
Mono-photon distribution At CEPC

Hao, Yongfeng

Main Process

- e1: electron
- E1: positron
- A: photon
- n1: electron-neutrino
- N1:anti-electron-neutrino

Secondary ISR

- 1. Comparable at the region far away from the peak
- 2. Secondary ISR is significant at lower size of the peak

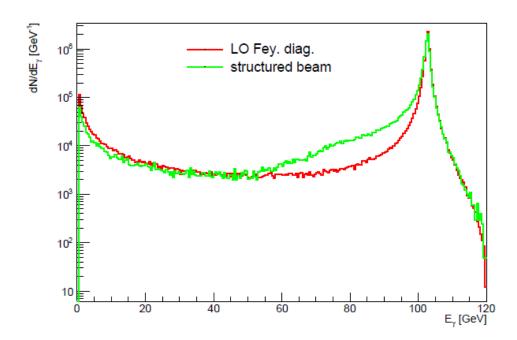
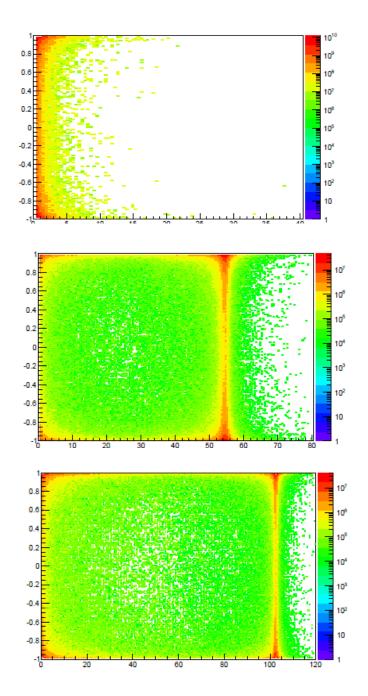
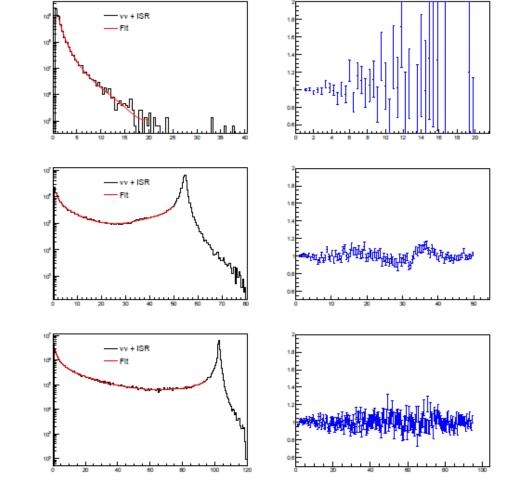



Figure 2: The Events distribution of the leading photon in process $Z(\nu_e\nu_e)$ + ISR at center of mass energy of 240GeV. A cut $|\cos(\theta_{\gamma})| < 0.99$ is applied to let the comparison to be meaninglful.


Inclusive ISR as mono-photon

- Center of mass energy: 91.2GeV, 161GeV, 240GeV
- Return Z at 0GeV, 55GeV, 110GeV

Parameterization of Inclusive ISR as mono-photon

$$\frac{dN}{dE_{\gamma}} = \frac{\alpha_{\rm EM}}{\pi} \cdot \frac{1 + (1 - x)^2}{x} \cdot 2\operatorname{arctanh}(\cos(\theta_c)) \cdot (\sigma_1 + \sigma_2)$$
$$\sigma_1 = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$
$$\sigma_2 = \frac{k(\Gamma_Z M_Z)^2}{(M_{\gamma \text{recoil}}^2 - M_Z^2)^2 + (\Gamma_Z M_Z)^2}$$
$$x = \frac{E_{\gamma}}{\sqrt{s/2}}$$
$$M_{\gamma \text{recoil}} = \sqrt{(\sqrt{s} - E_{\gamma})^2 - p_{\gamma}^2}$$

\sqrt{s} [GeV]	Ran.[GeV]	$L \ [ab^{-1}]$	c0,c1,c2,c3,k [GeV ⁻¹]
91.2	1 - 20	10	-2.265e+04, 1.764e+05, -5.325e+05, 5.453e+05, 3.799e+10
161	1 - 50	2.6	9.8046e+02, 8.0219e+03, -4.7194e+04, 9.591e+04, 3.590e+10
240	1 - 91	5.6	$7.3489E + 02, 3.2390e + 03, -1.1570e + 04, \ 1.372e + 04, \ 4.0536e + 10$

Table 1: The fit parameters.

Figure 6: The number of events distribution of the leading photon at center of mass energy of 91.2GeV, 161GeV, and 240GeV(from top to bottom respectively). The integral luminosities are corresponding to $10 {\rm ab}^{-1}$, 2.6^{-1} and 5.6 $^{-1}$ respectively. A cut $|\cos(\theta_{\gamma})| < 0.99$ is applied.

Components distribution

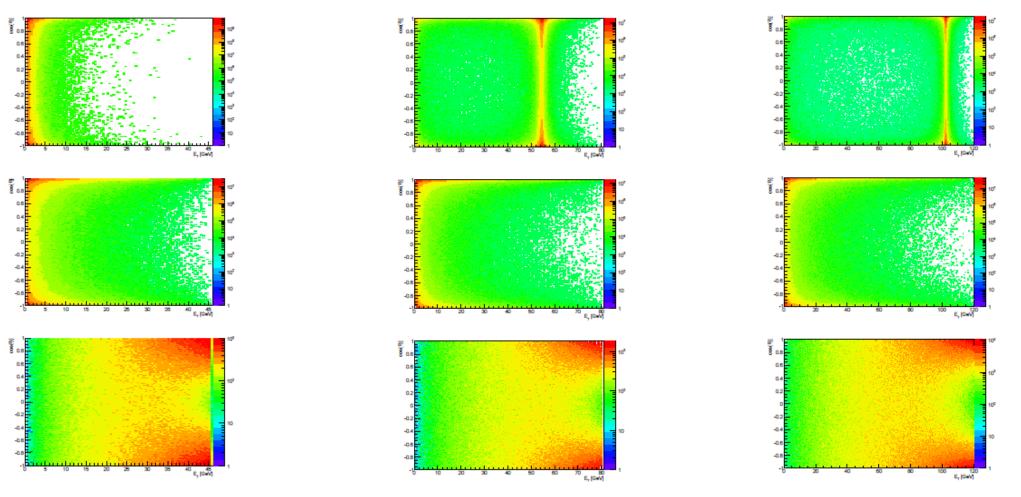


Figure 7: Events distribution for center of mass energy of 91.2 GeV. From top to bottom, they are $\nu_e\nu_e(s~{\rm channel})+{\rm ISR}, \nu_e\nu_e~(t~{\rm channel})+{\rm ISR},$ and WW fusion. The integral luminosity is the same in Fig. 4.

Figure 8: Same as Fig. 5, but for center of mass energy of 161GeV.

Figure 9: Same as Fig. 5, but for center of mass energy of 240GeV.