|                                        | SM        | Produced | scale  | After cut<br>number | After scale<br>number | Efficiency (%) |
|----------------------------------------|-----------|----------|--------|---------------------|-----------------------|----------------|
| ff_h_inv                               | 1079      | 199863   | 0.0054 | 2679                | 14.48                 | 1.342          |
| $e^+e^- \rightarrow e^+e^-$            | 123854500 | 4000000  |        | 0                   | 0                     |                |
| $e^+e^- \to \mu^+\mu^-$                | 26663550  | 4000000  | 6.666  | 3321                | 19926                 | 0.083          |
| $e^+e^- \to \tau^+\tau^-$              | 23764450  | 4000000  | 5.941  | 973                 | 4865                  | 0.024          |
| $e^+e^- \rightarrow v_\mu \bar{v}_\mu$ | 22081500  | 1986079  |        | 0                   | 0                     |                |
| qq                                     | 270534300 | 9999023  | 27     | 9                   | 243                   | 0              |
| Sw_l                                   | 4363150   | 4406821  |        | 0                   |                       |                |
| Sw_sl                                  | 13063100  | 13193720 |        | 0                   |                       |                |
| Sze_l                                  | 5502600   | 5556664  | 0.9903 | 1792                | 1775                  | 0.032          |
| Sze_sl                                 | 1580200   | 1595907  |        | 0                   |                       |                |
| Szeorsw_l                              | 1247400   | 1259867  |        | 0                   |                       |                |
| Sznu_l                                 | 289950    | 319278   | 0.9081 | 1930                | 1753                  | 0.605          |
| Sznu_sl                                | 728100    | 735398   |        | 0                   |                       |                |
| Ww_h                                   | 19127300  | 19482330 | 0.9818 | 2                   | 2                     | 0              |
| Ww_I0II                                | 2018300   | 2036465  | 0.9911 | 7016                | 6954                  | 0.345          |
| Ww_sl                                  | 24234950  | 24476400 | 0.9901 | 1217                | 1205                  | 0.005          |
| Zz_h                                   | 2583350   | 2608138  | 0.9905 | 3                   | 3                     | 0              |
| Zz_l                                   | 339050    | 499503   | 0.6788 | 1215                | 825                   | 0.243          |
| Zz_sl                                  | 2782450   | 2842121  | 0.9790 | 7326                | 7172                  | 0.258          |
| Zzorww_h                               | 16089350  | 0        |        | 0                   |                       |                |
| Zzorww_l                               | 2161400   | 2183002  | 0.9901 | 9930                | 9832                  | 0.455          |
| Z(2f)                                  | After BDT | 17760    |        |                     |                       |                |
| SV                                     | After BDT | 8510     |        |                     |                       |                |
| VV                                     | After BDT | 32190    |        |                     |                       |                |

# (Before BDT, scale background 2 times)

|             | ff_h_inv    | VV            | SV           | 2f          |
|-------------|-------------|---------------|--------------|-------------|
| Generate    | 6644 ?/100% | 54127958/100% | 5875942/100% | 800000/100% |
| After cut   | 2679/40.32% | 26709//0.049% | 3722/0.063%  | 4294/0.054% |
| After BDT   | 1685/25.36% | 174/0.000%    | 46/0.001%    | 96/0.001%   |
| After scale | 1685        | 32190         | 8510         | 17760       |
| After fit?  |             |               |              |             |

Question: How many signal are generated? Whether use the branch ratio

0.106%?

# After BDT(scale before BDT, scale times =2) S=1685 B=40664 B/S=24

#### 2.

#### 240 GeV

Higgs signal

| Process      | ĴL                 | Final states    | X-sections (fb) | Comments                                 |
|--------------|--------------------|-----------------|-----------------|------------------------------------------|
| Higgs signal | 5 ab <sup>-1</sup> | ffH             | 203.66          | all signals                              |
|              | 5 ab - 1           | $e^+e^-H$       | 7.04            | including ZZ fusion                      |
|              | 5 ab -1            | $\mu^+\mu^-H$   | 6.77            |                                          |
|              | 5 ab -1            | $\tau^+\tau^-H$ | 6.75            |                                          |
|              | 5 ab <sup>-1</sup> | $v\bar{v}H$     | 46.29           | all neutrinos (ZH+WW fusion)             |
|              | 5 ab <sup>-1</sup> | $q \bar{q} H$   | 136.81          | all quark pairs (Z $ ightarrow q ar q$ ) |

? formion backgounds

The number of  $\mu^+\mu^-H_{inv}$  maybe (in SM):  $N_{\mu^+\mu^-H_{inv}} = 5000 \times 6.77 \times 0.00106 = 35.881$ Our number after cut is N = 14.48

Select efficiency =  $\frac{14.48}{35.881}$  = 0.404

## Make signal scale is 1.

|                                       | SM        | Produced | scale  | After cut<br>number | After scale<br>number | Efficience(%) |
|---------------------------------------|-----------|----------|--------|---------------------|-----------------------|---------------|
| ff_h_inv                              | 1079      | 199863   | 1      | 2679                | 2679                  | 1.342         |
| $e^+e^- \rightarrow e^+e^-$           | 123854500 | 4000000  |        | 0                   | 0                     |               |
| $e^+e^- \to \mu^+\mu^-$               | 26663550  | 4000000  | 6.666  | 3321                | 4099630               | 0.083         |
| $e^+e^- \to \tau^+\tau^-$             | 23764450  | 4000000  | 5.941  | 973                 | 1070556               | 0.024         |
| $e^+e^-  ightarrow v_\mu \bar{v}_\mu$ | 22081500  | 0        |        | 0                   |                       |               |
| qq                                    | 270534300 | 9999023  | 27     | 9                   | 1667                  | 0             |
| Sw_l                                  | 4363150   | 4406821  |        | 0                   |                       |               |
| Sw_sl                                 | 13063100  | 13193720 |        | 0                   |                       |               |
| Sze_l                                 | 5502600   | 5556664  | 0.9903 | 1792                | 328704                | 0.032         |
| Sze_sl                                | 1580200   | 1595907  |        | 0                   |                       |               |
| Szeorsw_l                             | 1247400   | 1259867  |        | 0                   |                       |               |
| Sznu_l                                | 289950    | 319278   | 0.9081 | 1930                | 324630                | 0.605         |
| Sznu_sl                               | 728100    | 735398   |        | 0                   |                       |               |
| Ww_h                                  | 19127300  | 19482330 | 0.9818 | 2                   | 370                   | 0             |
| Ww_l                                  | 2018300   | 2036465  | 0.9911 | 7016                | 1287778               | 0.345         |
| Ww_sl                                 | 24234950  | 24476400 | 0.9901 | 1217                | 223148                | 0.005         |
| Zz_h                                  | 2583350   | 2608138  | 0.9905 | 3                   | 556                   | 0             |
| Zz_l                                  | 339050    | 499503   | 0.6788 | 1215                | 152778                | 0.243         |
| Zz_sl                                 | 2782450   | 2842121  | 0.9790 | 7326                | 1328148               | 0.258         |
| Zzorww_h                              | 16089350  | 0        |        | 0                   |                       |               |
| Zzorww_l                              | 2161400   | 2183002  | 0.9901 | 9930                | 1820741               | 0.455         |

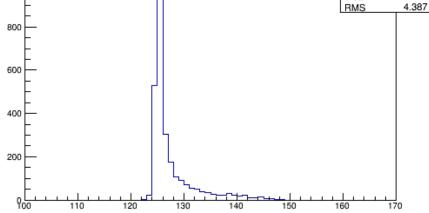
S = 2679; B = 10663519

B/S = 3980

After BDT (scale before BDT, scale times = 1)

S = 1967; B =353535

B/S = 180


#### 2.Calculate branch ratio and upper limit(test)

#### (Don't attend scale background)

1).Selected effectiveness =  $\frac{2679}{199863 \times \frac{6.77}{203.66}} = 0.4032$ 

(Come from the below pictures)

Fig1.cut signal (ffH\_invi) numbers before\_cut\_120GeV/c<sup>2</sup><M<sub>Recoil</sub><150GeV/c<sup>2</sup> before\_cut\_Mrecoil 2000 199863 Entries Mean 127.7 1800 RMS 4.674 1600 1400 1200 1000 800 600 400 200 Poc Fig2.Leave numbers (  $\mu^+\mu^-H_invi$ ) after\_cut\_120GeV/c<sup>2</sup><M<sub>Recoil</sub><150GeV/c<sup>2</sup> after\_cut\_Mrecoil 1000 Entries Mean RMS 800



2679

127.6

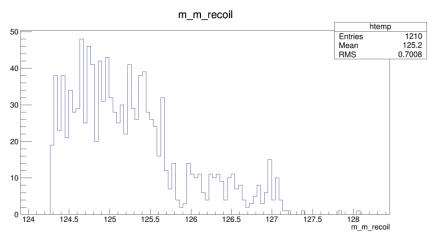
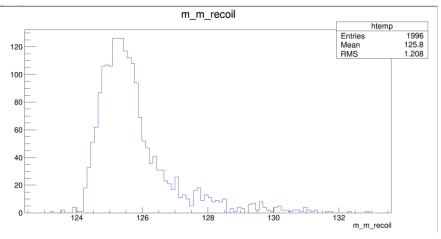
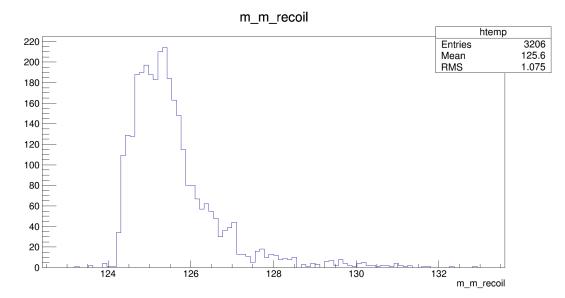
#### If use BDT, effectiveness

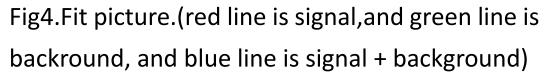


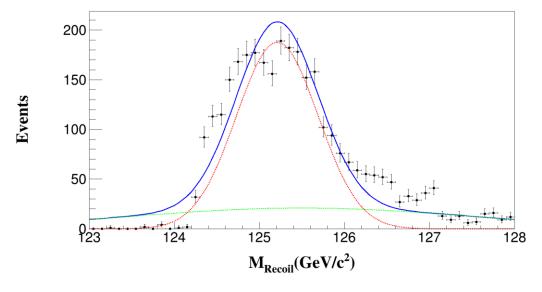
2).Fitting:

Use two Gaussian to fit.

Fig1. Background (Because I have change some cut information. So the BDT maybe don't the best. After scale, the number of background will become 244015.)



Fig2.Signal.




Whether two Guassian fit can work?

Fig3.Signal + background.



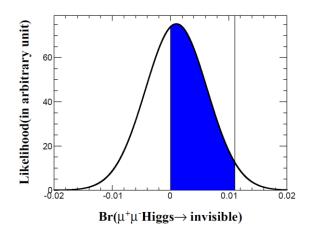




(Fit need to learn.)

After fitting, nsig=2256.98 $\pm$ 58.1636 Nbkg=829.117 $\pm$ 44.2158 So: Branch ratio  $=\frac{N_{sig}/eff}{N_{total}}$   $=\frac{(2256.98\pm58.1636)/0.4032}{\frac{5000\times6.77}{0.0054}}$ =0.09%  $\pm$  0.48% (How to calculate select effectiveness, I choose

effectiveness after cut.)


3).Calculate upper limit

Branch ratio distribution obey Gaussian distribution,

and mean value is 0.09% and sigma is 0.48%.

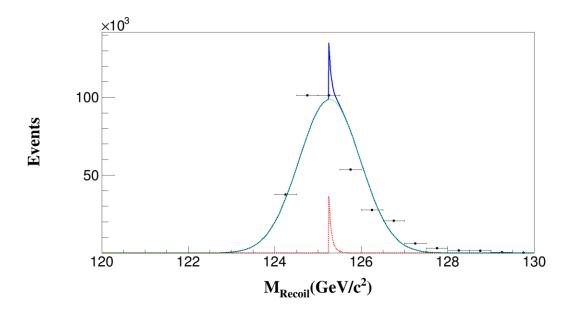
So The 95% confidence level upper limit is 1.00%.

Fig1.(upper limit)

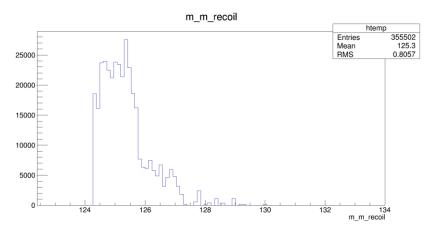


Test results:

|                   | $\mu^+\mu^-H(inv)$ |  |  |
|-------------------|--------------------|--|--|
| Br                | 0.09%±0.48%        |  |  |
| 95%CL upper limit | 1.00%              |  |  |


MoXin's result:

|                    | 0                  |                       |                       |                       |
|--------------------|--------------------|-----------------------|-----------------------|-----------------------|
|                    | $Z(e^+e^-)H(inv)$  | $Z(\mu^+\mu^-)H(inv)$ | $Z(q\bar{q})H(inv)$   | Combined              |
| Br                 | $0.35 \pm 0.510\%$ | $0.350\% \pm 0.290\%$ | $0.094\% \pm 0.150\%$ | $0.103\% \pm 0.075\%$ |
| 95% CL upper limit | 1.30%              | 0.90%                 | 0.37%                 | 0.24%                 |


4).Try to scale background (make it scale 185 times) Question: Scale position.

(Maoqiang choose scale background after BDT, I think we should scale before BDT, but because our data two big and should spend many times and I will run this way this weekend.)

Fig1.Blue line is sig+bkg. Red line is signal. Green line is background. (fit picture)







## Fig3.Signal distribution.

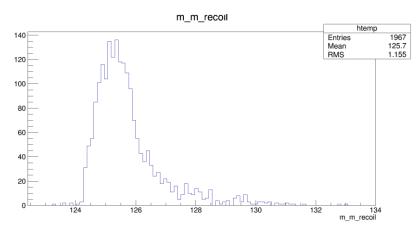
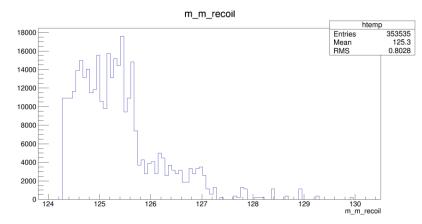




Fig4.Background distribution.



Question: Fit is strange and how to fit(only keep trying and change parameter....)?

#### Too strange(Fit wrong)

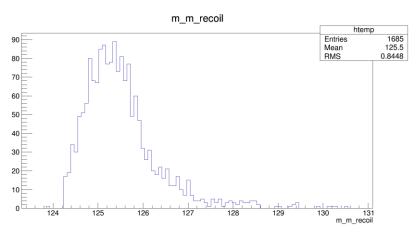
[#1] INFO:Plotting -- RooAbsPdf::plotOn(sum) indirectly selected PDF compon RooRealVar::nsig = 4996.55 +/- 0.00152561 L(0 - 5000) RooRealVar::nbkg = 354984 +/- 0.158852 L(0 - 355502) Info in <TCanvas::Print>: pdf file fig/fithiggs.pdf has been created

Total:

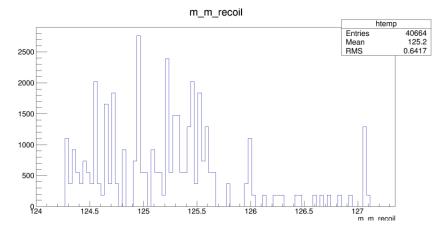
Signal:1967

#### Background:355502

# Question:BDT?


==> Wrote root file: ./BDT\_output/bkg\_e2E2h.root
==> TMVAClassification is done!
Error: Function TMVAGui(outfileName) is not defined in current scope /cefs/higgs/tanyuhang/hig2inv/././BDT/Hin
\*\*\* Interpreter error recovered \*\*\*

Other good attemps: background extend 2 times before BDT (Maybe will try other method, BDT is magical, when change background numbers, event make it increase. After BDT, the results maybe better?).


B: 40664 S:1685 B/S= 2413.29

# Fig1.Signal distribution.

## (Maybe try to use CBshape to fit)



# Fig2.Background distribution





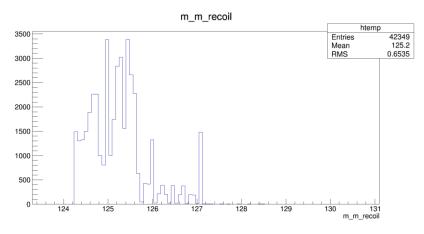
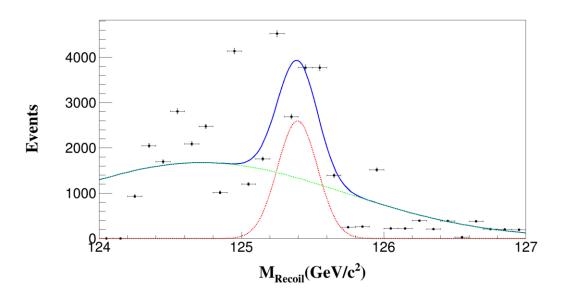
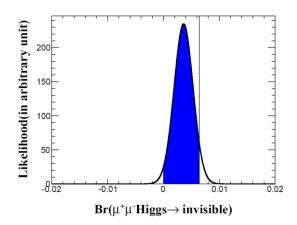




Fig.4 Fit: I don't know whether it's right and don't understand what fit is good?




I just use this to calculate upper limit as a test. (Hope some suggestions)

**Branch** ratio

 $= \frac{N_{sig}/eff}{N_{total}}$  $= \frac{(9000 \pm 7.18)/0.4032}{\frac{5000 \times 6.77}{0.0054}}$  $= 0.36\% \pm 0.17\%$ 

Confidence level Upper limit = 0.64%



# My result:

|                   | $\mu^+\mu^-H(inv)$ |
|-------------------|--------------------|
| Br                | 0.36%±0.17%        |
| 95%CL upper limit | 0.64%              |

## Moxin's

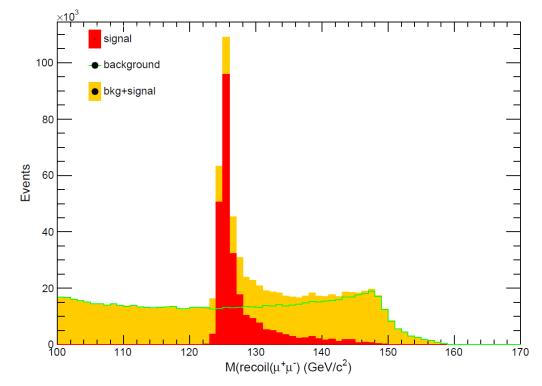
|                    |                    | -                     |                       |                       |
|--------------------|--------------------|-----------------------|-----------------------|-----------------------|
|                    | $Z(e^+e^-)H(inv)$  | $Z(\mu^+\mu^-)H(inv)$ | $Z(q\bar{q})H(inv)$   | Combined              |
| Br                 | $0.35 \pm 0.510\%$ | $0.350\% \pm 0.290\%$ | $0.094\% \pm 0.150\%$ | $0.103\% \pm 0.075\%$ |
| 95% CL upper limit | 1.30%              | 0.90%                 | 0.37%                 | 0.24%                 |

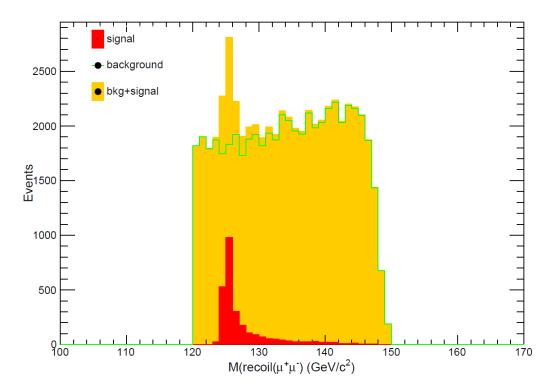
### Next Plan:

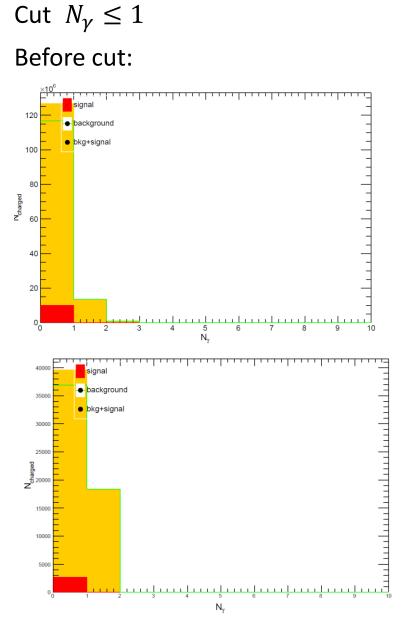

- 1. Many code question. (change many place and don't run all over again)
- 2. Don't understand the principle of BDT
- 3. Not understanding fit well.

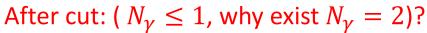
1. Distribution between signal and back ground.

(Because signal too small, I don't scale signal and extend 50 times background to see its distribution in before cut. After cut signal don't extend)


Cut 83Gev<  $M_{\mu^+\mu^-}$  <97Gev


Before cut:





# Cut 120Gev<M(recoil( $\mu^+\mu^-$ ))<150Gev

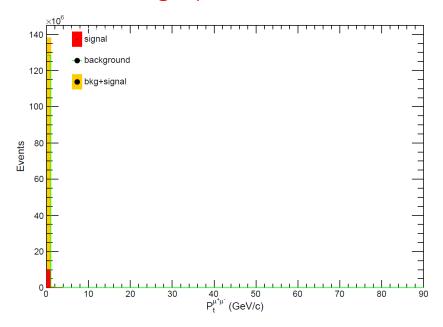
# Before cut:







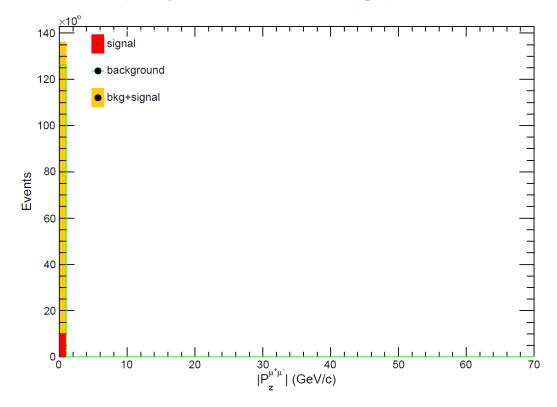


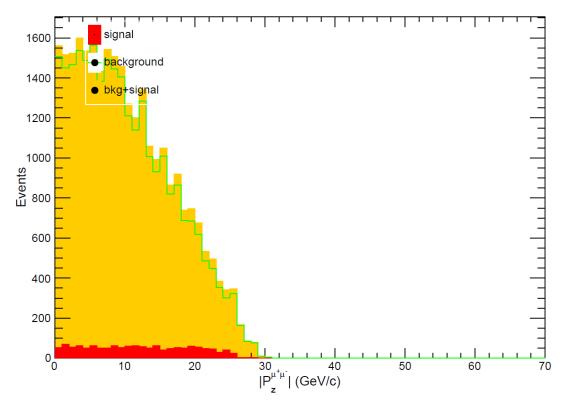

#### This my code:

if not (t\_in.m\_n\_gamma<=1):
 return False
self.N[2]+=1
self.h\_evtflw.Fill(2)</pre>

self.h\_after\_cut\_n\_photon.Fill(t\_in.m\_n\_gamma)

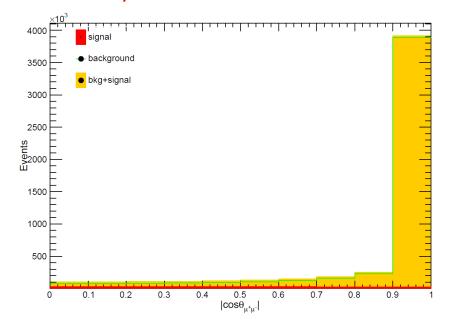
Cut 10Gev< *P*<sub>t</sub><70Gev:

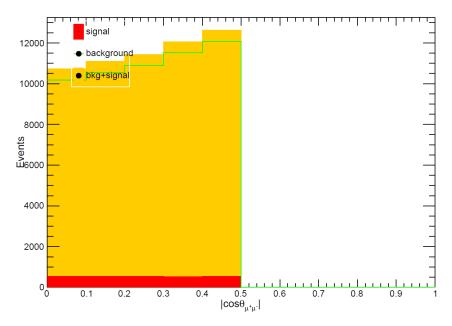

Before cut: (our signal conclude all ffH\_invi, why choose this range?)





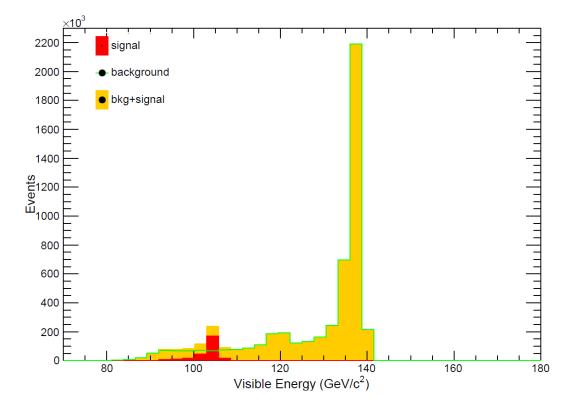

# Cut $P_z$ <50Gev

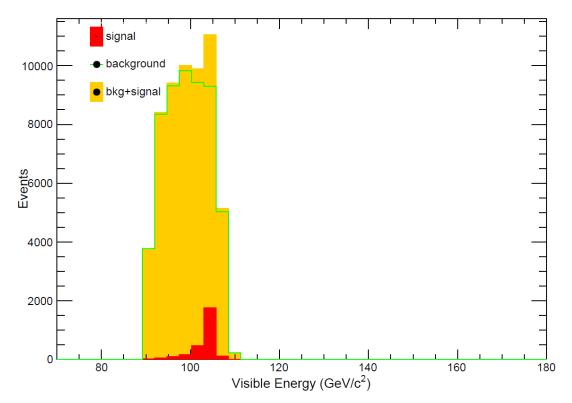

# Before cut: (Maybe extend too large)






Cut  $\left|\cos\theta_{\mu^+\mu^-}\right| < 0.5$ 


Before cut: (Different with Maoqiang, and change the Total P)






#### Cut 90Gev<Visible energy<110Gev

#### Before cut: (Interesting second peak)



