Reconstructing K short Using Pi+Pi- Pair in CEPC

Motivation:

The Z boson plays important role in CEPC, responsible for many physics channels. Therefore it's important to reconstruct its decay product. The current particle reconstruction can only deal with final state particles and cannot reconstruct decayed neutral particles such as K short. The K short has 69% of chance to decay into a pair of pi+ and pi-. In this study, I try to reconstruct K short using a pair of final state pi+ and pi-.

Particles		Effective charge (T ₃)		Relative factor	Branching ratio	
Name	Symbols	L	R		Predicted for x = 0.23	Experimental measurements ^[11]
Neutrinos (all)	ν _e , ν _µ , ν _τ	1/2	0	3(1/2)2	20.5%	20.00 ± 0.06%
Charged leptons (all)	e¯, μ¯, τ¯			$3((-\frac{1}{2} + x)^2 + x^2)$	10.2%	10.097 ± 0.003%
Electron	e	$-\frac{1}{2} + x$	X	$(-\frac{1}{2} + x)^2 + x^2$	3.4%	3.363 ± 0.004%
Muon	μĪ	$-\frac{1}{2} + x$	X	$(-1/2 + x)^2 + x^2$	3.4%	3.366 ± 0.007%
Tau	τ-	$-\frac{1}{2} + x$	X	$(-1/2 + x)^2 + x^2$	3.4%	3.367 ± 0.008%
Hadrons (all)					69.2%	69.91 ± 0.06%
Down-type quarks	d, s, b	$-\frac{1}{2} + \frac{1}{3}x$	1/ ₃ x	$3(-\frac{1}{2} + \frac{1}{3}x)^2 + 3(\frac{1}{3}x)^2$	15.2%	15.6 ± 0.4%
Up-type quarks	u, c	$\frac{1}{2} - \frac{2}{3}x$	$-\frac{2}{3}x$	$3(\frac{1}{2} - \frac{2}{3}x)^2 + 3(-\frac{2}{3}x)^2$	11.8%	11.6 ± 0.6%

K short Reconstruction Algorithm

- 1. Find a pair of pi+ and pi-.
- 2. Determine track helix functions(in theory using track parameters, i.e. D0, Z0, etc., should give the most accurate results, but surprisingly, just using three tracker hits(innermost, middle and the outermost) to determine track helix function was proven to be more accurate).
- 3. Apply geometric method to find possible vertex, i.e. the shortest distance between two tracks.
- 4. Invariant mass at the possible vertex.
- 5. Whether the shortest distance and the invariant mass are within thresholds.

Sample

5e4 Z->qq events. Total Ks truth: 69352 Decayed into Pi+Pi-: 38388 Both daughters are reconstructed: 15890 →Denominator of efficiency Both PID are correct: 15037

Reconstruction Performance

Distance from reco vtx to real vex/mm

Reconstructed Ks mass

15560 Ks are reconstructed, 12585 are correct Mass resolution 0.27%, efficiency=79.2%, 纯度=80.1%

Background analysis

In the sample

:1

Background analysis

Background source of Coral

Coral = 15560		
CoralSuccess = 12585		
Total background = 2975		
<pre>ParentType1 == ParentType2:</pre>	977	32.8403 %
Same parent: 881	29.	6134 %
Parent PDGID = 223:	303	10.1849 %
Parent PDGID = 3122	: 152	5.10924 %
Parent PDGID = -312	2: 150	5.04202 %
Parent PDGID = 310:	73	2.45378 %
Parent PDGID = 113:	34	1.14286 %
Others:	169	5.68067 %
Different parent: 96	3.22	689 %
Parent PDGID = 223:	67	2.2521 %
Others:	29	0.97479 %

ParentType1 means parent type of *supposed* Pi+ ParentType2 is for Pi-

ParentType1 != ParentType2: 1998	67.1597 %
ParentType1:	
Parent1 PDGID = 223: 282	9.47899 %
Parent1 PDGID = 213: 277	9.31092 %
Parent1 PDGID = 113: 227	7.63025 %
Parent1 PDGID = 92: 169	5.68067 %
Parent1 PDGID = 323: 85	2.85714 %
Parent1	2.52101 %
Parent1 PDGID = 221: 71	2.38655 %
Parent1 PDGID = 313: 65	2.18487 %
Parent1 PDGID = 310: 60	2.01681 %
Parent1 PDGID = -421: 56	1.88235 %
Parent1 PDGID = 413: 45	1.51261 %
Parent1 PDGID = -313: 37	1.2437 %
Parent1 PDGID = 211: 36	1.21008 %
Others: 513	17.2437 %
ParentType2:	
Parent2 PDGID = 223 : 293	9.84874 %
Parent2 PDGID = -213: 254	8.53782 %
Parent2 PDGID = 113: 187	6.28571 %
Parent2 PDGID = 92: 177	5.94958 %
Parent2 PDGID = -323: 83	2.78992 %
Parent2	2.62185 %
Parent2 PDGID = 421: 65	2.18487 %
Parent2 PDGID = 310: 62	2.08403 %
Parent2 PDGID = 221: 53	1.78151 %
Parent2 PDGID = -413: 50	1.68067 %
Parent2 PDGID = -313: 50	1.68067 %
Parent2 PDGID = 313: 44	1.47899 %
Parent2 PDGID = -10323: 38	1.27731 %
Parent2 PDGID = -421 : 37	1.2437 %
Others: 527	17.7143 %