

LHC 2009 - 2010 luminosity performance - estimate for 3.5 TeV plus move to higher energy

A path to the total integrated luminosity quoted at Chamonix 2009 while keeping the total intensity to a reasonable level. Necessarily approximate. Preliminary.

Month	Comment	Turn around time	Energy [TeV]	Max number bunches	Protons/Bunch	% nom. intensity	Min beta *	Peak Luminosity $\text{cm}^{-2}\text{s}^{-1}$	Integrated Luminosity	events/X
1	Beam commissioning								First collisions	
2	Pilot physics , partial squeeze, gentle increase in bunch intensity, availability low	Long	3.5	43	3×10^{10}		4 m	8.6×10^{29}	$100 - 200 \text{ nb}^{-1}$	
3		5	3.5	43	5×10^{10}		4 m	2.4×10^{30}	$\sim 1 \text{ pb}^{-1}$	
4		5	3.5	156	5×10^{10}	2.5	2 m	1.7×10^{31}	$\sim 9 \text{ pb}^{-1}$	
5a	No crossing angle - could at this stage push intensity see 5b	5	3.5	156	7×10^{10}	3.4	2 m	3.4×10^{31}	$\sim 18 \text{ pb}^{-1}$	0.8
5b	No crossing angle - squeezing to beta* = 1m at this stage would double these lumi numbers (and the pile-up)	5	3.5	156	10×10^{10}	4.8	2 m	6.9×10^{31}	$\sim 36 \text{ pb}^{-1}$	1.6
6	Possible shift to higher energy - would anticipate ~4 weeks to reestablish physics follow by a fairly gentle increase back up in intensity.	Would aim to first provide a period of physics at the higher energy (4.5 TeV, say) without crossing angle, this could be followed by a move to 50 ns with a limited number of bunches. Note that the total intensity limit will go down with the move to higher energy.								
7	4 - 5 TeV (5 TeV luminosity quoted - doesn't make too much difference). No crossing angle.	5	4 -5	156	7×10^{10}	3.4	2 m	4.9×10^{31}	$\sim 26 \text{ pb}^{-1}$	
8	50 ns - nominal crossing angle - aperture restricts squeezing further - note limited complement of bunches.	5	4 -5	144	7×10^{10}	3.1	2 m	4.4×10^{31}	$\sim 23 \text{ pb}^{-1}$	
9	50 ns	5	4 -5	288	7×10^{10}	6.2	2 m	8.8×10^{31}	$\sim 46 \text{ pb}^{-1}$	
10	50 ns*	5	4 -5	432	7×10^{10}	9.4	2 m	1.3×10^{32}	$\sim 69 \text{ pb}^{-1}$	
(11)	50 ns*	5	4 -5	432	9×10^{10}	11.5*	2 m	2.1×10^{32}	$\sim 110 \text{ pb}^{-1}$	

To Do List on the Real Data Analysis

Inclusive $b \rightarrow J/\psi X$, $J/\psi \rightarrow \mu^+ \mu^-$

Xiangwei Meng

Institute of High Energy Physics, CAS, Beijing

Aug. 28 , 2009

Outline On the List

- Low pT J/Psi trig
- Acceptance*
 - Plat spetrum: pT &eta
 - J/Psi polarization(from b hadron part)
- Tracking performance from data
 - tracking efficiency
 - momentum scale/resolution
 - vertex efficiency/resolution
 - I.P. resolution
 - muon efficiency/trig efficiency: Tag&probe*
- Mass& lifetime fit*
 - Candidate selection
 - Pdl efficiency
 - Resolution from data
 - Fit strategy

Improved low pT J/Psi events in trig

- 1. $\text{SingleMu3+pt(2.mu from a track)} > 1 \text{ GeV/c}$:
 $J/\psi \sim 2.7 \text{ GeV/c}$
- 2. $d_{\phi} < 100$, $d_{\eta} < 1$

Tag&probe

- tag muon
 - matched to L3 muon; isolation cone 0.3; track quality: $d_{xy} < 0.2$, $n_{\text{hits in silicon}} > 10$, $\text{norm chi2} < 5$
- tracking efficiency
 - passing probe: data driven track embedding technique vs. M.C. truth matching
- muon id efficiency
 - bins in eta: $(0,1.2], [1.2,2.1]$

Tracking(Muon) performance I

- tracking resolution
 - CRAFT data, split reconstructed track in half: $D(d_{xy})$, $D(1/pT)$
- tracking efficiency: inside-out recon(CTF)
 - Track on one side is tag, search for reconed track on opposite side
- T&P on tracking efficiency:
 - STA muons, poor resolution/low pT
 - CRAFT: close to Center of CMS; lower occupancy
 - track embedding(for low PT, non-isolated hadrons):

Mix (at digi level) a single track from data or MC with higher occupancy event from data and reconstruct from scratch

Tracking(Muon) performance II

- Momentum scale: 2 group
 - MIT(as CDF's):
 - Study reconstructed resonance masses vs PT or other kinematic variables and correct for any shape with improved energy loss corrections
 - MuScleFit(Padova, Torino):
 - 1. Muon momentum scale calibration and momentum resolution fit
 - 2. Likelihood-based approach to extract scale correction
- I.P. resolution: reconed resonance or prompt J/psi
- Vertex resolution: P.V.: split tracks in 2 sets and fit

run-average beamline vs. an event-by-event primary vertex:

the beamline effectively adds to the uncertainty on P.V. However, decay length resolution is likely dominated by the S.V. resolution; avoids a potential bias in the reconstructed primary vertex due to the inclusion of tracks from heavy flavor decays in the primary vertex fit

J/Psi mass & lifetime Fit

- Candidate selection: Mario Pelliccioni (Torino/INFN)
 - first global-global pair Roberto Covarelli CERN
 - otherwise, look for global-tracker
 1. if one pair, $n_hits > 10$, TM2DCompatibilityLoose || TMLastStationOptimizedLowPtLoose
 2. if more than one pair, use highest pT tracker muon
 - otherwise, look for global-calo
 1. if one pair, $n_hits > 12$, $\chi^2 < 3$ & calocompat. > 0.8
 2. if more than one pair, use highest pt calomuon
- PAT muon so J/Psi candidates

Fit on lifetime (Combined with mass)

- have three components:
 - Prompt signal is a delta function
 - Non-prompt signal is an exponential (see later)
 - Background is a sum of a zero lifetime + positive/negative tails + symmetric tail
- Resolution function: need further investigation
 - extracted from data in the same fit as shape parameters
 - from QCD, $Y \rightarrow \mu\mu$ data?
- Non-prompt lifetime parametrization
 - CDF used templated distributions from MC
- strategy
 - Fit the MC distribution of non-prompt lifetime with a simple exponential + resolution
 - Fix the resolution from the “nominal” fit

31X Data pp@10TeV

SIGNAL

Filter: 2 muons with $|\eta| < 2.5$, ≥ 1 having $pT > 2.5$ GeV/c (this is a new filter proposal)

- 10M -- prompt J/psi -- 8.7/pb (was 2M in summer2008)
- 0.5M -- Psi(2S) -- 32/pb (same as summer2008)
- 1M -- Upsilon(1S) -- 54/pb (was 0.5M)
- 0.3M -- Upsilon(2S) -- 38/pb (was 0.2M)
- 0.2M -- Upsilon(3S) -- 88/pb (was 0.1M)
- 5M -- non-prompt J/psi "loose" -- 18/pb (new request)
- 10M -- ppMuX -- 0.075/pb

IHEP's SE

BACKGROUND

"Loose" Filter: ≥ 1 muon passing eta-dependent pT cuts (new filter!)

- 0 < $|\eta| < 1.2$ – $pT > 1.5$ GeV
- 1.2 < $|\eta| < 1.7$ – $pT > 1.0$ GeV
- 1.7 < $|\eta| < 2.5$ – $pT > 0.6$ GeV
- 10M -- "ppMuXLoose" -- 0.004/pb (new request) (filter eff is from Zongchang Yang with $r < 2m$, $z < 3m$)