions. On more advanced topics, particular emphasis is put on the
concept of magnetic relaxation of knots and links and their groundstate energy
spectrum, and on the topological interpretation of helicity in terms of linking
numbers, writhe and twist.

My visit has been possible thanks to the generous support of the Institute of
Theoretical Physics (ITP) of Beijing University of Technology (BJUT). For this I
am particularly grateful to the endless organizational efforts of my host, Professor
Xin Liu, and to the warm hospitality of Professor Wenyu Wang, Head of ITP. I
would also like to express my gratitude to the students and the researchers, with
whom I shared many inspiring discussions.

Beijing, September 2018
R.L.R.
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Chapter 1

Fundamentals of fluid flows

1.1 150 years of topological fluid mechanics

A topological approach to fluid mechanics originates from the very fundamental
work of Cauchy on lagrangian conservation of vorticity (1815) and is rooted in
two remarkable papers of 1858, one due to Helmholtz on the conservation laws of
vortex dynamics, and the other due to Riemann on the implications of multiply
connectedness of the ambient space on potentials. These works prompted Lord
Kelvin to propose a fundamental theory of matter — the vortex atom theory
(1868–1882) — that stimulated Tait’s first tabulations of knots and links (1872–
1880 )and motivated Maxwell (1870) to investigate possible applications of Gauss’
linking number formula (1833) for electric currents and magnetic fields in multiply
connected domains. This led to a period of intensive research (mostly in Britain)
that culminated in 1882 with the Adams Prize essay of J.J. Thomson on vortex
links. With the abandonment of the vortex atom theory (and the subsequent
discovery of the electron by the same J.J. Thomson in 1905) topological techniques
received new emphasis with the works of Poincaré and the formal developments due
to de Rham. In the period 1950-1960 a number of applications started to appear in
quantum field theory, but it is in the 70s that we see a resurgence of interest, mainly
due to the topological interpretation of helicity — a fundamental invariant of
ideal fluid mechanics and magnetohydrodynamics — by Moffatt (1969), and novel
applications of limiting forms of the Gauss’ linking number in the study of DNA
biology. With the continuous developments and refinements of computational
investigations and technological applications topological field theory is now a very
rich and diversified subject, under continuous developments (see Figure 1.1).

3
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

Figure 1.1: 150 years of developments in topological classical field theory.

1.2 Flow map and topological equivalence

We consider a continuum, fluid medium in R3 occupying an infinite connected
region without boundaries. Kinematic and dynamical properties are derived from
elementary considerations of the fluid medium considered from a macroscopic view-
point, by assuming everything smooth and analytic. By x0 = (x0, y0, z0) we denote
the vector position of a fluid particle at the initial position at point P and by
x = (x, y, z) the vector position of the same particle at the new position Q. The
trajectory followed by the particle to go from P to Q is described by the flow map
ϕ that sends x0 to x. In general we don’t have an equation for ϕ, but we assume
that such a flow exists.

Example 1.2.1. Within the fluid domain consider for example a sub-region of
material (coloured) particles occupying a volume W0 at t = 0 and the evolution of
such region under the action of the flow map ϕ (see Figure 1.2); at each time t we
have

ϕt : W0 → W , (1.1)

that maps W0 to the final state W . Note that the material volume W is a sub-
region of R3 made always of the same material particles throughout the motion:

4
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

Figure 1.2: Continuous deformation of a pretzel. Tilde stands for topological
equivalence between different states.

no material particle leaves or enters W during motion, a condition that is math-
ematically expressed by saying that there is no flux of such particles through the
bounding surface ∂W .

In order to be able to make analytic progress we must consider a rather specific
family of flow maps, given by

ϕ ∈ Φ =
{
Cν s.t. ∃ϕ−1 : x0 = ϕ−1(x, t), ∀t ∈ I

}
, (1.2)

where ν is appropriate (in general ν ≤ 3). Even though this restriction seems
legitimate, there is a multitude of natural phenomena that cannot be captured by
such a flow class.

Example 1.2.2. Consider two immiscible, fluid regions of different densities and
surface tension present in a container and imagine that at some initial time the
heavier fluid lies entirely on top of the lighter fluid. As time progresses the heavy
fluid starts to sink through the lighter one. This leads to a continuous deformation
of the two fluid regions, with the the heavy fluid gradually severing the light fluid
towards the bottom. At some intermediate time — before the final deposition
of all the heavy fluid at the bottom of the container — top and bottom can be
connected by a thin thread of heavy fluid, that determines a topological change of
the initial fluid domain (see Figure 1.3). During this stage the inverse flow map
that relates the final position of each fluid particle in terms of its initial value is
ill-defined.

Example 1.2.3. Another common example of topological change is represented
by the production of a drop of fluid. At some intermediate time — just before the
final detachment of the drop from the bulk of fluid — a fluid cusp may form. At
the point of detachment the flow map is ill-defined and the whole process can be
described only by reconciling the evolution before and after the detachment by a
limiting process.

5
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

Figure 1.3: Left: topological change of the fluid domain due to a continuous re-
arrangement of fluid regions. Right: liquid cusp formation.

From these two examples we see that both the assumptions we have made
about the flow map, regularity and invertibility, need some careful considerations
and adaptations in order to tackle some unsolved, yet fundamental, problems of
contemporary research.

1.3 Continuum hypothesis and basic definitions

In what follows we make use of the following standard concepts.

Continuum hypothesis : we assume that all properties are defined for elementary
volumes of fluid and hold true in the limiting case of infinitesimally small volume.

Eulerian description: the observer is on a fixed reference system that does not
move and everything is function of x and t; for instance, the velocity of a particle
must be interpreted as u = u(x, t). Hence, we may say that Euler sees particles
motion standing from the shore.

Lagrangian description: the observer is on a reference system that is fixed on a
fluid particle and it moves with the velocity of the fluid particle. This means that
the velocity of a particle, for instance, must be interpreted in terms of the initial
position of the particle, that is u = u[x(x0), t] = u(x0, t). In this case we may say
that Lagrange, sitting on a particle, sees the motion by looking at the shore.

Acceleration: this is due to a change in velocity, i.e.

δu = u(x + uδt, t+ δt)− u(x, t) ; (1.3)

6



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

by taking the limit, we have

Du

Dt
=
∂u

∂t
+ (u · ∇) u , (1.4)

where
u · ∇ = u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
;

(u · ∇)u is proportional to the directional derivative of u in the direction of u. In
general any change in time of a fluid quantity is quantified by the total derivative
D/Dt that is given by the sum of the partial, time derivative ∂/∂t and the con-
vective derivative u · ∇.

Stationary (or steady) state: the condition determined by a mathematical solution
that is time-independent, i.e. where there is no time. For the velocity field this
means that u = u(x) or u = u(x0) .

Fluid invariant : this is a quantity, say G(x, t), that denotes a property of fluid
particles that does not change in time during fluid motion, i.e. DG/Dt = 0; hence,
if DG/Dt = 0 then G is a conserved quantity transported by the fluid flow ϕ.

In general there are four important conserved quantities associated with fun-
damental conservation laws:

1. conservation of mass

2. conservation of linear momentum

3. conservation of angular momentum

4. conservation of helicity

Vector field lines represent a simple way to visualize the geometry of physical fields
such as velocity, vorticity, electric currents or magnetic fields. In terms of velocity
we have:

Definition 1.3.1. A streamline is the integral curve given by the solution of the
system

dx

u
=

dy

v
=

dz

w
, (1.5)

where x = (x, y, z) is the position vector of the points on the curve and u =
(u, v, w) is the velocity field.

7
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

It’s easy to understand this definition by identifing the streamline with a ge-
ometric space curve C. By assuming C sufficiently regular (typically C3) we can
define a unit tangent t̂ to C by t̂ = dx/ds where s is arc-length. By replacing the
differentials with arc-length derivatives (1.5) becomes

dx/ds

u
=

dy/ds

v
=

dz/ds

w
,

that is
t1
u

=
t2
v

=
t3
w

(1.6)

where t̂ = (t1, t2, t3). Thus u ∝ t̂ so that we can identify velocity with the unit
tangent to the integral curve.

1.4 Kinematic transport theorem
In continuum mechanics it is customary to calculate the rate of change of a quantity
in a volume of fluid. Now different choices can be made for the control volume,
such as a geometric volume fixed in space, or moving with the fluid in a prescribed
manner, or as a material volume always consisting of the same particles (i.e. that
never leave or enter the material volume). Calculation of the rate of change can
be facilitated by the so-called Reynolds kinematic transport theorem. This can be
viewed as an extension of the time-derivative of a generic function of time written
in terms of an integral, whose domain is also function of time. The one-dimensional
version is rooted in Leibniz’s rule

d

dx

∫ b(x)

a(x)

f(x, t) dt =

∫ b(x)

a(x)

∂f(x, t)

∂x
dt+ f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
.

Let us now establish in some generality a theorem for any moving volume V (t)
bounded by the surface S(t) = ∂V (t) whose elements move with a velocity w
(not necessarily coinciding with the velocity u with which the fluid moves; see
Figure 1.4).

Theorem 1.4.1 (Kinematic transport theorem). Let G = G(x, t) be some fluid
property per unit volume; we have

d

dt

∫
V (t)

G(x, t) d3x =

∫
V (t)

∂G(x, t)

∂t
d3x +

∫
S(t)

G(x, t) (w · ν̂) d2x , (1.7)

where w is the velocity with which the area element of the surface S of normal ν̂
moves.

8
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

Figure 1.4: Change of fluid volume in time due to a velocity v

Proof. By definition, we have∫
V

G(x, t) d3x

∣∣∣∣
t+dt

=

∫
V (t+dt)

G(x, t+ dt) d3x

=

∫
V (t+dt)

[
G(x, t) +

∂G(x, t)

∂t
dt+O(dt)2

]
d3x , (1.8)

and due to the movement of S(t) the change of volume induced by the surface
element motion d2x = dS associated with w is given by (w · ν̂) dtdS, thus∫

V (t+dt)

dV =

∫
V (t)

dV +

∫
δV (t)

dV =

∫
V (t)

dV +

∫
S(t)

(w · ν̂) dt dS . (1.9)

Now, by using first eq. (1.8) and then the position (1.9), we have∫
V

G(x, t) d3x

∣∣∣∣
t+dt

=

∫
V (t)

[
G(x, t) +

∂G(x, t)

∂t
dt+O(dt)2

]
d3x

+

∫
S(t)

[
G(x, t) +

∂G(x, t)

∂t
dt+O(dt)2

]
(w · ν̂) dt dS

=

∫
V (t)

G(x, t) d3x +

[∫
V (t)

∂G(x, t)

∂t
d3x +

∫
S(t)

G(x, t)(w · ν̂) dS

]
dt+O(dt)2 .

(1.10)
Since

d

dt

∫
V (t)

G(x, t) d3x = lim
δt→0

1

δt

[∫
V

G(x, t) d3x

∣∣∣∣
t+δt

−
∫
V

G(x, t) d3x

∣∣∣∣
t

]
, (1.11)

then theorem (1.4.1) is proved.
�
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

If V (t) is a material volume (i.e. a parcel of fluid made always by the same
material particles) that moves with its boundary with the flow velocity u (that is
w ≡ u; cfr. eq. (1.7)), then we identify the ordinary derivative d/dt with the total
derivative D/Dt and we have

D

Dt

∫
V (t)

G(x, t) d3x =

∫
V (t)

∂G(x, t)

∂t
d3x +

∫
S(t)

G(x, t)(u · ν̂) d2x . (1.12)

By applying the Gauss divergence theorem to the second term on the left hand
side of eq. (1.12) we have, as corollary, the kinematic transport theorem for a
material volume, i.e.:

Corollary 1.4.1. If V (t) is a material volume, then

D

Dt

∫
V (t)

G d3x =

∫
V (t)

[
∂G

∂t
+∇ · (Gu)

]
d3x . (1.13)

Hence

Definition 1.4.1. A quantity that is invariant in a material volume V (t) satisfies
the conservation law

D

Dt

∫
V (t)

G d3x = 0 . (1.14)

By using (1.13) we have the conservation law∫
V (t)

[
∂G

∂t
+∇ · (Gu)

]
d3x = 0 . (1.15)

If V (t) is a material volume, material particles do not leave or enter the vol-
ume, thus the integral applies to any infinitesimally small region, and we have the
conservation law in differentail form

∂G

∂t
+∇ · (Gu) = 0 ,

or
∂G

∂t
= −∇ · (Gu) . (1.16)

As a special case, if we take V to be constant with respect to time, then w = 0
(or u = 0), and the identity reduces to

Corollary 1.4.2. If V is a volume constant in time, then we have

D

Dt

∫
V

G d3x =

∫
V

∂G

∂t
d3x .

10
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

1.5 Conservation of mass

Let us introduce the following definition.

Definition 1.5.1. Given the mass density ρ = ρ(x, t), we define the mass of fluid
present in R3 by

M(t) =

∫
V

ρ(x, t) d3x . (1.17)

From a fundamental principle of nature, we have conservation of total mass,
i.e.

D

Dt
M(t) = 0 ⇒ M = constant . (1.18)

By taking G = ρ from eq. (1.15) we have the equation of the conservation of mass
in integral form, i.e. ∫

V

[
∂ρ

∂t
+∇ · (ρu)

]
d3x = 0 . (1.19)

Under the general assumptions of regularity, that is if ρ and u remain smooth at
all scales in finite time, then we have the standard equation of conservation of
mass in differential form:

∂ρ

∂t
+∇ · (ρu) = 0 . (1.20)

Since ∇ · (ρu) = ∇ρ · u + ρ∇ · u we can re-write (1.20) as

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u , (1.21)

or
Dρ

Dt
= −ρ∇ · u , (1.22)

known as continuity equation.
A fluid is said to be homogeneous if its density ρ is constant in space and time.

Conversely, a fluid is said to be non-homogeneous if its density ρ = ρ(x, t) varies
in space and time. A non-homogeneous fluid is said to be incompressible if ρ is
conserved (invariant under fluid motion), that is

Dρ

Dt
= 0 ; (1.23)

thus, from (1.22), we have
∇ · u = 0 . (1.24)

known as incompressibility condition.

11
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

1.6 Transport of dynamical property
For the moment let G be an unspecified fluid dynamical property and V a material
volume moving with a flow velocity u. Then we can extend the results of Theorem
1.4.1 and Corollary 1.4.1 to vector- or tensor-value quantities. We have:

Lemma 1.6.1 (Transport of dynamical property). Let G = G(x; t) be a vector-
or tensor-value quantity; then we have

D

Dt

∫
V

G d3x =

∫
V

[
DG

Dt
+ G(∇ · u)

]
d3x . (1.25)

Proof. Let’s consider a unit vector field ê fixed in space and time. We can define
the scalar quantity G = G·ê and, by applying the divergence theorem to Corollary
1.4.1, use eq. (1.13). We have

D

Dt

∫
V

(G · ê) d3x =

∫
V

[
∂(G · ê)

∂t
+∇ · [(G · ê)u]

]
d3x . (1.26)

Since ê is fixed and constant in time, evidently

∂(G · ê)

∂t
=
∂G

∂t
· ê ;

moreover, by treating G · ê = G as a generic scalar quantity we have

∇ · [(G · ê)u] = ∇ · (Gu) = (u · ∇)G+G(∇ · u) .

Since ê is constant it can be brought in and out of integration, so that direct
substitution of these latter expressions into (1.26) gives

D

Dt

(∫
V

G d3x

)
· ê =

D

Dt

∫
V

(G · ê) d3x =

∫
V

[(
∂G

∂t
+ (u · ∇)G

)
+G(∇ · u)

]
d3x

=

∫
V

[
DG

Dt
+G(∇ · u)

]
d3x =

{∫
V

[
DG

Dt
+ G(∇ · u)

]
d3x

}
· ê .

Multiplying the first and the last term above by ê, we prove Lemma 1.6.1.
�

Now, let’s take G = ρq, where ρ = ρ(x; t) is fluid density and q = q(x; t) is a
fluid dynamical property per unit volume. We have

Lemma 1.6.2. Let G = ρq; we have

D

Dt

∫
V

ρq d3x =

∫
V

ρ
Dq

Dt
d3x . (1.27)

12
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CHAPTER 1. FUNDAMENTALS OF FLUID FLOWS

Proof. Using Lemma 1.6.1, we have

D

Dt

∫
V

ρq d3x =

∫
V

[
D(ρq)

Dt
+ (ρq)(∇ · u)

]
d3x . (1.28)

Now
D(ρq)

Dt
+ (ρq)(∇ · u) = ρ

Dq

Dt
+ q

[
∂ρ

∂t
+ (u · ∇)ρ

]
+ (ρq)(∇ · u)

= ρ
Dq

Dt
+ q

[
∂ρ

∂t
+∇ · (ρu)

]
. (1.29)

Substituting this last expression into eq. (1.28) and applying the mass conservation
in integral form given by (1.19), we have Corollary 1.6.2.

�

1.7 Conservation of linear momentum
Let’s apply the result above when q = u is fluid velocity. In absence of any force
acting on a fluid material volume, we have (trivially)

D

Dt

∫
V

ρu d3x =

∫
V

ρ
Du

Dt
d3x . (1.30)

In presence of forces, we must consider the action of these forces on each fluid
element. Typically these include volume (or stress) forces (that depend on the
material volume) and conservative forces (i.e. forces that can be associated with a
potential). In a fluid, stress is proportional to the rate of strain. For the moment we
restrict our considerations to the study of an ideal fluid, according to the following
definition:

Definition 1.7.1. An ideal fluid is a fluid that supports only normal stresses and
no shear stresses.

Thus, any applied strain manifests itself as an isotropic stress (pressure) and
vice-versa. Pressure forces acts solely along the normal to the fluid surface bound-
ing a fluid element. This means that an ideal flow has no resistance for relative
motion between fluid layers, with no exchange of momentum (due to viscosity)
or energy (due to heat flux) between layers. Typically fluid pressure is the stan-
dard volume force that acts normally on the bounding surface ∂V = S of a fluid
element. Such a force is given by

Π⊥ = −
∫
S

pν̂ d2x , (1.31)
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Figure 1.5: An elementary fluid volume subject to pressure force p.

where −pν̂ denotes ordinary pressure (a force per unit surface) that acts inwardly
on S (see Figure 1.5). Among conservative forces we have gravity — associated
with gravitational potential — electric forces, and magnetic (Lorentz) forces —
associated with a magnetic vector potential. Let’s denote them (generically) by
F, so that

F =

∫
V

ρf d3x , (1.32)

where f is the force per unit mass. In this case by the second Newton’s law eq.
(1.30) becomes

D

Dt

∫
V

ρu d3x =

∫
V

ρ
Du

Dt
d3x = Π⊥ + F . (1.33)

Let’s consider a unit vector ê fixed in space and time. By using (1.31) and (1.32),
the equation above becomes∫

V

ρ
Du

Dt
· ê d3x = −

∫
S

pν̂ · ê d2x +

∫
V

ρf · ê d3x . (1.34)

Now, by applying the divergence theorem to the pressure term, ∇ · ê = 0 and
(1.34) becomes ∫

V

ρ
Du

Dt
· ê d3x =

∫
V

(−∇p · ê + ρf · ê) d3x . (1.35)

By eliminating ê, we can write the equation of the conservation of linear momen-
tum in integral form, given by∫

V

ρ
Du

Dt
d3x =

∫
V

(−∇p+ ρf) d3x . (1.36)

Under the general assumption of regularity , that is if ρ and u remain smooth at
all scales in time, then we have the standard equation of conservation of linear
momentum in differential form:

ρ
Du

Dt
= −∇p+ ρf . (1.37)

14
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In absence of conservative forces (f = 0) we recover the celebrated Euler equations ,
given by

ρ
Du

Dt
= −∇p . (1.38)

1.8 Decomposition of fluid motion
First, let us introduce a new vector field ω = ω(x; t) derived from the velocity
u = (u, v, w) at a point in space x = (x, y, z).

Definition 1.8.1. Vorticity ω = (ω1, ω2, ω3) is given by ω = ∇× u, that is

ω = (ω1, ω2, ω3) =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
. (1.39)

Let’s consider the strain rate tensor , a purely kinematic concept that describes
the macroscopic motion of the material. In an arbitrary reference frame this is
identified with the jacobian matrix J = J(u; x) given by

J(u; x) =
∂(u)

∂(x)
=

∂xu ∂yu ∂zu
∂xv ∂yv ∂zv
∂xw ∂yw ∂zw

 . (1.40)

Let’s denote the jacobian simply by J = J(x); from standard linear algebra we can
always write

J(x) = D(x) + S(x) , (1.41)

where D(x) and S(x) denote respectively the symmetric and anti-symmetric part
of J given by

D(x) =
1

2

(
J(x) + JT(x)

)
, S(x) =

1

2

(
J(x)− JT (x)

)
,

where JT is the transpose of J. Since D is real symmetric we can always reduce D
to diagonal form by choosing an appropriate orthonormal coordinate system given
by the principal reference system {ê1, ê2, ê3}. In this system D(x) and S(x) reduce
to

D(x) =

∂xu 0 0
0 ∂yv 0
0 0 ∂zw

 =

d1 0 0
0 d2 0
0 0 d3

 , (1.42)

and

S(x) =
1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (1.43)

From Lagrange’s original analysis, we have the following fundamental result.
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Lemma 1.8.1 (Decomposition of motion). Let P = P (x) and Q = Q(y) be two
neighbouring material points in the fluid and let h = y − x be the displacement
vector

−→
PQ. We have

u(y) = u(x) + D(x) · h +
1

2
ω(x)× h +O(|h|2) . (1.44)

Proof. Let us consider the Taylor expansion

u(y) = u(x) + J(x) · h +O(|h|2) , (1.45)

and the decomposition (1.41), so that

u(y) = u(x) + [D(x) + S(x)] · h +O(|h|2) . (1.46)

We can write
S(x) · h =

1

2
ω × h . (1.47)

By combining (1.46) with (1.47) the Lemma is proved.
�

1.8.1 Physical interpretation in terms of local flows

The background flow u(x) can be interpreted in terms of a rigid translation of fluid
particles. We can then decompose the motion as the sum of two other components.
Let’s examine them separately.

I Case: u(x) = 0 and ω(x) = 0. Let’s assume that locally (i.e. at a given x) we
move with the fluid (u(x) = 0) and we have no rotation (ω(x) = 0); in this case
equation (1.44) reduces to

u(y) =
dy

dt
= D(x) · h +O(|h|2) . (1.48)

Since y = h (here x = 0), to a first approximation this can be re-written as

dy

dt
= D(x) · h , (1.49)

that is a linear, first-order, ordinary differential equation in h, whose solution
clearly depends on D. Note that

Tr(D) =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ∇ · u ; (1.50)
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Figure 1.6: Advection of a fluid element under the flow map: (a) incompressible
case; (b) compressible case. The change of volume is shown by the dashed region.

by using eq. (1.22) we see that Tr(D) admits physical interpretation in terms of
compressibility (note that Tr(D) is invariant under change of coordinates).

In the principal coordinate system the elementary volume is given by the
product of the cube sizes h1, h2, h3 in the directions {ê1, ê2, ê3}. The change
of δV = h1h2h3 in time (see Figure 1.6b) is given by

d(h1h2h3)

dt
=

dh1

dt
h2h3 +

dh2

dt
h1h3 +

dh3

dt
h1h2 = (d1 + d2 + d3)(h1h2h3) , (1.51)

where dihi = dhi/dt (i = 1, 2, 3). For the elementary displacement h = δx we
have

d(δx)

dt

1

δx
=

δ

δx

dx

dt
=

δ

δx
u = ∇ · u . (1.52)

This means that in the limit hi → 0 we have

d1 + d2 + d3 =
∑
i

dhi
dt

1

hi
= ∇ · u , (1.53)

and
d(δV )

dt
= (d1 + d2 + d3) δV = [Tr(D)] δV = (∇ · u) δV , (1.54)

that relates the change in time of the volume with the divergence of u. Since D
is responsible for the geometric change of the elementary volume by distortion,
expansion or contraction, D can be seen as a deformation tensor .

II Case: u(x) = 0 and D(x) · h = 0. Let’s now assume that at a given point x we
have u(x) = 0 and no rigid translation and deformation i.e. D(x) · h = 0. In this
case equation (1.44) reduces to

u(y) =
dy

dt
=

1

2
ω × h +O(|h|2) . (1.55)
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Again, since y = h (x = 0) to a first approximation this can be expressed in terms
of a rotation matrix Q

dh

dt
= Q(x) · h , (1.56)

that is formally equivalent to eq. (1.49). Q(x) can be interpreted in terms of a
rotation of the fluid volume of an ‘angle’ t around the direction of ω(x). Thus,
(1/2)ω × h can be interpreted in terms of a rigid rotation of the fluid volume
through the rotation tensor Q(x).

In summary we can interpret eq. (1.44) as a linear combination of a rigid
translation due to the flow uT, a volume deformation due to uD and a rigid rotation
due to uR:

Lemma 1.8.2 (Decomposition of fluid motion). The velocity field u at a point y
can always be decomposed by

u(y) ≈ uT + uD + uR . (1.57)

that is
u(y) ≈ u(x)︸︷︷︸

rigid
translation

+ D(x) · h︸ ︷︷ ︸
volume

deformation

+
1

2
ω(x)× h︸ ︷︷ ︸

rigid
rotation

.

1.9 Analytic solutions to local flows
From the local decomposition of fluid motion (1.57), we can determine the analytic
solution for the velocity field u at any point of R3 as a linear combination of the
solutions for the local flows uT, uD and uR. Let us consider each contribution
separately.

I Case: determine uT by assuming uD = uR = 0. In this case there is no deforma-
tion or rotation of the fluid element, but simple rigid translation. This implies

∇ · uT = 0 , ∇× uT = 0 . (1.58)

Since there is no rotation of uT, by Stokes’ theorem we have∫
Σ

(∇× uT) · ν̂ d2x = ΓC =

∮
C
uT · dl = 0 , (1.59)

which means that circulation of uT is always zero for any closed path C in R3. Since
uT is non-zero and C is arbitrary, the vanishing of the last integral is only possible
by assuming a vanishing integration path through its continuous deformation to a
point (see Figure 1.7). This implies a simply connected fluid domain.
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Figure 1.7: Reduction of a closed path to a point in a simply connected region of
R2

Now, let’s split C into two contiguous arcs (C = C1∪C2) joint at the two points
O (origin of the parametrization of l on C1) and P (see Figure 1.8a). By reverting
the parametrization on the arc C2 (denoted by l̄; see in Figure 1.8b) we must have
l̄ = −l so that both arcs have same common origin and endpoint. Thus, from
(1.59) we have∮

C
uT · dl = 0 =

∫
C1

uT · dl +

∫
C2

uT · d̄l =

∫
C1

uT · dl−
∫
C2

uT · dl . (1.60)

Since C is arbitrary, from the last equation we have∫
C1

uT · dl =

∫
C2

uT · dl =

∫
C∗

uT · dl (1.61)

for any arbitrary path C∗ (Figure 1.8c). Since the integral does not depend on the
specific path, but it depends only on the value at the two endpoints O to P , we
can define a potential φT = φT(x) such that∫

C∗
uT · dl =

∫ P

O

uT · dx = φT(xP )− φT(xO) . (1.62)

by setting
uT = ∇φT . (1.63)

Since uT is divergence-less, we have ∇ · (∇φT) = 0, with potential satisfying the
Laplace’s equation

∇2φT(x) = 0 , (1.64)

in a simply connected region, with appropriate boundary conditions. The poten-
tial φT is therefore a harmonic function in R3. From the solution of (1.64) by using
(1.63), we have the velocity uT.

II Case: determine uD by assuming uT = uR = 0. In this case there is no
background translation or rotation of the fluid element, but simple deformation
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Figure 1.8: (a) A closed, oriented path C can be seen as the joint union of two
paths given by the oriented arcs C1 and C2, originating and ending at the points O
and P . (b) By re-defining parametrization we can revert orientation of C2 so that
both curves have same origin O and endpoint P . (c) The path integral from O to
P is then independent of the specific path.

due to contraction or expansion of the fluid volume. This means that the velocity
field is no longer divergence-less due to the presence of sources or sinks at some
point x∗ through a function η = η(x∗), i.e.

∇ · uD = η , ∇× uD = 0 . (1.65)

As in the previous case, since there is no rotation we can introduce a potential
φD = φD(x) for uD such that

uD = ∇φD ; (1.66)

since ∇ · uD = ∇ · (∇φD) = η, we have

∇2φD(x) = η(x∗) (1.67)

known as Poisson’s equation for contraction or expansion. From Green’s potential
theory, (1.67) has solution given by

φD(x) = − 1

4π

∫
W

η(x∗)

|x− x∗|
d3x∗ , (1.68)

whereG(x,x∗) = −1/4π|x−x∗| is Green’s fundamental solution (Green’s function)
to Laplace’s operator and W = W (x∗) is the volume of the source or sink points
at x∗. As usual by assigning appropriate boundary conditions we can determine
uD from the gradient of φD(x), so that

uD(x) = − 1

4π

∫
W

η(x∗)∇
(

1

|x− x∗|

)
d3x∗ , (1.69)
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or
uD(x) =

1

4π

∫
W

η(x∗)(x− x∗)

|x− x∗|3
d3x∗ . (1.70)

III Case: determine uR by assuming uT = uD = 0. In this case there is no
translation and deformation of the fluid. In presence of pure rotation at points x∗,
we have

∇ · uR = 0 , ∇× uR = ω , (1.71)
where ω = ω(x∗) is vorticity. Since vorticity is a vector field and is divergence-
less (the divergence of a curl is always zero), we may introduce a vector potential
A = AR(x∗), such that

uR = ∇×AR ; (1.72)
so

ω = ∇× uR = ∇× (∇×AR) . (1.73)
Now, from the standard vector identity

∇× (A×B) = (∇ ·B + B · ∇)A− (∇ ·A + A · ∇)B , (1.74)

by taking A = ∇ and B = AR, we have

ω = ∇× (∇×AR) = (∇ ·AR + AR · ∇)∇− (∇ · ∇+∇ · ∇)AR ,

and since (AR · ∇)∇ = (∇ ·∇)AR, we have the standard relation for the curl of a
curl:

ω = ∇(∇ ·AR)−∇2AR . (1.75)
It is customary to take ∇ ·AR = 0 (Coulomb gauge), so that the equation above
becomes

∇2AR(x) = −ω(x∗) , (1.76)
known as Poisson’s equation for vorticity ω. By using Green’s fundamental solu-
tion again, we have

AR(x) =
1

4π

∫
W

ω(x∗)

|x− x∗|
d3x∗ , (1.77)

and by taking the curl

uR(x) =
1

4π

∫
W

∇×
(
ω(x∗)

|x− x∗|

)
d3x∗

= − 1

4π

∫
W

ω(x∗)× (x− x∗)

|x− x∗|3
d3x∗ , (1.78)

known as Biot-Savart induction law for vorticity. Note that this is a global func-
tional of vorticity whose solution uR = uR(x) depends not only on ω, but also on
the domain of definition W = W (x∗) of vorticity.
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1.10 Conservation of energy
Since an ideal fluid is a fluid deprived of dissipation (i.e. inviscid) and heat trans-
fers (i.e. adiabatic), there is no mechanism responsible for energy depletion. So
total energy can be converted from one form to another, while being conserved.
Thus, ideal motion is a constant entropy process. For this ideal fluid is also called
isentropic. In general total energy is given by the sum of kinetic and internal
energy, i.e.

Etot =

∫
V

ρε d3x +
1

2

∫
V

ρ|u|2 d3x , (1.79)

where the first integral on the right-hand-side of (1.79) represents internal energy
Eint (ε is internal energy per unit mass), while the second integral the kinetic term
Ekin. The sum of the energies of all the molecules of the system is represented by
Eint, while Ekin is evidently associated with fluid motion. From a thermodynamic
viewpoint it is customary to refer to the specific enthalpy h = h(x, t) given by the
sum of specific internal energy ε = ε(x, t) and specific pressure, i.e.

h = ε+
p

ρ
. (1.80)

From the principle of conservation of energy, and in absence of volume or conser-
vative forces, we have

D

Dt
Etot = 0 . (1.81)

In presence of forces, eq. (1.79) must be amended as follows

D

Dt
Etot = −

∫
S

pu · ν̂ d2x +

∫
V

ρu · f d3x . (1.82)

In ideal conditions the internal energy term is usually neglected and in absence of
forces acting on the material volume total energy reduces to the sole contribution
due to the kinetic term.

1.10.1 Conservation of kinetic energy of an incompressible,
ideal fluid

For simplicity we assume that the fluid is ideal and incompressible and occupies
an infinite domain. Moreover, we neglect conservative forces and assume vanishing
pressure forces at infinity. Under these assumptions we have:

Theorem 1.10.1 (Conservation of kinetic energy). The kinetic energy Ekin of an
ideal, incompressible fluid is conserved, that is

D

Dt
Ekin(t) = 0 . (1.83)
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Proof. By applying the result of Lemma 1.6.2, we have

D

Dt

∫
V

1

2
ρ|u|2d3x =

1

2

∫
V

ρ
D

Dt
|u|2 d3x =

∫
V

ρu · Du

Dt
d3x . (1.84)

By taking the potential χ = −p+ φ for pressure and conservative force = ∇φ and
substituting eq. (1.37) into the last integral, we have

DEkin

Dt
=

∫
V

u · ∇χ d3x =

∫
V

u · ∇(χ− χ∞) d3x , (1.85)

where χ∞ denotes the value at infinity. By applying the divergence theorem to an
incompressible fluid (∇ · u = 0), we have

DEkin

Dt
=

∫
V

∇ (u (χ− χ∞)) d3x =

∫
S

u · ν̂(χ− χ∞) d2x = 0 , (1.86)

since in the limit x→∞ the potential difference vanishes.
�

1.11 Governing equations of an ideal fluid
Incompressible ideal fluids play an important role in the study of fluid motion
by offering an idealised and simplified model useful for mathematical analysis.
The jacobian determinant J = J(x; x0) associated with the deformation of fluid
elements under the flow map ϕ is given by

J(x; x0) =

∣∣∣∣ ∂(x)

∂(x0)

∣∣∣∣ . (1.87)

From linear algebra one can directly demonstrate that

DJ

Dt
= J ∇ · u . (1.88)

Note the similarity between the form of this equation and the continuity equation
(1.22) in absence of the convective term. If x = x(t) denotes a particle trajectory
from t = 0 to some time t, eq. (1.88) becomes an ordinary differential equation
with solution

J(x; x0) = exp

(∫ t

t=0

∇ · u dt

)
,

that shows how the ratio of the new to the original volume element (expressed
by J(x; x0)) is governed by the degree of expansion or contraction of a bundle of
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trajectories (measured by ∇ · u). The action of the jacobian on the fluid density
is made explicit by showing that the product ρ J is constant along a particle
trajectory, i.e.

d(ρ J)

dt
=

dρ

dt
J + ρ

dJ

dt
= (−ρ∇ · u)J + ρ(J ∇ · u) = 0 .

Hence, we have:

Lemma 1.11.1. The following statements are equivalent:

(i) the fluid is incompressible ⇔ Dρ

Dt
= 0;

(ii) the velocity field is solenoidal ⇔ ∇ · u = 0;

(iii) the fluid flow is volume-preserving ⇔ J(x; x0) = 1.

It is now possible to provide an alternative proof of the (Reynolds) transport
theorem (1.4.1) for a material volume by direct use of the jacobian of the transfor-
mation from the initial volume V0 = V (t = 0) to the volume V = V (t). Remember
that since V is a material volume there is no flux of particles through its bounding
surface. Since x = J(x; x0)x0 (and thus V = JV0), we evidently have

D

Dt

∫
V

G d3x =
D

Dt

∫
V0

GJ d3(x0) =
D

Dt

∫
V0

G d3(Jx0) =

∫
V0

D

Dt
(GJ) d3x0

=

∫
V0

[
DG

Dt
J +

DJ

Dt
G

]
d3x0 =

∫
V

DG

Dt
d3x +

∫
V0

GJ∇ · u d3x0

=

∫
V

[
∂G

∂t
+∇ · (Gu)

]
d3x =

∫
V

∂G

∂t
d3x +

∫
S

G(u · ν̂) d2x .

Hence we recover (1.12) and (1.13).
In summary, the governing equations of an incompressible, ideal fluid are given

by

E1 :


∇ · u = 0 ,

ρ
Du

Dt
= −∇p+ ρf .

(1.89)

If we relax incompressibility, the ideal fluid is governed by the alternative set of
equations

E2 :


Dρ

Dt
= −ρ∇ · u ,

ρ
Du

Dt
= −∇p+ ρf .

(1.90)

Depending on the situation, solution to (E1) or (E2) are given by assuming one of
the two boundary conditions:
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• for a finite volume of fluid, the Neumann condition at the boundary: u·ν̂ = 0
on ∂V ;

• for a fluid in an infinite volume, the Dirichlet condition at infinity: u = 0 as
x→∞.
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Chapter 2

Vortex dynamics

2.1 Kinematic transport of circulation
The concept of circulation plays a fundamental role in many aspects of field theory
and fluid dynamics in particular.

Definition 2.1.1. The circulation Γ = Γ(t) of a vector field u along a simple,
closed curve C(t) in R3 is defined by

Γ(t) =

∮
C(t)

u · dl =

∮
us ·

∂ls
∂s

ds , (2.1)

where dl represents the elementary length of C(t) and the last integral is between
fixed (cyclic) values of the arc-length s on C.

Note that C(t) is an arbitrary material curve lying entirely in the fluid..
Let us consider the transport of Γ under the action of a fluid flow. In analogy

with the result of Lemma (1.30) one can prove the following result.

Theorem 2.1.1 (Kinematic transport of circulation).

D

Dt

∮
C(t)

u · dl =

∮
C(t)

Du

Dt
· dl . (2.2)

Proof. Let C(t) be a simple, closed, space curve given by the vector equation
x = x(s, t). Note that

dl =
∂x

∂s
ds = t̂ ds , (2.3)

where t̂ is the unit tangent to C. Then

D

Dt

∮
C
u · dl =

D

Dt

∮
C

∂x

∂t
· ∂x

∂s
ds =

∮
C

(
∂2x

∂t2
· ∂x

∂s
+
∂x

∂t
· ∂
∂t

∂x

∂s

)
ds

27



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

CHAPTER 2. VORTEX DYNAMICS

=

∮
C

(
∂u

∂t
· t̂ + u · ∂

∂s

∂x

∂t

)
ds =

∮
C

(
∂u

∂t
· t̂ + u · ∂

∂s
u

)
ds

=

∮
C

(
∂u

∂t
· t̂ + (u · ∇)u · t̂

)
ds =

∮
C

Du

Dt
· t̂ ds =

∮
C

Du

Dt
· dl . (2.4)

�

2.2 Kelvin’s circulation theorem
An immediate consequence of the kinematic transport of circulation is Kelvin’s
circulation theorem.

Theorem 2.2.1 (Kelvin’s circulation theorem).

D

Dt
Γ(t) = 0 ⇒ Γ = constant . (2.5)

Proof. Let’s apply Theorem 2.1.1 and substitute eq. (1.38) into the right-hand-side
of eq. (2.2). By neglecting conservative forces, we have∮

C

Du

Dt
· dl = −

∮
C

1

ρ
∇p · dl = 0 , (2.6)

since the integral of the gradient is taken over a closed path.
�

This means that as long as Γ is a material curve under Euler equations the
circulation is constant in time (‘frozen’ in the fluid) and it is invariant of the flow
map. Moreover, if the fluid domain is simply connected we know that we can
always reduce any given closed path C to a point; hence, simply-connectedness
implies reducibility and zero circulation. The reverse, however, is not true.

2.3 Vorticity transport equations
Theorem 2.3.1 (Vorticity transport theorem). For isentropic flow, we have

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· ∇
)

u . (2.7)

Proof. By re-writing the vector identity (??) in the form

(u · ∇) u =
1

2
∇
(
|u|2
)
− u× (∇× u) , (2.8)
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we substitute the convective derivative above in the momentum equations (1.37),
so to have

∂u

∂t
+

1

2
∇
(
|u|2
)
− u× (∇× u) = −∇p

ρ
+∇φ , (2.9)

where f = ∇φ because forces are conservative. By taking the curl of (2.9), since
time and space derivatives commute and the curl of a gradient is identically zero,
we have the vorticity induction law , given by

∂ω

∂t
= ∇× (u× ω) . (2.10)

Moreover, by using the vector identity (1.74) with A = u and B = ω, we have

∇× (u× ω) = (∇ · ω + ω · ∇)u− (∇ · u + u · ∇)ω ; (2.11)

By substituting the second term on the right-hand-side of (2.10) and recalling that
∇ · ω = ∇ · (∇× u) = 0, we have

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u− ω(∇ · u) . (2.12)

Thus
Dω

Dt
= (ω · ∇)u− ω(∇ · u) . (2.13)

From the continuity equation (1.22), we have that

∇ · u = −1

ρ

Dρ

Dt
,

and noting that
D

Dt

(
1

ρ

)
= − 1

ρ2

Dρ

Dt
,

we have
∇ · u = ρ

D

Dt

(
1

ρ

)
;

then, eq. (2.13) becomes

Dω

Dt
= (ω · ∇) u− ωρ D

Dt

(
1

ρ

)
. (2.14)

By dividing everything by ρ, we have

1

ρ

Dω

Dt
+ ω

D

Dt

(
1

ρ

)
=

(
ω

ρ
· ∇
)

u
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or
D

Dt

(
ω

ρ

)
=

(
ω

ρ
· ∇
)

u , (2.15)

known as the vorticity transport equations in lagrangian form.
�

2.4 Vortex tubes and filaments

In analogy with the definition of streamline we have the concept of vortex-line:

Definition 2.4.1. A vortex-line is the integral curve given by the solution of the
system

dx

ω1

=
dy

ω2

=
dz

ω3

, (2.16)

where x = (x, y, z) is the position vector of the points on the curve and ω =
(ω1, ω2, ω3) is vorticity.

Consider a tubular region centered on a space curve C and of cross-sectional
dimensions small compared to the local radius of curvature R of C. If the tube is
made by a coherent bundle of vortex lines running parallel to the tube centreline,
then we have a vortex tube (see Figure 2.1). Let Σ denote the tube cross-section;
we have

Definition 2.4.2. The flux of vorticity Φ through Σ ⊂ R2 is defined by

Φ =

∫
Σ

ω · ν̂ d2x , (2.17)

where Σ is a fluid plane region.

It is useful to assume a tube cross-section of circular shape, so that Σ = πσ2;
a vortex filament is a tube of negligible cross-section with σ � R. The flux Φ of
such concentrated vorticity is referred to as the strength of the vortex.

In general a vortex tube is a localized regionW of vorticity where ω 6= 0. Since
the tube is embedded in an irrotational fluid domain where ω = 0 — and the fluid
is assumed to be ideal, without shear forces — we can think of the fluid domain
as made of two complementary regions, union of an irrotational region V and a
rotational region W . Hence, a closed path C of the irrotational velocity in V is
either reducible to a point (as shown in Figure 1.7) or, if C is chosen to encircle
(singly) a vortex region W , it cannot be reducible (see Figure 2.2); thus for such
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Figure 2.1: A vortex tube embedded in an ideal, irrotational fluid.

a path Γ 6= 0. To avoid confusion, let x denote a point in the irrotational domain
V and x∗ a rotational point where ω 6= 0. By using Stokes theorem, we have

Γ =

∮
C
u(x) · dl =

∫
Σ

ω(x∗) · ν̂ d2x∗ = Φ , (2.18)

where Σ denotes a generic vortex cross-section. Since ω = 0 for any point x
(outside Σ), there is no contribution to the flux outside Σ. Now, suppose Φ = Φ(t).
As direct application of Kelvin’s circulation theorem 2.2.1 to eq. (2.18), we have:

Corollary 2.4.1 (Flux conservation). In an ideal fluid, the flux of vorticity is
constant in time, that is

D

Dt
Φ(t) = 0 ⇒ Φ = constant . (2.19)

This means that in an ideal conditions the flux is ‘frozen’ in the fluid. In
presence of localized vorticity (as in vortex tubes) circulation is evidently given by
concentrated flux.

2.5 Cauchy’s solutions to the transport equations
and topological equivalence class

In ideal conditions initial vorticity ω0 = ω(x0, 0) is continuously deformed by the
jacobian associated with the flow map ϕ and transported by the flow. This was
already known to Cauchy in 1815; we have:

Lemma 2.5.1 (Cauchy’s solutions). For isentropic flow, vorticity is transported
by the flow according to

ω

ρ
=

∂(x)

∂(x0)
·
(
ω

ρ

)
0

, (2.20)

31



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

CHAPTER 2. VORTEX DYNAMICS

Figure 2.2: A vortex patch W bounded by the circuit C = ∂W in R2.

where the index 0 denotes initial condition; the equations above are solutions to
the vorticity transport equations (2.15).

Proof. Since ϕ : x0 → x any material element δl0 of a vortex line at time t = 0 is
transported by the flow map ϕ to the new position δl. If x = x(s, t) denotes the
position vector of a vortex line, we have

δl = t̂δs =
∂x

∂s
δs =

∂(x)

∂(x0)
· ∂x0

∂s
δs =

∂(x)

∂(x0)
· δl0 . (2.21)

where ∂(x)/∂(x0) = J(x; x0) is the jacobian of the transformation. By definition
of vortex line we can identify δl0 with (ω/ρ)0, so that we have proved (2.20).

Now let’s prove the second statement. By moving lagrangianly on the line, we
can derive (2.20) with respect to time, so to have

D

Dt

(
ω

ρ

)
=

d

dt

[
∂(x)

∂(x0)
· ω0

ρ0

]
=

∂(u)

∂(x0)
·
(
ω

ρ

)
0

=

(
∂(u)

∂(x)

∂(x)

∂(x0)

)
·
(
ω

ρ

)
0

=
∂(u)

∂(x)

[
∂(x)

∂(x0)
·
(
ω

ρ

)
0

]
=
∂(u)

∂(x)
· ω
ρ
. (2.22)

By re-arranging the last term of (2.22) we have

D

Dt

(
ω

ρ

)
=
∂(u)

∂(x)
· ω
ρ

=

(
ω

ρ
· ∇
)

u , (2.23)

that is equation (2.15). Thus, we have proved Lemma (2.5.1).
�

Equations (2.20) are also known as Cauchy’s invariants . Since vorticity is
transported by continuous deformation of the initial vortex configuration to the
final vortex configuration, vortex topology is conserved. Hence, we have
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Corollary 2.5.1 (Topological equivalence class). For isentropic flow, Cauchy’s
solutions given by (2.20) establish a topological equivalence class between vortex
configurations at different times; we write(

ω

ρ

)
t=0

∼
(
ω

ρ

)
t

. (2.24)

In establishing a topological equivalence between vortex regions the Corollary
2.5.1 provides the foundations to Helmholtz’s conservation laws (see Section 2.6)
and for a topological approach to vortex dynamics.

2.6 Helmholtz’s conservation laws
Vortex motion in ideal conditions is governed by the vorticity transport equations
and, through the topological interpretation of Cauchy’s solutions, by the following
laws:

Theorem 2.6.1 (Helmholtz’s conservation laws). Under isentropic flow, vortex
motion is subject to the following laws:

(i) Irrotational fluid particles at time t = 0 remain irrotational at any subsequent
time t > 0.

(ii) A vortex line is a material line made by the same rotational elements at all
times.

(iii) The flux of vorticity of any portion of vortex tube is constant.

Proof of (i). First consider a material line in R3 made of particles carrying a
scalar-like quantity θ (for example temperature) and consider the time variation
of this quantity evaluated at the lagrangian position ξ along the line; since the
reference is fixed on the line, the material derivative coincides with the ordinary
derivative:

Dθ

Dt
=

dθξ
dt

. (2.25)

We can thus interpret the vector equation (2.15) as a set of equations for the scalar
quantities ω1, ω2, ω3 evaluated lagrangianly at the position ξ, so that

D

Dt

(
ω

ρ

)
=

d

dt

(
ω

ρ

)
ξ

=

(
ω

ρ
· ∇
)

u . (2.26)

This allows us to interpret the equation above as an ordinary differential equation
for the components of ω/ρ. If u remains smooth at all times, so does its gradient
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and curl. If (ω/ρ)ξ = 0 at t = 0, then by the theory of existence and uniqueness of
smooth solutions (ω/ρ)ξ = 0 at any subsequent time t > 0. The first law is proved.

Proof of (ii). We can now show that a material line element δlξ = t̂ξδs at the
lagrangian position ξ satisfies the same equation (2.26):

d

dt
δlξ =

d

dt

(
∂x

∂s

)
ξ

δs =

(
∂

∂s

)
ξ

dx

dt
δs = (δlξ · ∇) u . (2.27)

By combining (2.26) and (2.27), we have

d

dt

(
ω

ρ
− δl

)
ξ

=

[(
ω

ρ
− δl

)
ξ

· ∇

]
u . (2.28)

Now, if δlξ is a vortex element at t = 0, we have a unique, smooth solution at
all subsequent times that ensures δlξ to remain a vortex element at all subsequent
times. The second law is therefore proved.

Proof of (iii). Consider a vortex tube and the vortex region confined between
two generic cross-sections Σ1 and Σ2. Since by assumption the tube is made by a
bundle of vortex lines running parallel to the tube centreline, then ω · ν̂ = 0 on
the bounding tubular surface. The total flux between Σ1 and Σ2 is given by∫

Σ1

ω · ν̂ d2x−
∫

Σ2

ω · ν̂ d2x =

∫
W

∇ · ω d3x = 0 , (2.29)

where the minus sign takes care of the prescribed centreline orientation and W
denotes here the tube volume between the two cross-sections; the last integral is
simply due to the application of the divergence theorem on W that vanishes since
the divergence of a curl is always zero.

From mass conservation, which is true for any elementary vortex volume, we
have

(ρ δl · ν̂δΣ)ξ = constant . (2.30)
If the material line element is an element of a vortex line, i.e. if δlξ = (ω/ρ)ξ, then

ωξ · ν̂ δΣ = constant , (2.31)

and this can be integrated over the whole cross-section, so that

Φ =

∫
Σ

ω · ν̂ d2x = constant . (2.32)

Hence, the third law is also proved.
�

Some remarks are in order:

34



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

CHAPTER 2. VORTEX DYNAMICS

1. The first and the second Helmholtz’s law state that an irrotational region at a
given time remains irrotational at all subsequent times and vorticity on a vortex
line is a material property of that line, i.e. that the vortex line is ‘frozen’ in the
fluid. Since these two laws state purely qualitative properties of the fluid these
two laws are purely topological in character.

2. Since a vortex tube can be thought of as a bundle of vortex lines, the second
law can equally be extended to vortex tubes, or to more general vortex regions.
By applying Lemma 2.5.1 to generic vortex configurations we can state that
in ideal conditions rotational and irrotational regions do not mix and vortex
topology is ‘frozen’ in the fluid. This means that if vortex knots and links are
present in the fluid, they cannot change topology while changing shape during
motion. Thus, a change in topology can only be achieved by the presence of
shear forces due to, for example, viscosity.

3. The third Helmholtz’s law provides quantitative information by stating that
the flux through any section of a vortex tube is constant. In particular, if the
fluid is uniform, then ρ = constant, and from (2.30) we have that at any station
s = ξ we have

δΣ ∝ 1

|δl|
. (2.33)

This means that if vortex stretching is present, it must be accompanied by
a corresponding shrinking of the average vortex cross-section, and vice-versa.
Moreover, since flux is conserved, from (2.31) and (2.33) any stretching must
be accompanied by an increase of vorticity since ω ∝ δl.

2.7 Conservation of kinetic helicity

Kinetic helicity is a fundamental invariant of fluid mechanics. Let us start with
its definition.

Definition 2.7.1. Kinetic helicity H = H(t) is defined by

H(t) =

∫
W

u · ω d3x∗ , (2.34)

where W = W (x∗) is the volume of vorticity, with ω · ν̂ = 0 on the boundary ∂W .

We conclude this chapter with the proof of the conservation of kinetic helicity
for fluids in ideal conditions. We have:
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Theorem 2.7.1 (Conservation of kinetic helicity). For isentropic flow, kinetic
helicity is conserved , that is

D

Dt
H(t) = 0 ⇒ H = constant . (2.35)

Proof. By applying the kinematic result (1.27) we have

DH

Dt
=

D

Dt

∫
W

u · ω d3x∗ =

∫
W

D

Dt
(u · ω) d3x∗

=

∫
W

(
Du

Dt
· ω + u · Dω

Dt

)
d3x∗ . (2.36)

From Euler’s equations (1.38) and vorticity transport equations (2.15), we have

DH

Dt
=

∫
W

[
−1

ρ
∇p · ω + u · (ω · ∇u)

]
d3x∗ . (2.37)

Since ∇ · ω = 0, we have

DH

Dt
=

∫
W

(ω ·∇)

(
−p
ρ

+
1

2
|u|2
)

d3x∗ =

∫
W

∇·
[
ω

(
−p
ρ

+
1

2
|u|2
)]

d3x∗ . (2.38)

By using the divergence theorem, we have

DH

Dt
=

∫
∂W

(
p

ρ
− 1

2
|u|2
)
ω · ν̂ d2x∗ = 0 . (2.39)

because of the assumption on ω at the boundary ∂W . Hence, H is ‘frozen’ in the
fluid.

�

36



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

Chapter 3

Elements of magnetohydrodynamics

3.1 Maxwell’s equations
We briefly recall the fundamental equations that govern the motion of a charged
fluid (a plasma) in presence of electric currents and magnetic fields. For this we
must complete the set of fundamental quantities necessary to provide a compre-
hensive description of the physical state of the charged fluid. A fluid continuum is
prescribed by specifying the following physical quantities.

(i) For a classical fluid, these are:

- density ρ;
- kinetic viscosity ν;
- ratio of specific heats Γ = cp/cv, where we assume that all the molecules
have 3 degrees of freedom (cp and cv are respectively the specific heat at
constant pressure and at constant volume).

(ii) For an electrically charged fluid, these are:

- electron density ρe;
- electrical conductivity σ0;
- magnetic permeability of free space µ0.

For an electrically charged fluid the analogue of the kinetic Reynolds number Re
is the magnetic Reynolds number Rem, given by

Rem =
UL

η
, (3.1)

that provides the ratio between advection and magnetic diffusion, where η =
(σ0µ0)−1 (analogue to viscous diffusivity ν) is magnetic diffusivity . In presence
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Figure 3.1: Fundamental physical constants in a charged fluid.

of electrically charged particles transported by the flow with velocity u, the fluid
experience electric currents, denoted by J, usually decomposed into two contribu-
tions:

J = Jconduction + Jadvection , (3.2)
where

Jconduction = J + ρeu , Jadvection = −ρeu .

The conduction current is related to the combined action of the electric field E
and magnetic field B through the constitutive Ohm’s law , given by

Jconduction = σ0 (E + u×B) . (3.3)

The interplay between electric currents and magnetic fields is cast in the celebrated
set of equations known as (pre-)Maxwell’s equations , given by

∇ · E = ρe ,
∂E

∂t
= ∇×B− J ,

∇ ·B = 0 ,
∂B

∂t
= −∇× E ,

(3.4)

where for simplicity we set all physical constants equal to 1. These equations
provide the conditions for the source and transport of E and B. The emergence
of electric fields is essentially associated with the presence of charged particles
through ρe, with variation governed by the interplay of a rotational magnetic field
B and a current J. The magnetic field is considered to be divergenceless (no
magnetic poles have been found so far) and its variation is due to the rotational
action of an electric field E.

3.2 Ideal magnetohydrodynamics (MHD)
As we did for a classical fluid, it is useful to introduce some simplifications to reduce
Maxwell’s equations to a set of equations amenable to mathematical analysis. For
this we make the following assumptions:

38



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

CHAPTER 3. ELEMENTS OF MAGNETOHYDRODYNAMICS

(i) the charged fluid is electrically neutral. For this we take Jconduction = 0, so
that Ohm’s law can be reduced to

E = −u×B ; (3.5)

(ii) the electric field E is steady, that is

∂E

∂t
= 0 ; (3.6)

(iii) the propagation velocity of the perturbations of the magnetic field, that travel
with the Alfvén speed vA, is much smaller than the speed of light c, i.e.

vA =
|B|
√
ρeµ0

� 1
√
ε0µ0

= c , (3.7)

where ε0 is the electric constant of the vacuum (that measures the capability
of the vacuum to permit electric fields).

Under these assumptions we can re-write the second of (3.4) as

J = ∇×B , (3.8)

known as Ampère’s law , and the fourth of (3.4) as

∂B

∂t
= ∇× (u×B) , (3.9)

known as Faraday’s equation.
Charged particles transported with a fluid velocity u are responsible for the

combined action of electric currents and magnetic fields. These, in turn, generate
a Lorentz force that acts on magnetic fields, given by

fLorentz = J×B . (3.10)

In summary, if we set for simplicity ρ = constant and consider magnetic diffusiv-
ity η, the governing equations for incompressible magnetohydrodynamics (MHD)
become

MHD :



Du

Dt
= −∇p+ ν∇2u + J×B linear momentum

∂ω

∂t
= ∇× (u× ω) + ν∇2ω +∇× (J×B) vorticity transport

∂B

∂t
= ∇× (u×B) + η∇2B magnetic field transport

By setting dissipative effects (viscous and resistive) equal to zero, i.e. by tak-
ing ν = η = 0, the equations above reduce to the standard equations of ideal
magnetohydrodynamics .
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3.3 Alfvén’s conservation law of ideal MHD
Let us consider the ideal MHD equations. First of all notice that by neglecting
dissipative effects equations of ideal MHD conserve topology. This is because we
can re-interpret Faraday’s law (3.9) as the equation governing the advection of an
initial magnetic field to its final configuration by continuous deformation through
the flow map ϕ, exactly as we did for vorticity. Indeed, by noting the formal
analogy with the vorticity induction law (2.10), we can re-write Faraday’s law in
terms of a material derivative (following the same derivation as for eq. 2.15), so
to have the magnetic induction equation

DB

Dt
= (B · ∇) u , (3.11)

with solutions formally analogue to the Cauchy’s solutions given by eqs. (2.20).
Hence, similarly to what is done for (2.24), we say that eqs. (3.11) govern the
evolution of a class of topologically equivalent magnetic field configurations, i.e.

(B)t=0 ∼ (B)t . (3.12)

By identifying magnetic field lines as material lines and following the same
arguments as is done for Helmholtz’s conservation laws, we have an analogue
interpretation for magnetic lines, filaments and tubes. In this context the following
result holds true.

Theorem 3.3.1 (Alfvén’s theorem). For ideal magnetohydrodynamic flow, the
magnetic flux

Φ(t) =

∫
Σ

B · ν̂ d2x , (3.13)

is conserved in the fluid, i.e.

D

Dt
Φ(t) = 0 ⇒ Φ = constant . (3.14)

Proof. By direct application of the transport theorem (1.7) in two dimensions
(where Σ replaces V ), we have

D

Dt
Φ(t) =

∫
Σ

∂B

∂t
· ν̂ d2x +

∮
C

B · u× dl . (3.15)

By substituting the induction equation (3.9) and by using the vector identity
B · u× dl = −(u×B) · dl, we have

D

Dt
Φ(t) =

∫
Σ

∇× (u×B) · ν̂ d2x−
∮
C
(u×B) · dl , (3.16)
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By applying Stokes’ theorem to the first integral, the two integrals above cancel
out and the statement is thus proved.

�

3.4 Conservation of magnetic helicity
In ideal MHD we can define a quantity analogue to kinetic helicity.

Definition 3.4.1. Magnetic helicity Hm = Hm(t) is defined by

Hm(t) =

∫
Wm

A ·B d3x∗ , (3.17)

where B = ∇ × A and A is the vector potential of B, with Coulomb gauge
∇ · A = 0, Wm = Wm(x∗) volume of the magnetic field, and B · ν̂ = 0 on the
boundary ∂Wm (magnetic surface).

Similarly to kinetic helicity, also magnetic helicity is ‘frozen’ in ideal conditions.

Theorem 3.4.1. Magnetic helicity Hm = Hm(t) is conserved in ideal MHD, i.e.

D

Dt
Hm(t) = 0 ⇒ Hm = constant . (3.18)

Proof. Let’s un-curl Faraday’s induction law (3.9); we have

∂A

∂t
= u×B +∇φ , (3.19)

where φ is an arbitrary scalar field (since ∇× (∇φ) = 0). Because of the Coulomb
condition on A, φ is defined by taking the divergence of (3.19), i.e.

∇2φ = −∇ · (u×B) . (3.20)

By using (3.19), Faraday’s eq. (3.9) and ∇ ·B = 0, we have

∂

∂t
(A ·B) = A · [∇× (u×B)] +∇ · (φB) , (3.21)

which, with the help of the vector identity

A · [∇× (u×B)] = ∇ · [A× (B× u)] = ∇ · [(A · u)B− (A ·B)u] , (3.22)

becomes
D(A ·B)

Dt
= ∇ · [(φ+ A · u)B] , (3.23)
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CHAPTER 3. ELEMENTS OF MAGNETOHYDRODYNAMICS

since ∇·(A ·B)u = u ·∇(A ·B). Now, by using the above equation and integration
over the material magnetic volume Wm, we have

DHm

Dt
=

∫
Wm

D(A ·B)

Dt
d3x∗ =

∫
Wm

∇ · [(φ+ A · u)B] d3x∗ = 0 , (3.24)

by using the divergence theorem and the condition that ∂Wm is a magnetic surface.
�

3.5 Analogous Euler flows
It is useful to compare the ideal equations of a classical fluid with those of mag-
netohydrodynamics. Two different types of analogies are relevant. Consider first
the following case.

Non-perfect analogy: ω ↔ B

Euler’s equations:


ω = ∇× u ,

∂ω

∂t
= ∇× (u× ω) ,

H =
∫
W

u · ω d3x∗ ;

(3.25)

and

ideal MHD equations:


B = ∇×A ,

∂B

∂t
= ∇× (u×B) ,

Hm =
∫
W

A ·B d3x∗ .

(3.26)

The analogy between ω and B is non-perfect since the relationship between ω
and u does not carry through B and u: the magnetic field is simply transported
by u, but it is not related to u. In this sense B behaves like a passive scalar.
Contrary, in the case of vorticity there is a direct interplay between ω and induced
velocity due to the Biot-Savart induction law.

A stricter analogy occurs when we consider steady conditions. Indeed, from
the vorticity induction law we have

∇× (u× ω) = 0 , (3.27)

but since ∇× (∇h) = 0 for any arbitrary h, we have

u× ω = ∇h . (3.28)
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Figure 3.2: Analogous solutions via steady equilibria.

From the steady equations for ideal MHD, we have

−∇p+ J×B = 0 . (3.29)

Thus, in steady conditions we have a perfect analogy between Euler’s equations
and ideal MHD equations:

Perfect analogy: ω ⇔ J

steady Euler’s equations:


ω = ∇× u ,

u× ω = ∇h ,

H =
∫
W

u · ω d3x∗ ;

(3.30)

and

steady, ideal MHD equations:


J = ∇×B ,

J×B = ∇p ,

Hcross =
∫
W

J ·B d3x∗ .

(3.31)

In this case we have a direct correspondence between the following quantities:

ω ⇔ J , u⇔ B , h⇔ −p .

In agreement with Arnold’s strategy, this suggests to look for possible solutions
of the velocity field, given by ueq, by considering the analogous problem in terms
of magnetic field equilibria: starting from the initial condition B0 we first look
for steady state equilibria of ideal MHD configurations, given by Beq, and then,
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by the analogy (3.32) above, we have ueq. This strategy is particularly appropri-
ate when we want to investigate topologically complex configurations, because the
MHD equations are linear in B (since u is de-coupled from B). Topologically com-
plex solution of Euler flows can be therefore studied through magnetic equilibria.
Toroidal solutions to the so-called Grad-Shafranov equations for confined plasma
in Tokamaks correspond indeed to the toroidal vortex ring solutions of the Euler
equations.
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Chapter 4

Topological interpretation of helicity

4.1 The Gauss linking number

An important result rooted in the seminal work of Moffatt (1969) establishes a
deep connection between the helicity of a field , which is a well-known conserved
quantity of ideal fluid flows and linking number, which is a fundamental invariant
of the topology of links. This result is of general validity, but it is particularly
illuminating in the case of a discrete distribution of linked flux tubes in ideal
conditions. To present this result and discuss its consequences we introduce first
the concept of linking number as introduced by Gauss (1833).

In low-dimensional topology a knot is just a simple, closed curve in R3. A knot
is said to be trivial if it can be continuously deformed to the standard circle, the
unknot. A link is a disjoint, inseparable union of knots (the components of the
link) in R3. One of the most fundamental topological invariants of links is the
Gauss linking number.

Definition 4.1.1. Given a link of two closed curves C1 and C2 in R3 the linking
number Lk1,2 = Lk(C1, C2) is defined by

Lk1,2 =
1

4π

∮
C1

∮
C2

(x1 − x2) · dx1 × dx2

|x1 − x2|3
, (4.1)

where x1 and x2 denote points on C1 and C2, respectively.

The linking number of two closed curves computes the number of times one
curve, say C1, winds around the other, say C2 (see Figure (4.1)a). Lk1,2 is a
topological invariant of the link, it is a pure integer and is symmetric, i.e. Lk1,2 =
Lk2,1.
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Figure 4.1: A Hopf link of two curves C1 and C2 in R3.

By taking r = (x1 − x2), we can introduce a unit vector r̂ = r/|r| and re-write
the above integral as

Lk1,2 =

∮
C1

∮
C2

(dx1 × dx2) · r̂
4π|r|2

=
1

2

∫
Ω

d$ , (4.2)

where the first integrand can be interpreted as the ratio between the elementary
area given by the triple product at the numerator and the area of the (Gauss)
sphere of radius |r| at the denominator. Since this ratio is a pure number, we can
take |r| = 1 so that it can be interpreted via the tangent map t̂ from the link
components (see Figure 4.1b) as the elementary solid angle contribution d$ for
the apparent intersections of the two curves on the Gauss unit sphere Ω (see Ricca
& Nipoti, 2011). From the solid angle interpretation we can re-write the linking
number formula in algebraic form in terms of apparent intersections of strands.
To see this let us consider the over-pass or under-pass in a diagram projection of
the link (see Figure 4.2), and assign to each apparent intersection a ±1 according
to a convention rule. Now consider the diagram of Figure 4.1(c): the elements dx1

of C1 and dx2 of C2 will contribute to the double integration in (4.2) if and only
if they will intersect in projection along the direction of sight ν̂. This happens if
and only if ν̂ is directed along ±(r +λ dx1−µ dx2), with λ ∈ (0, 1) and µ ∈ (0, 1),
i.e. if and only if ν̂ lies within the elementary solid angle

d$ = 2
(dx1 × dx2) · r̂

4π|r|2
,

the factor 2 resulting from double counting the intersection sites. Thus, when we
average over all directions of ν̂, take account of crossing signs and then integrate
over all pairs of elements dx1, dx2, the double integration over C1 and C2 reduces
to the discrete sum of ±4π coming from each apparent intersection of strands;
hence, we have

Lk1,2 =
1

2

∑
r∈{C1uC2}

εr , (4.3)
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Figure 4.2: Sign convention for under-passes and over-passes of knot strands.

where r is the number of apparent intersections in the link diagram {C1 u C2} and
εr = ±1 according to the right-hand rule for over-passes or under-passes.

Since the linking number is a topological invariant of the link, it does not
depend on the link projection. So, eq. (4.3) allows to compute Lk1,2 by using any
convenient projection of a given link without knowing anything analytic about the
link components. This algebraic computation of the linking number proves to be
very useful indeed for applications.

4.2 Derivation of the Gauss linking number from
the helicity of a link

Now suppose C1 and C2 are the centrelines of tubular rings and consider these
rings to be physical flux tubes given by a discrete distribution of field lines within
the tubes. To fix ideas let us consider magnetic fields and flux tubes embedded
in ideal fluid. We can then prove that the total helicity of the system admits a
topological interpretation in terms of linking number. Indeed, under ideal mag-
netohydrodynamic conditions we know that the magnetic flux Φi (i = 1, 2) is
conserved by Alfvén’s theorem (3.3.1) and that magnetic helicity is also conserved
by (3.4.1). Thus, the ratio of these two quantities is evindently conserved and the
proof that this ratio is actually a topological invariant cast in the Cauchy solutions
to Faraday’s equations (see Section 3.3). By assuming (for simplicity) that fluid
density is either uniform or a function of pressure only, and that all body forces
are conservative, we have:

Theorem 4.2.1. In ideal conditions the helicity Hm of a magnetic link of two (or
more) flux tubes in the shape of planar rings of centreline Ci (i = 1, 2, . . .), tubular
boundary a magnetic surface and flux Φi, is given by

Hm =
∑
i 6=j

ΦiΦjLki,j , (4.4)
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Figure 4.3: A simple link of two, planar flux tubes.

where Lki,j = Lk(Ci, Cj) is the Gauss linking number of Ci with Cj.

Proof. First, let us consider 2 rings of axes C1 and C2 and small cross-section.
We identify the flux Φ1 with the field B = ∇ ×A (such that ∇ ·A = 0) within
the tube of axis C1 and interpret Φ1 as the circulation of A along C2, that is
Φ1 =

∮
C2 A · dl = K2 = constant (see Figure 4.3). From Stokes theorem applied to

C1 we also have

K1 =

∮
C1

A · dl =

∫
S1

B · ν̂ d2x , (4.5)

where C1 = ∂S1.
Since the flux of the magnetic field across S1 is simply that due to the second

flux tube of axis C2, we have

K1 =

{
±Φ2 if C1 and C2 are linked ,
0 if C1 and C2 are not linked ,

(4.6)

where ± refers to the two possible relative orientations of C1 and C2. If C2 winds
an integer number of times around C1 (see Figure 4.4), then

K1 = Lk1,2Φ2 , (4.7)

where Lk1,2 denotes the degree of linking of C1 and C2. In general, if we have N
rings Cj all linked with Ci an obvious generalization of (4.7) is

Ki =

∮
Ci

A · dl =
∑
j

Lki,jΦj , (4.8)

where now Lki,j denotes the degree of linking of the N rings of axes Cj with Ci.
The quantity ΦiKi may be written in the form of an integral over the volume Vi
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Figure 4.4: The curve C2 is multiply linked with the curve C1.

occupied by the tube centred on Ci. Since the rings have small cross-section and
dl denotes an elementary length of Ci, Φi dl may be replaced by B d3x∗, so that

ΦiKi =

∮
Ci

Φi A · dl =

∫
Vi

A ·B d3x = Hm,i , (4.9)

where Vi is the volume of the i-th ring. If we sum over all the tubes present, we
obtain an invariant integral over the entire distribution of magnetic field, given by

Hm,i =
∑
i

∫
Vi

A ·B d3x∗ =
∑
i

ΦiKi =
∑
i 6=j

Lki,jΦiΦj . (4.10)

It should be noted that Hm,i is determined solely by the magnetic field within
each ring; this dependence may be made explicit by writing

A = ABS +∇φ

where ABS is the field induced by the Biot-Savart induction law given by

ABS(x) = − 1

4π

∫
V

(x− x∗)×B(x∗)

|x− x∗|3
d3x∗ . (4.11)

If the tubular boundary S = ∂V of each ring is a magnetic surface, that is if
B · ν̂ = 0 on S, the potential contribution to A makes no contribution to Hm,i, i.e.∫

V

∇φ ·B d3x∗ =

∫
V

∇ · (φB) d3x∗ =

∫
S

(φB) · ν̂ d2x∗ = 0 .

Substitution (4.11) into (4.10) and re-labelling x∗ by xi and xj where appropriate,
we have

Hm =
1

4π

∫
Vi

∫
Vj

(xi − xj) ·B(xi)×B(xj)

|xi − xj|3
d3xi d

3xj . (4.12)
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Since flux tubes have small cross-sections we can re-write (4.12) in terms of fluxes
and reduce the volume integrals to line integrals, thus obtaining

Hm =

∫
V

A ·B d3x =
∑
i,j

Lki,jΦiΦj ,

in terms of linking numbers

Lki,j =
1

4π

∮
Ci

∮
Cj

(xi − xj) · dxi × dxj

|xi − xj|3
.

extended over N linked rings. Thus (4.4) is proved.
�

The result of Theorem 4.2.1 is of general validity and can be equally extended
to vorticity fields (in terms of kinetic helicity) or electric currents (in terms of cross-
helicity). This result can be even generalized to vector fields chaotically dense in
a volume region by extending the concept of linking number to the asymptotic
formulation of linking number of a dense set of open space curves, as given by
Arnol’d (1972). These further extensions may find useful applications in the theory
of dynamical systems as well as in applied sciences as, for example, in the study
of a collection of open chains in polymer physics.

4.3 The Călugăreanu-White invariant
Consider now a physical knot made by a single, knotted flux tube in isolation
embedded in an ideal fluid. A fundamental topological invariant of physical knots
in R3 is the so-called Călugăreanu-White invariant, introduced by Călugăreanu in
1961 and extended to high dimensions by White in 1969.

An intuitive introduction to this invariant can be made by considering as a
starting point a simple link of two disjoint curves C1 and C2 as shown in Figure
4.5(a). Suppose to keep fixed in space C1 ≡ C and gradually deform C2 ≡ C∗ in
a continuous fashion so to place C∗ parallely as close as possible to C, all along C
(see Figure 4.5b). If the two curves are kept an ε = constant apart we can define
a mathematical ribbon R = Rε(C, C∗) by taking the two curves as the edges of R
of width ε (see Figure 4.5c). By construction the two curves are defined by

C : x = x(s) , C∗ : x∗ = x(s) + εN̂(s) ,

where N̂ is a spanwise unit vector from C to C∗. Since the two edges are two
disjoint, linked, closed curves obtained by continuous deformation of the original
link, the Gauss linking number Lk(C, C∗) is still a well-defined quantity. We have
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Figure 4.5: Construction of a mathematical ribbon R from (a) a simple link made
by C1 and C2; (b) juxtaposition of C1 and C2; (c) identification of C1 and C2 with
the edges of the ribbon.

Definition 4.3.1. Given a ribbonR = Rε(C, C∗) of edges C and C∗, the self-linking
number SL = SL(R) is the Călugăreanu-White invariant given by

SL = lim
ε→0

Lk(C, C∗) . (4.13)

The Călugăreanu-White invariant is a fundamental topological invariant of
physical knots through the reference ribbon R placed on the knot. Moreover,
this topological invariant admits decomposition in terms of two global geometric
quantities, as established by the following theorem of Călugăreanu (1969).

Theorem 4.3.1. Given a ribbon R = Rε(C, C∗) of edges C and C∗, the self-linking
number SL = SL(R) admits a geometric decomposition in terms of writhing num-
ber Wr = Wr(C) and total twist number Tw = Tw(R), given by

SL(R) = Wr(C) + Tw(R) , (4.14)

where Wr is a global geometric property of C and Tw is a global geometric property
of R.

This remarkable result shows that a fundamental topological invariant of phys-
ical knots can be decomposed into global geometric term: the writhing number
Wr = Wr(C), given by

Wr =
1

4π

∮
C

∮
C

(x− x∗) · dx× dx∗

|x− x∗|3
, (4.15)

where x and x∗ denote two points on C; the total twist number Tw = Tw(R),
given by

Tw =
1

2π

∮
CR

(N̂′ × N̂) · t̂ ds , (4.16)
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Figure 4.6: Geometric decomposition of the self-linking SL of a closed ribbon: (a)
writhe, (b) localized torsion and (c) intrinsic twist.

where the notation CR denotes a line integration that depends also on the ribbon
definition through N̂.

It is useful to note that the analytic expression of the writhing number of a
knot is formally identical to that of the linking number of a link, the only difference
being that computation of writhe is performed through a double integration over
the same curve C. This formal analogy with the linking number formula allows
also to express the writhing number in terms of algebraic count of over-passes and
under-passes, now limited to the strands of the same knot; hence, we have

Wr = 〈
∑

r∈{CuC}

εr 〉 , (4.17)

where the angular brackets denote averaging over all directions of projection. Since
Wr is not a topological invariant, its exact value cannot be established by a single
projection, and so we need averaging over all directions of projections.

For applications it is useful to consider a further decomposition (see Figure 4.6)
given by the following lemma.

Lemma 4.3.1. The total twist number Tw = Tw(R) admits the following decom-
position

Tw =
1

2π

∮
C
τ(s) ds+

[θ]R
2π

= T +N , (4.18)

where the integral represents the normalized total torsion T = T (C) and [θ]R/2π
defines the intrinsic twist N = N(R).

Proof. Consider the cross-sectional plane of the ribbon given by the local principal
unit normal n̂ and binormal b̂ (see Figure 4.7); using polar coordinates (r, θ) the
ribbon spanwise unit normal N̂ along r is written as

N̂ = n̂ cos θ + b̂ sin θ ,
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where θ = θ(s) is the angle between N̂ and n̂. By using Frenet-Serret equations,
we have

N̂′ = n̂′ cos θ + b̂′ sin θ − n̂ sin θ θ′ + b̂ cos θ θ′

= −c cos θ t̂ + (τ + θ′) êθ

where êθ = −n̂ sin θ + b̂ cos θ. Hence,

Tw =
1

2π

∮
CR

(
N̂′ × N̂

)
· t̂ ds

=
1

2π

∮
CR

{[
−c cos θ t̂ + (τ + θ′) êθ

]
× N̂

}
· t̂ ds

=
1

2π

∮
C
τ(s) ds+

1

2π

∮
CR

dθ = T +
[θ]R
2π

= T +N ,

where [θ]R/2π represents the number of complete rotations of N̂ around C over
the period L. The statement (4.18) is thus proved.

�

It should be noted that while T can take any real value, N ∈ Z. The main
properties of SL, Wr and Tw can thus be summarized as follows.

1. SL: (i) self-linking number is a topological invariant of a physical knot en-
dowed with a reference ribbon R; (ii) SL is an integer, i.e. SL ∈ Z; (iii) by
exchanging an under-pass with an over-pass: ∓1→ ±1 ⇒ ∆SL = ±2.

2. Wr: (i) writhing number is a global geometric property of the base curve C;
(ii) Wr is a conformational invariant and Wr ∈ R; (iii) by exchanging an
under-pass with an over-pass: ∓1→ ±1 ⇒ ∆Wr = ±2.

3. Tw: (i) total twist number is a global geometric property of the ribbon R;
(ii) Tw is a conformational invariant and Tw ∈ R; (iii) Tw(A) + Tw(B) =
Tw(A+B), where A and B denote two pieces of ribbon.

4.3.1 Passage through an inflexional configuration

If a curve x = x(s) has an inflexion point at s = sc, then c = 0 and t̂′ = 0 at
s = sc, so that near s = sc we have the Taylor expansion

t̂(s) = t̂c +
1

2
(s− sc)2t̂′′c + . . . ,
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Figure 4.7: Polar coordinates on the tube cross-section.

that is
x(s) = xc + (s− sc)̂tc +

1

6
(s− sc)3t̂′′c + . . . .

Moreover, since |̂t| = 1,

(̂t′′ · t̂)s=sc =
d2

ds2
t̂2

∣∣∣∣
s=sc

= 0 ,

so that t̂′′c is perpendicular to t̂c. We may therefore choose the origin at the
inflexion point (xc = 0, sc = 0) and axes Oxyz with Ox parallel to t̂c and Oz
parallel to t̂′′c . The form of the curve near the inflexion point is then given by

x(s) = (s, 0, αs3) , (4.19)

where α = 1
6
|̂t′′c |, i.e. it is the plane cubic curve y = 0, z = αx3. By simple

rescaling, we may take α = 1.
We now wish to consider a time-dependent curve x = x(s, t) passing through

the inflexional configuration (4.19) at t = 0, but having ∂t̂/∂s 6= 0 when t 6= 0.
Since

t̂′ · t̂ =
1

2

∂

∂s
(̂t2) = 0 ,

we may always, by rigid rotation, ensure that at s = 0, t̂ remains parallel to Ox
and t̂′ remains parallel to Oy. These conditions are satisfied by the time-dependent
twisted cubic

x(s, t) =

(
s− 2

3
t2s3, ts2, s3

)
, (4.20)

for which
t̂ =

∂x

∂s
= (1− 2t2s2, 2ts, 3s2) , (4.21)
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and |̂t| = 1 +O(s4), so that near s = 0 t̂ is indeed the unit tangent vector.
From (4.21), to leading order in |t| and |s|,

∂t̂

∂s
∼ 2(0, t, 3s) ,

so that

c(s, t) =

∣∣∣∣∂t̂

∂s

∣∣∣∣ ∼ 2(t2 + 9s2)1/2 ,

and

n̂(s, t) =
1

c

∂t̂

∂s
∼ (0, t, 3s)

(t2 + 9s2)1/2
.

Note here that for very small t, n̂ rotates through an angle π about the direction
t̂c = (1, 0, 0) as s increases from −s0 to +s0 where s0 � |t|; and that this rotation
is clockwise (right-handed) for t < 0, and anticlockwise (left-handed) for t > 0;
thus the number of rotations of the pair (n̂, b̂) about the tangent direction t̂ in
the anticlockwise sense increases by +1 as t increases through zero (at the instant
t = 0, this number is undefined).

Now the binormal is given by b̂ = t̂× n̂, and the torsion is obtained from the
Frenet-Serret equations: for |t| and |s| small, we gave

τ(s, t) ∼ 3t

t2 + 9s2
.

As expected, c vanishes only at t = s = 0, and τ is singular at this inflexion.
However the singularity is integrable; the contribution to the normalised total
torsion T from any small interval [−s0, s0] is

1

2π

∫ s0

−s0
τ(s, t) ds =

1

π

∫ s0

0

3t

t2 + 9s2
ds =

1

π
tan−1

(
3s0

t

)
,

and, irrespective of the value of s0, this jumps from −1/2 to +1/2 as t increases
through zero, i.e. as the curve passes through the inflexional configuration. Hence
T is discontinuous as C passes through the inflexion, with discontinuity [T ] = +1.
The reverse passage (or equivalently replacement of t by −t in (4.20)) gives a jump
[T ] = −1. This behaviour, recognised by Călugăreanu (1961) for a particular
example, appears to be generic.

4.4 Derivation of the Călugăreanu-White invariant
from the helicity of a knot

Consider now a physical knot made by a flux tube centred on a knotted curve
C in R3. For the moment suppose C has no inflexion points (i.e. points of zero
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curvature). If the curve is closed, then x = x(s) represents the parametric equation
of C; x(s) = x(s+L), being a periodic function of the length L of C. An alternative
expression for the helicity of a knotted flux tube is given by the following result
(Moffatt & Ricca, 1992).

Theorem 4.4.1. In ideal conditions the helicity Hm of a magnetic knot given by
a flux tube centred on the knot C, with tubular boundary a magnetic surface and
flux Φ is given by

Hm = Φ2SL , (4.22)

where SL = SL(R) is the Călugăreanu-White self-linking invariant of the reference
ribbon R on C.

Proof. Let us consider a flux tube of magnetic field B given by

B = Ba + Bm , (4.23)

where Ba is the axial field parallel to the tube axis and Bm is the meridional field
in the meridian planes perpendicular to the tube axis. In the tube cross-section we
adopt a local cylindrical coordinate system (r, θ, z) (see Figure 4.7) and suppose

Ba = (0, 0, Bz(r)) , Bm = (0, Bθ(r), 0) . (4.24)

Evidently ∇ ·Ba = 0 and ∇ ·Bm = 0, so that we may introduce separate vector
potentials:

Ba = ∇×Aa , Bm = ∇×Am , (4.25)

with ∇ · Aa = 0 and ∇ · Am = 0. Since the lines of force of the Bm-field are
unlinked circles, we have ∫

V

Am ·Bm d3x∗ = 0 ,

where V is the tube volume. The total field helicity is thus given by

Hm =

∫
V

Aa ·Ba d3x∗ +

∫
V

Aa ·Bm d3x∗ +

∫
V

Am ·Ba d3x∗

=

∫
V

Aa ·Ba d3x∗ + 2

∫
V

Aa ·Bm d3x∗ , (4.26)

using integration by parts and the divergence theorem.

(i) Writhe contribution from helicity. Consider first the axial contribution Hma =∫
V

Aa ·Ba d3x∗. Here we may use the Biot-Savart expression in the limiting form

ABS = − Φ

4π

∮
C

(x− x∗)× dx∗

|x− x∗|3
.
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Although this expression diverges when x ∈ C, its axial component remains finite,
and the limiting expression

Hma =
Φ2

4π

∮
C

∮
C

(x− x∗) · dx× dx∗

|x− x∗|3
= Φ2Wr , (4.27)

is finite. This is the writhe contribution from helicity.

(ii) Twist contribution from helicity. Consider now the second contribution in
equation (4.26),

Hmm = 2

∫
V

Aa ·Bm d3x∗ = 2

∫
V

Aθ(r)Bθ(r) d3x∗ . (4.28)

Note that from the first of (4.24) and from the first of (4.25), Aa = (0, Aθ(r), 0)
where

1

r

d

dr
(rAθ) = Bz(r) . (4.29)

Let us consider the change in Hm under a virtual displacement δξ(s) of the flux
tube due to instantaneous changes δc(s), δτ(s) in curvature and torsion. We have

ξ = rêr = r(n̂ cos θ + b̂ sin θ) ,

and
êθ = −n̂ sin θ + b̂ cos θ ,

so that, assuming
δξ = r cos θδn̂ + r sin θδb̂

to be the same for all (r, θ), we have

d

ds
δξ = r cos θ

d

ds
δn̂ + r sin θ

d

ds
δb̂ . (4.30)

Since it is only the variation of δξ with arc-length s that contributes to the
distortion of the field, we may suppose that at s = s1, δξ(s1) = 0, i.e. δn̂(s1) =
δb̂(s1) = 0. Then, from the Frenet relations at s = s1 we have

d

ds
δn̂ = −δc t̂ + δτ b̂ ,

d

ds
δb̂ = −δτ n̂ . (4.31)

Now under the assumed virtual displacement δξ(s), the axial field Ba (and
so Aθ(r)) is unchanged, but the meridional field Bm at s = s1 is changed by an
amount

δBm = (Ba · ∇)δξ = Bz(r)
d

ds
δξ , (4.32)
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due to the variation of δξ with arc-length; as we see this change resembles a
convective contribution from a process that in MHD is known as ‘generation of
toroidal field by differential rotation’; see Moffatt 1984). Hence,

δBθ = δBm · êθ = Bz(r)

(
d

ds
δξ

)
· êθ

= Bz(r)

[
−
(
d

ds
δξ

)
· sin θ n̂ +

(
d

ds
δξ

)
· cos θ b̂

]
s=s1

. (4.33)

Substituting from (4.30) and (4.31), we have

δBθ = Bz(r)rδτ(s) , at s = s1 . (4.34)

Since the same argument may be used at any section, (4.34) gives the field pertur-
bation due to the virtual displacement for all s1, and the resulting change in the
Hmm is therefore

Hmm = 2

∫
V

Aθ(r)δBθ(r) d3x∗ = 2

∫
V

Aθ(r)Bz(r)rδτ(s) d3x∗ . (4.35)

If we integrate first over the cross-section, using (4.29) and the result∫ ∞
0

Aθ
1

r

d

dr
(rAθ)r2πr dr =

2π

2

[
(rAθ)

2
]∞

0
= π

(
Φ

2π

)2

,

then from (4.35)
δHmm = Φ2δT .

If we consider a time-dependent deformation of C which does not pass through any
inflexional configuration, then (4.35) may be written

dHmm

dt
= Φ2 dT

ds
,

or equivalently
Hmm = Φ2(T + T0) , (4.36)

where T0 is a constant.
Under continuous deformation of the flux tube combining (4.27) with (4.36)

total helicity can thus be written as

Hmm

Φ2
= Wr + T + T0 = constant .

When C goes through an inflexional state Wr varies continuously, but T is known
to jump by ±1 (see previous Section 4.3.1). Hence, as T jumps by ±1, the term T0
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must jump by a compensating amount ∓1, to maintain the overriding invariance
of helicity; the jump by ∓1 is the jump in the intrinsic twist N when C is deformed
through an isolated inflexion point, hence T0 = N . The statement is thus proved.

�

4.5 Helicity of a tangle of knots and links

Previous results apply to any system of physical knots and links made by localized
distributions of vorticity, magnetic or electric fields of strength φ. If the discrete
field is confined to N filamentary structures we can combine and extend results of
Theorems 4.2.1 and 4.4.1 to state the following Corollary.

Corollary 4.5.1. In ideal conditions the total helicity H of a tangle T of N
physical knots and links of total volume V , each carrying a flux Φi (i = 1, . . . N),
is given by

H =

∫
V

A ·B d3x =
∑
i

Φ2
iSLi +

∑
i 6=j

ΦiΦjLkij

=
∑
i

Φ2
i (Wri + Ti +Ni) +

∑
i 6=j

ΦiΦjLkij . (4.37)

This formula has great potentials for applications since from the left-hand side
we see that there is no need to know the distribution of fields analytically and
it allows to estimate integral helicity from the computation of the terms on the
right-hand side of (4.37). On the other hand, from experimental measurements of
integral helicity and fluxes Φi, direct computation ofWri and Ti from the geometry
of the centrelines and Lki,j from diagram projections, one can estimate intrinsic
twist Ni, which is one of the most difficult and interesting terms for the energetics
of flux tubes.

4.6 Helicity estimates from crossing number infor-
mation

The algebraic interpretation of linking and writhing in terms of crossing number
information can be extended naturally to another useful quantity introduced by
Freedman and He (1992).
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Definition 4.6.1. Given a tangle of closed curves Ci (i = 1, . . . , N) in space, we
can define the average crossing number C̄ of the tangle the quantity

C̄ =
1

4π

∮
Ci

∮
Cj

|(xi − xj) · dxi × dxj|
|xi − xj|3

= 〈
∑

r∈{CiuCj}

|εr| 〉 , (4.38)

where xi and xj denote points on Ci and Cj, respectively.

By definition C̄ (sometimes denoted by ACN) counts all the unsigned apparent
crossings of the tangle averaged over all direction of sights. Evidently C̄ is a pure
integer; this quantity is neither a geometric nor a topological property of the tangle,
providing a purely algebraic information of structural complexity. It is therefore a
useful information to quantify the complexity of a network of filaments in space.

Linking, writhing and average crossing number can thus be estimated directly
from crossing number information. Since linking is a topological quantity its value
does not depend on directions of projection and so its computation is based on
crossing counts of a single diagram projection. In case of a complex tangle of
filaments we have total linking LkTot, given by

LkTot =
1

2

∑
i 6=j

∑
r∈{CiuCj}

εr . (4.39)

Exact values of Wr and C̄, however, depend on the entire solid angle inte-
gration. For practical purposes approximate values can be simply obtained by
considering crossing counts averaged over only 3 mutually orthogonal directions
of sight, say along x, y and z directions. By referring to these 3 directions of
projection, we introduce the estimated writhing number Wr⊥ and the estimated
crossing number C̄⊥, given respectively by

Wr⊥ =
1

3

∑
i

[ ∑
r∈{CiuCj}

εr

]
i
, (i = x, y, z) , (4.40)

and
C̄⊥ =

1

3

∑
i

[ ∑
r∈{CiuCj}

|εr|
]
i
, (i = x, y, z) . (4.41)

These measures have been successfully applied to relate geometric and topological
information to physical properties of superfluid tangles, energy and helicity in
particular using eq. (4.37) and energy estimates (Barenghi et al. 2001).
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Chapter 5

Magnetic relaxation and energy
spectrum of knots and links

5.1 Magnetic knots and Lorentz force

Consider tubular knots and links as tubular embeddings of the magnetic field in
an ideal, incompressible, perfectly conducting fluid in S3 (i.e. R3 ∪ {∞}, simply
connected). A magnetic knot BK is given by the embedding of the magnetic field
in a regular tubular neighbourhood Ta of radius a > 0, centred on the knot axis
C of local radius of curvature ρ > 0. The field is actually embedded onto nested
tori Ti (i = 1, . . . , n) in Ta (see Figure 5.1), and regularity is ensured by taking
a ≤ ρ pointwise along C. The existence of non-self-intersecting nested tori in Ta is
guaranteed by the tubular neighbourhood theorem (Spivak, 1979). C is assumed
to be a C3-smooth, closed loop (submanifold of S3 homeomorphic to S1), simple
(i.e. non-self-intersecting) and parametrized by arc-length. The total length of C
is L = L(C). Evidently BK has the knot type of C, being either a trivial knot ,
if C is equivalent to the unknot that bounds a smoothly embedded disk, or an
essential knot. For simplicity we take Ta = C ⊗ S given by the product of C with
the solid circular disk S of area A = πa2, taken in the cross-sectional plane to
C. The total volume V = V (Ta) = πa2L. To a first approximation we neglect
deviations from cylindrical geometry and we regard them as effects of higher-order
analysis. We therefore assume that the tubular boundary ∂Ta = ∂T (dropping
the suffix) remains a magnetic circular, cylindrical surface at all times, of uniform
cross-section all along C; denoting by ν̂ the unit normal to ∂T , we have:

Definition 5.1.1. A magnetic knot is a smooth immersion into R3 of finitely many
disjoint standard solid tori Ti, such that

∪iTi 7→ BK ≡ supp(B) (i = 1, . . . , n) . (5.1)
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KNOTS AND LINKS

Figure 5.1: Magnetic link given by the tubular embedding of the magnetic field in
two knots. In ideal conditions knot volume V and magnetic flux Φ are conserved
quantities.

with B · ν̂ = 0 on ∂T .

5.1.1 Flux tube coordinates and field decomposition

As mentioned earlier the magnetic field B is subject to the action of a Lorentz
force F = J×B and we want to determine its effect on BK . For this we need to
introduce a proper orthonormal reference system on the knot axis C to take account
of the internal geometry of the field lines. Let (r, ϑR, s) be orthogonal, curvilinear
coordinates centered on C (Mercier, 1963). A point P on S (see Figure 5.2a) is
given by

x = X(s) + r cos θ(s) n̂(s) + r sin θ(s) b̂(s) , (5.2)

where θ(s) is the polar angle referred to the unit normal n̂ = n̂(s) in the intrinsic
reference frame (Frenet frame), given by unit tangent t̂ = t̂(s) = dx/ds, normal
n̂ and binormal b̂ = b̂(s) to C. This angle varies according to the geometry of
the tube-axis. The polar angle ϑR, however, is an independent coordinate and is
related to the former by the equation

θ(s) = ϑR + γ(s) , (5.3)

where
γ(s) = −

∫ s

0

τ(ξ) dξ (5.4)

takes into account the accumulative contribution from torsion τ = τ(s) of C. By
using Frenet-Serret formulae

t̂′ = cn̂ , n̂′ = −ct̂ + τ b̂ , b̂′ = −τ n̂ , (5.5)
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Figure 5.2: (a) Relationship between fixed and moving frame for a point P on
S: the angle θ(s) varies with the torsion of C. (b) Twist of field lines visualized
by means of a ribbon, whose edges are given by the tube axis X = X(s) and a
neighbouring field line X∗, placed at a distance r in the spanwise direction N on
the ribbon relative to the Frenet pair (n̂, b̂).

where c = c(s) is curvature (c = ρ−1) and prime denotes derivative with respect
to s, we define the orthonormal metric

dx · dx = (dr)2 + r2(dϑR)2 +K2(ds)2 , (5.6)

which is orthogonal; here K = K(s) = 1 − c(s) r cos θ(s). The orthogonal basis
(êr, êθ, t̂) is given by êr = n̂ cos θ+ b̂ sin θ, êθ = −n̂ sin + b̂ cos and t̂, in the radial,
meridian and longitudinal direction, respectively.

Field lines inside magnetic flux tubes may generally twist about the knot axis.
Twist can be visualized by means of a ribbon (see Figure 5.2b), whose edges are
the tube axis X = X(s) and a neighbouring field line X∗(s). For simplicity we
consider the field decomposition given by

B = Bm + Ba , (5.7)

with Bm = Bθêθ the meridian (poloidal) component in S and Ba = Bst̂ the
longitudinal (toroidal) component along C. The field is chosen so as to have no
radial component, so that the tube boundary is a magnetic surface (B ·N = 0).
We take

Bm = [0, Bθ(r, θ(s)), 0], Ba = [0, 0, Bs(r)] , (5.8)

where everything is a smooth function of radius and arc-length. Since B is diver-
genceless, we have

r∇ ·B =
∂Bθ

∂ϑR
+Bθ

cr

K
sin θ +

r

K

∂Bs

∂s
= 0 . (5.9)

63



DRAFT
- c©

R.L
. R

icc
a - S

ep
t.

20
18

CHAPTER 5. MAGNETIC RELAXATION AND ENERGY SPECTRUM OF
KNOTS AND LINKS

From the second of (5.8) we have ∂Bs/∂s = 0, so that (5.9) reduces to

∂Bθ

∂ϑR
= −Bθ

cr

K
sin θ , (5.10)

a relation that will be used below to derive the Lorentz force.
It is worth mentioning the special case of uniform twist . From the definition

of magnetic line, we have
rδϑR
Bθ

=
Kδs

Bs

. (5.11)

In case of uniform twist we must have

δϑR
δs

=

∮
C dϑR∮
C ds

=
2πTw

L
. (5.12)

Hence, by using eq. (5.11), we have

2πTw =
KL

r

Bθ

Bs

, (5.13)

that puts in relation geometric and magnetic quantities. From this equation we
note that the condition of uniform twist implies Bθ/Bs ≈ r, that poses a restriction
on the relationship between toroidal and poloidal components of the magnetic field.

5.1.2 Lorentz force

The Lorentz force is given by F = J × B, where J is the current density. Since
J = ∇×B we have:

F = (∇×B)×B = (B · ∇)B− 1

2
∇(B2) . (5.14)

The r.h.s. of this equation can be made explicit in terms of the magnetic field
prescribed. By using (5.7), the first of (5.5) and (5.8), we have

(B · ∇)B =
Bθ

2

r

∂êθ
∂ϑR

+

(
Bθ

r

∂Bθ

∂ϑR
+
Bs

K

∂Bθ

∂s

)
êθ +

BθBs

K

∂êθ
∂s

+
Bs

2

K
cn̂ . (5.15)

By (5.3) and (5.4) we have

∂Bθ

∂s
=
∂Bθ

∂θ

∣∣∣∣
s

∂θ

∂s
=
∂Bθ

∂ϑR

∣∣∣∣
s

∂γ

∂s
= −τ ∂Bθ

∂ϑR
, (5.16)

so that by (5.10), we have

∂Bθ

∂s
= Bθ

crτ

K
sin θ . (5.17)
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Equation (5.15) reduces to

(B · ∇)B = Bs
2 c

K
n̂− Bθ

2

r
êr +Bθ

c

K
sin θ

(
Bs
rτ

K
−Bθ

)
êθ

+BθBs
c

K
sin θt̂ . (5.18)

Similarly for the second term in the r.h.s. of (5.14):

1

2
∇(B2) =

1

2

[
∂

∂r
(Bθ

2 +Bs
2)êr − 2Bθ

2 c

K
sin θêθ + 2Bθ

2 crτ

K2
sin θt̂

]
. (5.19)

Substituting (5.18) and (5.19) into (5.14), we have F = Fr + Fm + Fa, where

Fr = Frêr =

[
Bs

2 c

K
cos θ − Bθ

2

r
− 1

2

∂

∂r

(
Bθ

2 +Bs
2
)]

êr , (5.20)

Fm = Fθêθ = Bs
c

K
sin θ

(
Bθ
rτ

K
−Bs

)
êθ , (5.21)

Fa = Fst̂ = Bθ
c

K
sin θ

(
Bs −Bθ

rτ

K

)
t̂ , (5.22)

are the components of the Lorentz force F in the orthogonal coordinates (r, θ, s). In
physical applications, it is customary to combine radial and meridian components
in two contributions, one given by F⊥, perpendicular to the tube axis, and one
given by Fp, in the meridian plane:

F⊥ = Bs
2 c

K
n̂−

[
Bθ

2

r
+

1

2

∂

∂r

(
Bθ

2 +Bs
2
)]

êr , (5.23)

F‖ = BθBs
crτ

K2
sin θêθ . (5.24)

Evidently this decomposition is not unique, because now the term in n̂ includes
part of the contribution in êθ. However, eqs. (5.23) and (5.24) help to understand
the dynamics associated with the Lorentz force: The magnetic flux-tube moves
in the fluid thanks to the action of F⊥, with a term proportional to curvature
along the principal normal, corrected by the scale factor K, and a term in the
radial direction, that takes account of magnetic pressure. The curvature term is
responsible for the natural shortening of flux-tubes in free space, and contributes
to the bending energy of the magnetic tube, in analogy with elastic systems. The
radial term controls the confinement of the magnetic field in the tubular region,
through the magnetic pressure generated by the poloidal and toroidal components
of B. Note that for relatively thick flux-tubes, the scale factor K = 1 − cr cos θ
may enhance considerably the curvature force.
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Figure 5.3: Magnetic relaxation of a loose trefoil knot and Hopf link under flux-
and volume-preserving diffeomorphism governs their evolution towards a tight end-
state.

The contributions Fa and F‖ induce internal re-organization of the magnetic
field, without affecting the shape of the flux-tube; the axial component Fa con-
tributes to internal stretching and generates longitudinal magnetic tension in T ,
while the poloidal component (5.24) induces a meridian flow around the tube cross-
section, that brings fluid from the concave to the convex region of the tube, hence
modifying the twist distribution of the field-lines. In case of uniform twist (see
condition (5.12)), by using eq. (5.13) we have

|Fa|
|Fm|

= −Bθ

Bs

= −2πTw

L

r

K
. (5.25)

5.2 Relaxation under helicity conservation

The total energy of the magnetic system (knot or link) is given by the sum of
kinetic and magnetic energy and in ideal conditions total energy and helicity are
conserved quantities. Here we want to consider the magnetic relaxation under
which a loose magnetic knot (or link) is brought to a minimum energy state given
by its tight configuration. To first approximation this is because the Lorentz force
F⊥ ≈ cn̂ which, as for elastic bands, induces continuous shrinking of the field lines
and of the tube axis. Since the process is governed by volume- and flux-preserving
diffeomorphisms, this leads to an average increase of the tube cross-section (since
volume remains constant during evolution), accompanied by an average decrease
of magnetic field intensity (since flux remains also constant during evolution). All
this brings a loose knot to get gradually tighter through a continuous reduction
of magnetic energy at the expense of kinetic energy. The process continues until
the knot reaches the tightest possible configuration (see Figure 5.3). The process
must come to a complete stop before magnetic surfaces in contact develop possible
singularities.

It is useful to introduce the following:
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Definition 5.2.1. The signature of a magnetic knot BK(x) is the pair {V,Φ},
which under ideal conditions is preserved during evolution.

Let us consider magnetic energy M(t); this is given by

M(t) =
1

2

∫
V (BK)

‖B‖2 d3x∗ . (5.26)

The conserved magnetic helicity places a lower bound on the magnetic energyM(t)
of a localized magnetic field, as recognized by Arnold (1974). Suppose that the
magnetic field is located in a fixed domain of given length-scale L. Then first, by
the Schwarz inequality,

|H| ≤
[∫

V (BK)

‖A‖2 dV

∫
V (BK)

‖B‖2 dV

] 1
2

. (5.27)

Second, we have a Poincarè inequality∫
V (BK)

‖B‖2 dV ≥ q2

∫
V (BK)

‖A‖2 dV , (5.28)

where q = O(L−1) is a positive constant determined by the geometry of BK .
Hence, combining these inequalities, we have the Arnold inequality∫

V (BK)

‖B‖2 d3x∗ ≥ q2|H(BK)| . (5.29)

This simply means that, if |H| = 0, then under any distortion of the field B by a
fluid flow, the magnetic energy M(t) has a positive lower bound. This result was
generalised by Freedman (1988) to cover fields whose helicity is zero, but which
nevertheless have nontrivial topology, in the sense that there exist closed field lines
which cannot be shrunk to a point without cutting other field lines. We assume
such nontrivial topology in considering magnetic relaxation as proposed by Moffatt
(1985, 1990). One can prove the following statement.

Theorem 5.2.1. Under magnetic relaxation, the magnetic energy M = M(t) is a
monotonic decreasing function of time.

Proof. To assess the relaxation process discussed above and to approach the end-
state (a steady state), consider a perfectly conducting but viscous fluid. Viscosity
is here invoked as a mechanism to cancel out end-state fluctuations. Let’s consider
the change in magnetic energy:

dM

dt
=

∫
V (K)

B · ∂B

∂t
d3x∗ =

∫
V (K)

B · [∇× (u×B)] d3x∗
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= −
∫
V (K)

u · [(∇×B)×B] d3x∗ = −
∫
V (K)

u · [J×B]d3x∗ . (5.30)

As initial condition we may use B(x, 0) = BK(x) given by a loose magnetic knot
of signature {V,Φ}, and assume that u(x, t) be itself instantaneously determined
(near equilibrium) by the ‘modified’ Navier-Stokes equation (Darcy model)

Du

Dt
≈ ku = −∇p+ J×B , (5.31)

where k is a positive constant and p is a ‘pressure’ field determined by the condition
that∇·u = 0 for all t. Both u and∇p are at most of the order of |x|−3 as |x| → ∞.
Combining equations (5.30) and (5.32), we have

DM

Dt
= −k

∫
V (K)

|u|2 d3x∗ , (5.32)

so that M(t) is indeed monotonic decreasing if u is not identically zero. M(t)
being bounded below must tend to a constant as t→∞.

�

The remarkable thing is that we can start with an arbitrary field topology
containing arbitrarily knotted and linked configurations at time t = 0 and conclude
that, under the relaxion process above, a field must exist that contains these knots
and links and also satisfies the magnetostatic equation. By using the relaxation
result above and by dimensional analysis Moffatt (1990) was led to the fundamental
result.

Theorem 5.2.2. Under signature-preserving flow the minimal magnetic energy
Mmin of BK is given by

Mmin = m(h)Φ2V −1/3 , (5.33)

where m(h) is a positive dimensionless function of the dimensionless twist param-
eter h.

Here below we shall see that when h = 0 m(h) has a minimum and this can be
identified with the topological crossing number of the knot type.

5.3 From inflexional knots to closed braids
During evolution magnetic fields may develop twist, as sometimes occur for loops in
the Solar corona (see Figure 5.4a). Twisting of field lines builds up and eventually
saturates at about 2 full turns, when the flux-tube reaches a critical threshold
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Figure 5.4: (a) TRACE satellite observation of filament destabilization in the Solar
photosphere (Active Region 9957) on May 27, 2002. (b) A Reidemeister type I
move (twist move) on a tube strand.

for kink instability. Under conservation of helicity a full twist of a tube strand is
removed when its contribution to helicity (twist helicity) is entirely converted to
writhe helicity (Moffatt & Ricca 1992), a mechanism that corresponds to perform
a Reidemeister type I move on the tube strand (see Figure 5.4b). This is clearly
a fundamental process for energy re-distribution in active regions. Relaxation of
twist to writhe seems seems generically associated with the relaxation of torsional
energy to bending energy and it is often accompanied by a generic passage through
an inflexional state. Inflexional configurations are states defined by the presence
of an inflexion point associated with a change of concavity, as in an S-shaped
plane curve. Since inflexional states are places of local change of curvature, the
perpendicular component of the Lorentz force flips direction through an inflexion
point. Explicit computation for a generic passage through an inflexional state can
prove (Ricca 2005) the following statement.

Theorem 5.3.1. Let BK be a loose magnetic knot of signature (V,Φ) and field
given by (5.8), in ideal conditions. Let K̃t denote the generic, time-dependent
passage of K through an inflexional state at time t = t0. Then, the knot BK̃,t0

is
in inflexional disequilibrium.

Thus, inflexional flux tubes being in disequilibrium evolve to inflexion-free con-
figurations. Since in ideal conditions topology is preserved, a magnetic knot with
inflexions must change shape to get rid of inflexions. This is done by a defor-
mation to a closed braid configuration, as shown in the example of Figure 5.5.
Inflexion-free closed braids are called spiral knots . Hence, we have:

Corollary 5.3.1. A loose inflexional magnetic knot BK̃,t0
evolves to a spiral knot

BKo,t for t > t0.
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Figure 5.5: Top: (left) plasma loops in the solar corona observed by the TRACE
mission; (right) a diagram of braided magnetic lines. Bottom: any knot, such as
the figure-of-eight knot on the left-hand-side, can be transformed to a closed braid
configuration. A spiral knot is a closed braid without inflexion points.

5.4 Goundstate energy spectrum of knots and links
A fundamental problem is to establish relationships between energy and topological
complexity of magnetic systems. Some progress has been done for zero-framed
knots: these are magnetic knots whose field lines have zero internal linking number
(h = 0). By assuming that each link component has same flux Φ and zero-framing,
one can prove the following statement.

Theorem 5.4.1. Let BL be a zero-framed magnetic link. Under signature-preserving
flow, we have

(i) M(t) ≥
(

2

πV

)1/3

|H| ; (ii) Mmin =

(
2

πV

)1/3

Φ2cmin . (5.34)

where cmin denotes the topological crossing number of the link.

Proof of these results is based on works of Arnold (1974), Freedman & He
(1991) and Ricca (2008).

The fundamental problem to determine the value of m(h) for whichM = Mmin

(mmin) is solved by applying Theorem 5.4.1–(ii) to (5.33). We have:

Corollary 5.4.1. For zero-framed magnetic knots under signature-preserving flow
we have

mmin = m(0) = (2/π)1/3cmin . (5.35)
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For a signature-preserving flow (5.42) establishes a correspondence between
minimum energy levels and topology, since Mmin ∝ cmin, a result of general valid-
ity, but rather loose. From a direct inspection of the knot table (see, for instance,
the standard knot tabulation of Rolfsen 1976) for cmin > 4 there are several topo-
logically distinct knot types of same cmin, whose number gets exponentially large
for increasing values of cmin. A natural question here is to determine whether dif-
ferent knot types of the same cmin-family have the same minimum energy level or
not.

The functional dependence of M on h, then, is also of interest for applications.
By using the field decomposition (5.8) and the orthonormal Mercier coordinates
(r, ϑR, s) introduced earlier, we can express the magnetic field in terms of poloidal
and toroidal flux, ΦP and ΦT , respectively; we have (Maggioni & Ricca 2009)

B =

(
0,

1

L

dΦP

dr
,

1

2πr

dΦT

dr

)
+

(
0,
∂ψ̃

∂s
,− ∂ψ̃

∂ϑR

)
, (5.36)

where the total field is given by the sum of an average field plus a fluctuating field
(represented by the function ψ̃) with zero net flux. The twist parameter (knot
framing) is given by h = ΦP/ΦT . We shall use this result in the following.

5.4.1 Knot framing and standard flux tube

Let Vr = πr2L be the partial volume of the tubular neighbourhood of radius r;
the ratio of the partial to total volume is given by Vr/V (T ) = (r/a)2. Now, let
f(r/a) be a monotonic increasing function of r/a; we can take

f(r/a) =
(r
a

)γ
, (γ > 0) . (5.37)

Denoting by Φ ≡ ΦT (a) the total flux, we have

ΦT (r) =
(r
a

)γ
Φ , ΦP (r) = h

(r
a

)γ
Φ , (5.38)

where h, the twist parameter, denotes the magnetic field framing , given by (2π)−1

times the turns of twist required to generate the poloidal field from the toroidal
field, starting from ΦP = 0. A direct calculation of helicity in terms of fluxes
shows that h is indeed the linking number of the embedded field. The choice
γ = 2 provides the prescription for a standard flux tube.

5.4.2 Constrained relaxation to groundstate energy

By applying standard variational methods the following result holds true (Maggioni
& Ricca 2009):
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Theorem 5.4.2. Let BK be a magnetic knot of field given by (5.8). Minimization
of magnetic energy is subject to the following constraints:

(i) (V,Φ) invariant;
(ii) flux tube cross-section S circular and uniform along K;
(iii) ψ̃ independent of arc-length s;
(iv) knot length L independent of h.

Then we have:

M∗ =

(
γ2L∗2

8(γ − 1)V
+
γπh2

2L∗

)
Φ2 , (5.39)

where ∗ denotes the constrained minimum value.

Without loss of generality we can set V = Φ = 1. Since the magnetic knot
in the relaxed state is in tight configuration, we can introduce a non-dimensional
parameter given by the aspect ratio of the tight knot, defined by the ratio of the
minimal knot length L∗ to the radius R∗ of the maximal circular cross-section of
the tight configuration; this ratio is the so-called ropelength λ = L∗/R∗, a good
measure of physical knot complexity. In the case of the unknot, the least possible
value of λ (say λ0) is that given by the tight torus (when the hole disappears);
hence λ ≥ λ0 = 2π.

In order to investigate the relation between energy and knot topology, let us
consider standard flux tubes (γ = 2); it is useful to rewrite eq. 5.39 in terms of
ropelength. By using V = πR∗2L∗ = cst., after some straightforward algebra, we
have

Corollary 5.4.2. Constrained minimization of magnetic energy of BK given by
(5.8) gives

M∗ =

(
λ4/3

2π2/3
+
π4/3h2

λ2/3

)
Φ2V −1/3 . (5.40)

Under the assumptions above, by comparing (5.33) with (5.40), we can deter-
mine m(h):

mλ(h) =
λ4/3

2π2/3
+
π4/3h2

λ2/3
, (5.41)

showing explicitly the effect of ropelength and framing on energy levels.

5.4.3 Energy spectra of knots and links

Let us first investigate the minima mmin = mmin(h) by plotting (5.41) against
λ for h = 0, 1, 2, 3, . . . (see Figure 5.6). The absolute minimum m◦ corresponds
to the zero-framed unknot (tight torus), given by h = 0 and λ = λ0 = 2π:
m◦ = (2π2)1/3 ≈ 2.70. The groundstate energy of zero-framed flux tubes provides
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Figure 5.6: Influence of twist h on the energy function mλ(h), plotted against the
ropelength λ, according to equation (5.41). The absolute minimum is given by the
tight torus, for which λ = λ0 = 2π and m◦ ≈ 2.70.

the absolute minimum energy level; m(h) remains a monotonic increasing function
of λ for h ≤ 2: at λ0 = 2π we have m(h = 1) = 4.05 and m(h = 2) = 8.11. For
h ≥ 2 the energy minima are attained for h = λ/π; thus, by substituting the
optimal value λ = πh in (5.41), we have

mmin(h) =
3

2
π2/3h4/3 (h ≥ 2) . (5.42)

For h > 2 (and λ ≥ λ0) the functional dependence of m(h) on λ ceases to be
monotonic.

The minimum energy spectra of the first prime knots and links is determined
by setting h = 0 in (5.41) and by using ropelength data (given by λK) obtained
by the RIDGERUNNER tightening algorithm (Ashton, Cantarella, Piatek & Rawdon
2011) for each knot/link type K. A particularly simple expression is obtained by
normalizing m(λK , 0) with respect to the minimum energy value m◦ of the tight
torus; thus, we have

m̃(K) =
m(λK , 0)

m◦
=

(
λK
2π

)4/3

, (5.43)

that gives a one-to-one relationship between minimum energy level and knot ro-
pelength. Since the relation λK = λ(K) is not known analytically, it must be
reconstructed from numerical data. We take λK = λ(#K), where #K denotes the
position of the knot/link K listed according to the increasing value of ropelength
as given by RIDGERUNNER. Hence, instead of tabulating energy levels as function of
the knot/link position given by standard knot tabulation, by taking λK = λ(#K)
in (5.43) we plot m̃ = m̃(#K), according to increasing ropelength data. The en-
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Figure 5.7: Top diagram: m̃(#K) of tight knots plotted against the knot number
#K given by the position of the knot K listed according to increasing value of
ropelength λK = λ(#K). Best fit goodness: 95% confidence bounds, summed
square of residuals (SSE) = 80.27, R2 = 0.98, root mean squared error (RMSE)
= 0.57. Bottom diagram: m̃(#K) of tight links. Best fit goodness: 95% confidence
bounds, summed square of residuals (SSE) = 55.9, R2 = 0.98, root mean squared
error (RMSE) = 0.66.

ergy spectra are shown in Figure 5.7 for the first 250 prime knots up to 10 crossings
(top diagram) and 130 prime links up to 9 crossings (bottom diagram).

The curve dotted by circles results from a linear fit made over each cmin–family,
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while the continuous curve is the best-fit interpolation over all available data. To
the first decimal digit, we find that best-fit interpolations follow an almost identical
logarithmic law, given by

m̃(#K) = a ln #K + b , (5.44)

where a = 4.5 and b = bK = 10.5 for knots, b = bL = 9.3 for links.
This unexpected result is quite remarkable and calls for some justification.

Ropelength is certainly an increasing function of topological complexity (given
by cmin), simply because an increasing number of crossings implies an increasing
minimal length necessary to tie a flux tube into a knot or a link. Results on
ropelength bounds show that

O(c
3/4
min) ≤ λK ≤ O(cmin ln5 cmin) , (5.45)

where O(·) denotes order of magnitude. From (5.43) we have that m̃(#K) ∝
[λ(#K)]4/3; by combining this with (5.44), we have

[λ(#K)]4/3 ∝ a ln #K + b . (5.46)

Now, if we assume that the number of knots grows exponentially with cmin (a
plausible assumption), then #K ∼ Ccmin for some constant C. Hence, by (5.46)
we have [λ(#K)]4/3 ∝ cmin, or

λ(#K) ∝ c
3/4
min , (5.47)

a result that is in good agreement with other analytical estimates.
Furthermore, if we take V = Φ = 1 and define

m(cmin) ≡ Mmin

m◦
=

1

π
cmin . (5.48)

We can then relate (5.34)(ii) to (5.43), and write

〈m̃(K)〉cmin
≥ m(cmin) =

1

π
cmin , (5.49)

since for any given K m̃(K) could be further decreased to the actual minimum by
relaxing the constraints (i)-(iv) of Theorem 5.4.2. By writing (5.43) in terms of
#K and substituting this latter into the above equation, we have

〈λ(#K)〉cmin
≥ 2π1/4c

3/4
min , (5.50)

that gives a new relation between ropelength, averaged over each cmin–family, and
cmin. Note that the coefficient 2π1/4 ≈ 2.66 (still subject to further optimization)
is independent of the knot family and is valid for any cmin.
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