Study of prompt J/ψ production in e<sup>+</sup>e<sup>-</sup> annihilation at center-of-mass energies from 3.810 GeV to 4.600 GeV

Olga BAKINA

On behalf of BESIII-JINR group

Joint Institute for Nuclear Research 17 October 2018

## **Motivation I**

• There are two main theoretical approachs to calculate the heavy quarkonium production at different hard-scattering scales: CSM and NRQCD with COM.

For nonperturbative calculations it is necessary to obtain matrix elements which are extracted from experimental data.

- B-factories prompt  $J/\psi$ production at  $\sqrt{s} = 10.6$  GeV:
  - $\sigma(e+e- \rightarrow J/\psi + X) = 2.5 \pm 0.21 \pm 0.21 \text{ pb}$ (BaBar)
  - $\sigma(e+e- \rightarrow J/\psi + X) = 1.47 \pm 0.10 \pm 0.13$ pb (Belle)
  - $\sigma(e+e-\rightarrow J/\psi + X) = 1.9 \pm 0.2 \text{ pb} (CLEO)$

These results are not entirely consistent with each other.

- Theoretical prediction for energy region 4.6 ~ 5.6 GeV:
  - The CO LDMEs are nonzero assuming prompt  $J/\psi$  production larger than 10 pb.

**Ref.:** arXiv:1409.2293v2 [hep-ph] 4 Aug 2016

• We are able to measure prompt J/ $\psi$  production at the lowest point  $\sqrt{s} = 4.6$  GeV of this energy region using the XYZ data of the BESIII experiment.

## **Motivation II**

- There is a series of exclusive cross-section measurements performed by the BESIII experiment in considered energy region:
- $e+e- \rightarrow J/\psi \pi + \pi$  (arXiv:1611.01317v1 [hep-ex] 4 Nov 2016)
- $e+e- \rightarrow J/\psi \pi 0\pi 0$  (arXiv:1506.06018v2 [hep-ex] 1 Aug 2015)
- $e+e- \rightarrow J/\psi\eta, \pi 0$  (arXiv:1503.06644v1 [hep-ex] 23 Mar 2015)
- $e+e- \rightarrow J/\psi \eta'$  (arXiv:1605.03256v1 [hep-ex] 11 May 2016)

...

- $e+e- \rightarrow J/\psi K+K-,K0K0$  (arXiv:1802.01216v1 [hep-ex] 4 Feb 2018)
- Are there any other significant nontrivial contributions?

## The XYZ data (2012-2014)

| ID   | $\sqrt{s}, MeV$             | Run number                   | $\mathcal{L}_{int}, pb^{-1}$ |
|------|-----------------------------|------------------------------|------------------------------|
| 3810 | $3807.65 \pm 0.10 \pm 0.58$ | 33490 - 33556                | $50.54 \pm 0.03 \pm 0.49$    |
| 3900 | $3896.24 \pm 0.11 \pm 0.72$ | 33572 - 33657                | $52.61 \pm 0.03 \pm 0.51$    |
| 4009 | $4007.62 \pm 0.05 \pm 0.66$ | 23463 - 24141                | $481.96 \pm 0.01 \pm 4.68$   |
| 4090 | $4085.45 \pm 0.14 \pm 0.66$ | 33659 - 33719                | $52.63 \pm 0.03 \pm 0.51$    |
| 4190 | $4188.59 \pm 0.15 \pm 0.68$ | 30372 - 30437                | $43.09 \pm 0.03 \pm 0.42$    |
| 4210 | $4207.73 \pm 0.14 \pm 0.61$ | 31983 - 32045                | $54.55 \pm 0.03 \pm 0.53$    |
| 4220 | $4217.13 \pm 0.14 \pm 0.67$ | 32046 - 32140                | $54.13 \pm 0.03 \pm 0.53$    |
| 4230 | $4226.26 \pm 0.04 \pm 0.65$ | 30438 - 30491                | $44.40 \pm 0.03 \pm 0.43$    |
| 4230 | $4226.26 \pm 0.04 \pm 0.65$ | 32239 - 33484                | $1047.34 \pm 0.14 \pm 10.16$ |
| 4245 | $4241.66 \pm 0.12 \pm 0.73$ | 32141 - 32226                | $55.59 \pm 0.04 \pm 0.54$    |
| 4260 | $4257.97 \pm 0.04 \pm 0.66$ | 29677 - 30367, 31561 - 31981 | $825.67 \pm 0.13 \pm 8.01$   |
| 4310 | $4307.89 \pm 0.17 \pm 0.63$ | 30492 - 30557                | $44.90 \pm 0.03 \pm 0.44$    |
| 4360 | $4358.26 \pm 0.05 \pm 0.62$ | 30616 - 31279                | $539.84 \pm 0.10 \pm 5.24$   |
| 4390 | $4387.40 \pm 0.17 \pm 0.65$ | 31281 - 31325                | $55.18 \pm 0.04 \pm 0.54$    |
| 4420 | $4415.58 \pm 0.04 \pm 0.72$ | 31327 - 31390                | $44.67 \pm 0.03 \pm 0.43$    |
| 4420 | $4415.58 \pm 0.04 \pm 0.72$ | 36773 - 38140                | $1028.89 \pm 0.13 \pm 9.98$  |
| 4470 | $4467.06 \pm 0.11 \pm 0.73$ | 36245 - 36393                | $109.94 \pm 0.04 \pm 1.07$   |
| 4530 | $4527.14 \pm 0.11 \pm 0.72$ | 36398 - 36588                | $109.98 \pm 0.04 \pm 1.07$   |
| 4575 | $4574.50 \pm 0.18 \pm 0.70$ | 36603 - 36699                | $47.67 \pm 0.03 \pm 0.46$    |
| 4600 | $4599.53 \pm 0.07 \pm 0.74$ | 35227 - 36213                | $566.93 \pm 0.11 \pm 5.50$   |

- The XYZ data (2012-2014) and corresponding MC sets are reconstructed and simulated under BOSS 6.6.4.p01;
- The "4009" data (2011) and corresponding MC samples are reconstructed and simulated under BOSS 6.6.4

**Energy measurement:** M. Ablikim et al. "Measurement of the center-of-mass energies at BESIII via the di-muon process", arXiv:1510.08654 [hep-ex] 29 Oct 2015

Luminosity measurement: M. Ablikim et al. "Precision measurement of the integrated luminosity of the data taken by BESIII at center of mass energies between 3.810 GeV and 4.600 GeV", arXiv:1503.03408 [hep-ex] 11 Mar 2015

## Measurement procedure

 $\sigma_{e^+e^- \to J/\psi_{prompt}X} = \frac{1}{\mathcal{L}} \times \left( Y_{J/\psi X} - Y_{\psi'_{ISR} \to J/\psi X} - Y_{\psi' \to J/\psi X} - Y_{\chi_c \to \gamma J/\psi} \right)$ 

• Signal: 
$$e+e- \rightarrow J/\psi_{\text{prompt}}X$$
,

here  $J/\psi_{prompt}$  is originated from sources other than classical charmonium decays or ISR.

- Major background sources:  $\{\psi', \chi_{m}\} \rightarrow J/\psi X$
- Initial-state radiation (ISR) return to:
  - **<u>Resonances:</u>**  $e^+e^- \rightarrow \gamma J/\psi$ ,  $e^+e^- \rightarrow \gamma \psi'$ (exclude by cuts)
  - **<u>Continuum</u>**:  $e^+e^- \rightarrow \gamma J/\psi X$

(take into account by applying QED calculation)

### Observed number of $e^+e^- \rightarrow J/\psi X$ events estimation for $Y_{J/\psi X}$ yield measurement

$$\sigma_{e^+e^- \to J/\psi_{prompt}X} = \frac{1}{\mathcal{L}} \times \left( Y_{J/\psi X} - Y_{\psi'_{ISR} \to J/\psi X} - Y_{\psi' \to J/\psi X} - Y_{\chi_c \to \gamma J/\psi} \right)$$

$$Y_{J/\psi X} = \frac{N_{J/\psi X}^{obs} - \mathcal{R}_{J/\psi_{ISR}}^{bg} \times N_{J/\psi_{ISR}}^{obs}}{\bar{\epsilon}_{J/\psi X} \times \mathcal{B}_{J/\psi \to \mu^+ \mu^-}}$$

### Selection criteria for $e^+e^- \rightarrow J/\psi X \rightarrow \mu^+\mu^- X$

#### Each selected event must contain one of the following track configuration:

- exactly one positive and one negative reconstructed charged tracks and at least two photons (suppression of ~98% e+e-  $\rightarrow (\gamma_{ISR})J/\psi$  events)
- exactly two positive and two negative reconstructed charged tracks and at least two photons (suppression of ~50% e+e-  $\rightarrow (\gamma_{ISR})\psi'$  events)
- exactly two positive and two negative reconstructed charged tracks, less than two photons while the charged tracks do not form the  $\psi'$  signal via the J/ $\psi\pi$ + $\pi$  final state
- other configurations with more than one positive or more than one negative reconstructed charged tracks
- •

#### **Charged tracks criteria:**

- $\cos(\Theta) < 0.93$  (for each charged track);
- r < 1 cm, |z| < 10 cm (for each charged track);
- Eemc < 0.6 GeV (muons from J/ $\psi$  decay identification);
- 2.8 GeV  $< M_{\mu^+\mu} < 3.4$  GeV (mass window for J/ $\psi$ );

#### **Photons criteria:**

- EMC:  $0 \le t \le 14$  ns;
- E > 25 MeV (barrel), E > 50 MeV (end-cups);
- The angle between the neutral track and the nearest charged track  $> 20^{\circ}$ ;

#### The energy deposited in the EMC for all charged tracks



## Observed number of J/\u03cf X events



Fit a normalized gaussian function (signal) and a quadratic polynomial (background) to the data

41.33 / 44

1926 ± 14.4

 $32.55 \pm 0.94$ 

 $3.094 \pm 0.000$ 

3.4

 $0.01586 \pm 0.00049$ 

 $2.292e+04 \pm 1.404e+02$ 

-1.321e+04 ± 8.709e+01

3.3

 $M_{\mu^*\mu^*}$ , GeV/c<sup>2</sup>



Observed number of  $e^+e^- \rightarrow (\gamma_{ISR})J/\psi$  events estimation for calculation number of background events (accroding to KKMC R<sup>bg</sup> is ~2%)

$$\sigma_{e^+e^- \to J/\psi_{prompt}X} = \frac{1}{\mathcal{L}} \times (Y_{J/\psi X} - Y_{\psi'_{ISR} \to J/\psi X} - Y_{\psi' \to J/\psi X} - Y_{\chi_c \to \gamma J/\psi})$$

$$Y_{J/\psi X} = \frac{N_{J/\psi X}^{obs} - \mathcal{R}_{J/\psi ISR}^{bg} \times N_{J/\psi ISR}^{obs}}{\bar{\epsilon}_{J/\psi X} \times \mathcal{B}_{J/\psi \to \mu^+ \mu^-}}$$

### Selection criteria for ISR return to J/ $\psi$ resonance $(e^+e^- \rightarrow (\gamma_{ISR})J/\psi \rightarrow (\gamma_{ISR})\mu^+\mu^-)$

#### Each selected event must contain the following track configuration:

• exactly one positive and one negative reconstructed charged tracks and less than two photons

#### **Charged tracks criteria:**

- $\cos(\Theta) < 0.93$  (for each charged track);
- r < 1 cm, |z| < 10 cm (for each charged track);
- Eemc < 0.6 GeV (muons from J/ $\psi$  decay identification);
- 2.8 GeV <  $M_{\mu^+\mu^-}$  < 3.4 GeV (mass window for J/ $\psi$ );

#### **Photons criteria:**

- EMC:  $0 \le t \le 14$  ns;
- E > 25 MeV (barrel), E > 50 MeV (end-cups);
- The angle between the neutral track and the nearest charged track  $> 20^{\circ}$ ;

## **Observed number of** $(\gamma_{ISR})$ **J**/ $\psi$ events



Fit a normalized gaussian function (signal) and a quadratic polynomial (background) to the data





### Observed number of $e^+e^- \rightarrow \psi' X$ with $\psi' \rightarrow J/\psi X$ events estimation for $Y_{\psi' \rightarrow J/\psi X}$ yield measurement

$$\sigma_{e^+e^- \to J/\psi_{prompt}X} = \frac{1}{\mathcal{L}} \times (Y_{J/\psi X} - Y_{\psi'_{ISR} \to J/\psi X} - Y_{\psi' \to J/\psi X} - Y_{\chi_c \to \gamma J/\psi})$$

$$Y_{\psi' \to J/\psi X} = \frac{N_{\psi'X}^{obs} \times \tilde{\mathcal{B}}_{\psi' \to J/\psi X}}{\bar{\epsilon}_{\psi' X} \times \mathcal{B}_{\psi' \to J/\psi \pi^+ \pi^-} \times \mathcal{B}_{J/\psi \to \mu^+ \mu^-}}$$

$$\tilde{\mathcal{B}}_{\psi' \to J/\psi X} = \mathcal{B}_{\psi' \to J/\psi X} - \mathcal{B}_{\psi' \to \gamma \chi_{c1}} \times \mathcal{B}_{\chi_{c1} \to \gamma J/\psi} - \mathcal{B}_{\psi' \to \gamma \chi_{c2}} \times \mathcal{B}_{\chi_{c2} \to \gamma J/\psi}$$

#### Selection criteria for $e^+e^- \rightarrow \psi' X \rightarrow J/\psi \pi^+\pi^- X$

#### Each selected event must contain one of the following track configuration:

- exactly two positive and two negative reconstructed charged tracks and at least two photons (suppression of ~50% e+e-  $\rightarrow (\gamma_{ISR})\psi'$  events)
- more than two positive or more than two negative reconstructed charged tracks

#### Additionally, 1C kinematic fit to the J/ $\psi$ mass:

- 3.0 GeV <  $M_{\mu^+\mu^-}$  < 3.2 GeV;
- $\mu^+\mu^-$  combination with minimal  $\chi^2$ ;
- $\chi^2_{min} < 50;$

## All other charged track pairs are considered as $\pi^+\pi^-$ without any particle identification.

### $\chi^2_{min}$ for 1C kinematic fit to the J/ $\psi$ mass



## Observed number of $\psi'X$ events



Background is fitted by a gaussian function and a constant (by a line for other points)





Observed number of  $e^+e^- \rightarrow (\gamma_{ISR})\psi'$  with  $\psi' \rightarrow J/\psi X$  events estimation for  $Y_{\psi'ISR \rightarrow J/\psi X}$  yield measurement

$$\sigma_{e^+e^- \to J/\psi_{prompt}X} = \frac{1}{\mathcal{L}} \times (Y_{J/\psi X} - Y_{\psi'_{ISR} \to J/\psi X} - Y_{\psi' \to J/\psi X} - Y_{\chi_c \to \gamma J/\psi})$$

$$Y_{\psi_{ISR}' \to J/\psi X} = \frac{N_{\psi_{ISR}'}^{obs} \times (1 - \epsilon_{\psi_{ISR}'}) \times \tilde{\mathcal{B}}_{\psi' \to J/\psi X}}{\epsilon_{\psi_{ISR}'} \times \mathcal{B}_{\psi' \to J/\psi \pi^+ \pi^-} \times \mathcal{B}_{J/\psi \to \mu^+ \mu^-}}$$

$$\tilde{\mathcal{B}}_{\psi' \to J/\psi X} = \mathcal{B}_{\psi' \to J/\psi X} - \mathcal{B}_{\psi' \to \gamma \chi_{c1}} \times \mathcal{B}_{\chi_{c1} \to \gamma J/\psi} - \mathcal{B}_{\psi' \to \gamma \chi_{c2}} \times \mathcal{B}_{\chi_{c2} \to \gamma J/\psi}$$

### Selection criteria for ISR return to $\psi'$ resonance $(e^+e^- \rightarrow (\gamma_{ISR})\psi' \rightarrow (\gamma_{ISR})J/\psi\pi^+\pi^-)$

#### Each event must contain the following track configuration:

• exactly two positive and two negative reconstructed charged tracks and less than two photons

#### Additionally, 1C kinematic fit to the J/ $\psi$ mass:

- 3.0 GeV <  $M_{\mu^+\mu}$  < 3.2 GeV;
- $\mu^+\mu^-$  combination with minimal  $\chi^2$ ;
- $\chi^2_{min} < 50;$

## All other charged track pairs are considered as $\pi^+\pi^-$ without any particle identification.

## **Observed number of** $(\gamma_{ISR})\psi'$ events





#### Background is fitted by a line





Observed number of  $e^+e^- \rightarrow \chi_c X$  with  $\chi_c \rightarrow \gamma J/\psi$ events estimation for  $Y_{\chi c \rightarrow \gamma J/\psi}$  yield measurement

$$\sigma_{e^+e^- \to J/\psi_{prompt}X} = \frac{1}{\mathcal{L}} \times \left( Y_{J/\psi X} - Y_{\psi'_{ISR} \to J/\psi X} - Y_{\psi' \to J/\psi X} - Y_{\chi_c \to \gamma J/\psi} \right)$$
$$Y_{\chi_c \to \gamma J/\psi} = \frac{N_{\chi_c X}^{obs}}{\epsilon_{\chi_c X} \times \mathcal{B}_{J/\psi \to \mu^+ \mu^-}}$$

Selection criteria for  $e^+e^- \rightarrow \chi_{c1,2} X \rightarrow \gamma J/\psi X$ 

## Each selected event must contain one of the following track configuration (according to $J/\psi$ selection criteria described above):

- exactly one positive and one negative reconstructed charged tracks and at least two photons
- exactly two positive and two negative reconstructed charged tracks and at least two photons
- exactly two positive and two negative reconstructed charged tracks, exactly one photon while the charged tracks do not form the  $\psi'$  signal via the J/ $\psi\pi$ + $\pi$  final state
- other configurations with more than one positive or more than one negative reconstructed charged tracks and at least one photon

#### Additionally, 1C kinematic fit to the $J/\psi$ mass:

- 3.0 GeV  $< M_{\mu^+\mu^-} < 3.2$  GeV;
- $\mu^+\mu^-$  combination with minimal  $\chi^2$ ;
- $\chi^2_{min} < 50;$

## At least two photons for 2-track events and at least one photon for other events:

- EMC:  $0 \le t \le 14$  ns;
- E > 25 MeV (barrel), E > 50 MeV (end-cups);
- The angle between the neutral track and the nearest charged track  $> 20^{\circ}$ ;

## **Observed number of \chi\_{c1,2}X events**



Fit two Breit-Wigner convoluted with a gaussian functions (signal) and an exponential function (background) to the data Masses and widths of χc1,2 are fixed parameters.





### **Observed number of events**

| ID   | $N_{e^+e^- \to J/\psi X}^{obs}$ | $N_{e^+e^- \to (\gamma_{ISR})J/\psi}^{bg}$ | $N^{obs}_{e^+e^- \to \psi' X}$ | $N_{e^+e^- \to (\gamma_{ISR})\psi'}^{obs}$ | $N_{e^+e^- \to \chi_{c1}X}^{obs}$ | $N_{e^+e^- \to \chi_{c2} X}^{obs}$ |
|------|---------------------------------|--------------------------------------------|--------------------------------|--------------------------------------------|-----------------------------------|------------------------------------|
| 3810 | $1874 \pm 49$                   | $38 \pm 2$                                 | $56 \pm 8$                     | $1107 \pm 34$                              | $71 \pm 12$                       | $46 \pm 9$                         |
| 3900 | $1109 \pm 40$                   | $30 \pm 1$                                 | $29 \pm 5$                     | $651 \pm 26$                               | $49 \pm 10$                       | $17 \pm 7$                         |
| 4009 | $7033 \pm 113$                  | $343 \pm 6$                                | $228 \pm 16$                   | $3779 \pm 63$                              | $297 \pm 27$                      | $120 \pm 19$                       |
| 4090 | $599 \pm 32$                    | $27 \pm 2$                                 | $14 \pm 4$                     | $319 \pm 18$                               | $34 \pm 9$                        | $16 \pm 7$                         |
| 4190 | $503 \pm 30$                    | $19 \pm 1$                                 | $14 \pm 5$                     | $196 \pm 14$                               | $17\pm7$                          | $6\pm 6$                           |
| 4210 | $659 \pm 34$                    | $23 \pm 1$                                 | $23 \pm 6$                     | $224 \pm 15$                               | $3\pm7$                           | $16 \pm 8$                         |
| 4220 | $722 \pm 34$                    | $21 \pm 1$                                 | $34 \pm 7$                     | $208 \pm 15$                               | $6\pm7$                           | $1\pm7$                            |
| 4230 | $627 \pm 32$                    | $19 \pm 1$                                 | $23 \pm 6$                     | $179 \pm 14$                               | $32\pm 8$                         | $9\pm 6$                           |
| 4230 | $14983 \pm 157$                 | $455\pm6$                                  | $561 \pm 36$                   | $4473 \pm 69$                              | $291\pm36$                        | $179 \pm 33$                       |
| 4245 | $727 \pm 35$                    | $21 \pm 1$                                 | $16 \pm 5$                     | $244 \pm 16$                               | $21\pm 8$                         | $8\pm7$                            |
| 4260 | $9629 \pm 132$                  | $421\pm7$                                  | $406 \pm 34$                   | $3208 \pm 58$                              | $216 \pm 31$                      | $138 \pm 28$                       |
| 4310 | $493\pm32$                      | $19 \pm 1$                                 | $26 \pm 6$                     | $135 \pm 12$                               | $15\pm7$                          | $11 \pm 6$                         |
| 4360 | $5341 \pm 101$                  | $180 \pm 4$                                | $507 \pm 27$                   | $1751 \pm 43$                              | $178 \pm 26$                      | $114 \pm 21$                       |
| 4390 | $480 \pm 31$                    | $17 \pm 1$                                 | $50 \pm 9$                     | $167 \pm 13$                               | $29\pm 8$                         | $15\pm 6$                          |
| 4420 | $405 \pm 28$                    | $15 \pm 1$                                 | $32\pm7$                       | $135 \pm 12$                               | $15\pm7$                          | $21\pm7$                           |
| 4420 | $9147 \pm 137$                  | $342 \pm 5$                                | $904 \pm 35$                   | $3117 \pm 57$                              | $313 \pm 34$                      | $190 \pm 28$                       |
| 4470 | $775 \pm 44$                    | $35 \pm 2$                                 | $\overline{48 \pm 9}$          | $339 \pm 19$                               | $38 \pm 10$                       | $\overline{24 \pm 9}$              |
| 4530 | $674 \pm 42$                    | $36 \pm 2$                                 | $\overline{39\pm8}$            | $\overline{261 \pm 16}$                    | $\overline{42 \pm 11}$            | $9\pm 8$                           |
| 4575 | $341 \pm 28$                    | $11 \pm 1$                                 | $19 \pm 6$                     | $124 \pm 11$                               | $24 \pm 7$                        | $4\pm5$                            |
| 4600 | $3255 \pm 94$                   | $144 \pm 4$                                | $\overline{194 \pm 19}$        | $1214 \pm 36$                              | $163 \pm 27$                      | $42 \pm 19$                        |

# Efficiency

- To estimate efficiency we need to produce inclusive Monte Carlo samples of unknown composition.
- We assumed that efficiency mainly depends on topology of events (track multiplicity).
- Thus we decided to produce appropriate Monte Carlo samples as a mixture of major exclusive channels with typical topologies.
- Weights for the mixture we obtain from track multiplicity of the real data .

## Monte Carlo

- $J/\psi$ : mix of the major exclusive channels weighted with multiplicity
  - MC samples (PHSP, each energy point):  $J/\psi\pi^+\pi^-$ ,  $J/\psi\pi^0\pi^0$ ,  $J/\psi2\pi^+2\pi^-$ , where  $J/\psi \rightarrow \mu^+\mu^-$
- $\psi$ ': mix of the major exclusive channels weighted with multiplicity
  - MC samples (PHSP, each energy point):  $\psi'\pi^+\pi^-$ ,  $\psi'\pi^0\pi^0$ , where  $\psi' \rightarrow J/\psi\pi^+\pi^-$  and  $J/\psi \rightarrow \mu^+\mu^-$
- $\psi'_{ISR}$ : one exclusive channel
  - MC samples (KKMC, each energy point):  $(\gamma_{ISR})\psi'$ , where

 $\psi' \to J/\psi \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$  and  $J/\psi \to \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ 

- $\chi_{c_{1,2}}$ : one exclusive three-particle channel
  - MC samples (PHSP, each energy point):  $\chi_{c_{1,2}} 2\gamma$ , where  $\chi_{c_{1,2}} \rightarrow J/\psi\gamma$  and  $J/\psi \rightarrow \mu^+\mu^-$



# Momentum and angular dependence of $J/\psi$ efficiency

27

### Multiplicity of charged tracks for selected J/ $\psi$ and $\psi'$



### **Logarithmic scale**





## Efficiency of $J/\psi$ reconstruction

| ID   | $\epsilon_{J/\psi\pi^0\pi^0},\%$ | $N_{2track}$ | $\epsilon_{J/\psi\pi^+\pi^-},\%$ | $N_{4track}$ | $\epsilon_{J/\psi 2\pi^+ 2\pi^-},\%$ | $N_{6track}$ | $\bar{\epsilon}_{e^+e^- \to J/\psi X}, \%$ |
|------|----------------------------------|--------------|----------------------------------|--------------|--------------------------------------|--------------|--------------------------------------------|
| 3810 | $77.79 \pm 0.11$                 | 1266         | $78.22\pm0.11$                   | 160          | $78.13 \pm 0.11$                     | 0            | $77.84 \pm 0.10$                           |
| 3900 | $77.36 \pm 0.11$                 | 735          | $78.17 \pm 0.11$                 | 102          | $79.23 \pm 0.10$                     | 0            | $77.45 \pm 0.10$                           |
| 4009 | $76.82 \pm 0.11$                 | 4469         | $77.98 \pm 0.11$                 | 805          | $76.45 \pm 0.11$                     | 9            | $77.00 \pm 0.09$                           |
| 4090 | $76.41 \pm 0.11$                 | 411          | $77.86 \pm 0.11$                 | 60           | $76.73 \pm 0.11$                     | 3            | $76.60 \pm 0.10$                           |
| 4190 | $76.10\pm0.11$                   | 295          | $77.76 \pm 0.11$                 | 75           | $77.54 \pm 0.11$                     | 7            | $76.45 \pm 0.09$                           |
| 4210 | $76.02 \pm 0.11$                 | 363          | $77.85 \pm 0.11$                 | 152          | $77.79 \pm 0.11$                     | 5            | $76.57\pm0.08$                             |
| 4220 | $76.06 \pm 0.11$                 | 366          | $77.81 \pm 0.11$                 | 178          | $77.62 \pm 0.11$                     | 11           | $76.65 \pm 0.08$                           |
| 4230 | $76.03 \pm 0.11$                 | 7662         | $77.64 \pm 0.11$                 | 3983         | $77.62 \pm 0.11$                     | 174          | $76.60\pm0.08$                             |
| 4245 | $75.95 \pm 0.11$                 | 356          | $77.83 \pm 0.11$                 | 211          | $77.86 \pm 0.11$                     | 2            | $76.65\pm0.08$                             |
| 4260 | $75.81 \pm 0.11$                 | 4941         | $77.60 \pm 0.11$                 | 2246         | $77.75 \pm 0.11$                     | 128          | $76.40 \pm 0.08$                           |
| 4310 | $75.67 \pm 0.11$                 | 250          | $77.60 \pm 0.11$                 | 133          | $77.65 \pm 0.11$                     | 8            | $76.36 \pm 0.08$                           |
| 4360 | $75.52 \pm 0.11$                 | 2502         | $77.49 \pm 0.11$                 | 1153         | $78.06 \pm 0.11$                     | 257          | $76.27 \pm 0.08$                           |
| 4390 | $75.45 \pm 0.11$                 | 254          | $77.50 \pm 0.11$                 | 129          | $78.05 \pm 0.11$                     | 20           | $76.23 \pm 0.08$                           |
| 4420 | $75.24 \pm 0.11$                 | 4425         | $77.35 \pm 0.11$                 | 1978         | $77.88 \pm 0.11$                     | 416          | $76.01\pm0.08$                             |
| 4470 | $75.06 \pm 0.11$                 | 408          | $77.11 \pm 0.11$                 | 145          | $77.77\pm0.11$                       | 7            | $75.62\pm0.09$                             |
| 4530 | $7\overline{4.87 \pm 0.11}$      | 419          | $7\overline{6.95 \pm 0.11}$      | 79           | $77.67 \pm 0.11$                     | 14           | $75.27 \pm 0.09$                           |
| 4575 | $74.85 \pm 0.11$                 | 131          | $77.02 \pm 0.11$                 | 83           | $77.71 \pm 0.11$                     | 14           | $75.82\pm0.08$                             |
| 4600 | $74.76\pm0.11$                   | 1704         | $76.92 \pm 0.11$                 | 576          | $77.66 \pm 0.11$                     | 55           | $75.36 \pm 0.09$                           |

## Efficiency of $\psi'$ reconstruction

| ID   | $\epsilon_{\psi'\pi^0\pi^0},\%$ | $N_{4track}$ | $\epsilon_{\psi'\pi^+\pi^-},\%$ | $N_{6track}$ | $\bar{\epsilon}_{e^+e^- \to \psi' X}, \%$ |
|------|---------------------------------|--------------|---------------------------------|--------------|-------------------------------------------|
| 4090 | $52.73 \pm 0.13$                | 14           | $48.96 \pm 0.13$                | 0            | $52.73 \pm 0.13$                          |
| 4190 | $53.01 \pm 0.13$                | 15           | $51.11 \pm 0.13$                | 5            | $52.54 \pm 0.10$                          |
| 4210 | $53.27\pm0.13$                  | 19           | $51.67 \pm 0.13$                | 6            | $52.88 \pm 0.10$                          |
| 4220 | $53.49 \pm 0.13$                | 23           | $51.61 \pm 0.13$                | 13           | $52.81 \pm 0.09$                          |
| 4230 | $53.25 \pm 0.13$                | 475          | $51.50\pm0.13$                  | 195          | $52.74 \pm 0.10$                          |
| 4245 | $53.23 \pm 0.13$                | 13           | $51.94 \pm 0.13$                | 3            | $53.04 \pm 0.11$                          |
| 4260 | $53.19\pm0.13$                  | 384          | $51.64 \pm 0.13$                | 154          | $52.75 \pm 0.10$                          |
| 4310 | $53.19 \pm 0.13$                | 25           | $51.92 \pm 0.13$                | 11           | $52.80 \pm 0.10$                          |
| 4360 | $53.42\pm0.13$                  | 281          | $52.47 \pm 0.13$                | 278          | $52.95 \pm 0.09$                          |
| 4390 | $53.33 \pm 0.13$                | 37           | $52.54 \pm 0.13$                | 24           | $53.02\pm0.09$                            |
| 4420 | $53.00\pm0.13$                  | 565          | $52.48 \pm 0.13$                | 467          | $52.76 \pm 0.09$                          |
| 4470 | $52.61 \pm 0.13$                | 40           | $52.04 \pm 0.13$                | 16           | $52.44 \pm 0.10$                          |
| 4530 | $52.48 \pm 0.13$                | 28           | $52.16 \pm 0.13$                | 25           | $52.33 \pm 0.09$                          |
| 4575 | $52.65 \pm 0.13$                | 19           | $52.33 \pm 0.13$                | 11           | $52.53 \pm 0.09$                          |
| 4600 | $52.60 \pm 0.13$                | 211          | $5\overline{2.54 \pm 0.13}$     | 120          | $52.58 \pm 0.09$                          |

**30** 



### **MC-based estimated efficiency**

| ID   | $\bar{\epsilon}_{e^+e^- \to J/\psi X}, \%$ | $\bar{\epsilon}_{e^+e^- \to \psi' X}, \%$ | $\epsilon_{e^+e^- \to (\gamma_{ISR})\psi'}, \%$ | $\epsilon_{e^+e^- \to \chi_{c1}X}, \%$ | $\epsilon_{e^+e^- \to \chi_{c2}X}, \%$ |
|------|--------------------------------------------|-------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------|
| 3810 | $77.84 \pm 0.10$                           | $53.09 \pm 0.95$                          | $50.71 \pm 0.13$                                | $55.84 \pm 0.13$                       | $53.05 \pm 0.13$                       |
| 3900 | $77.45 \pm 0.10$                           | $53.03 \pm 0.96$                          | $50.35 \pm 0.13$                                | $56.18 \pm 0.13$                       | $53.58 \pm 0.13$                       |
| 4009 | $77.00 \pm 0.09$                           | $52.96 \pm 0.98$                          | $49.37 \pm 0.13$                                | $59.30 \pm 0.13$                       | $54.50 \pm 0.13$                       |
| 4090 | $76.60 \pm 0.10$                           | $52.73 \pm 0.13$                          | $49.39 \pm 0.13$                                | $60.12\pm0.13$                         | $55.94 \pm 0.13$                       |
| 4190 | $76.45 \pm 0.09$                           | $52.54 \pm 0.10$                          | $49.28 \pm 0.13$                                | $60.15 \pm 0.13$                       | $57.13 \pm 0.13$                       |
| 4210 | $76.57\pm0.08$                             | $52.88 \pm 0.10$                          | $49.67 \pm 0.13$                                | $60.01 \pm 0.13$                       | $57.36 \pm 0.13$                       |
| 4220 | $76.65\pm0.08$                             | $52.81 \pm 0.09$                          | $49.63 \pm 0.13$                                | $59.99 \pm 0.13$                       | $57.34 \pm 0.13$                       |
| 4230 | $76.60\pm0.08$                             | $52.74 \pm 0.10$                          | $48.98 \pm 0.13$                                | $59.98 \pm 0.13$                       | $57.69 \pm 0.13$                       |
| 4230 | $76.60\pm0.08$                             | $52.74 \pm 0.10$                          | $48.98 \pm 0.13$                                | $59.98 \pm 0.13$                       | $57.69 \pm 0.13$                       |
| 4245 | $76.65\pm0.08$                             | $53.04 \pm 0.11$                          | $49.66 \pm 0.13$                                | $59.79 \pm 0.13$                       | $57.49 \pm 0.13$                       |
| 4260 | $76.40 \pm 0.08$                           | $52.75 \pm 0.10$                          | $48.36 \pm 0.13$                                | $59.68 \pm 0.13$                       | $57.49 \pm 0.13$                       |
| 4310 | $76.36 \pm 0.08$                           | $52.80 \pm 0.10$                          | $48.96 \pm 0.13$                                | $59.09 \pm 0.13$                       | $57.39 \pm 0.13$                       |
| 4360 | $76.27\pm0.08$                             | $52.95 \pm 0.09$                          | $49.03 \pm 0.13$                                | $58.68 \pm 0.13$                       | $56.96 \pm 0.13$                       |
| 4390 | $76.23 \pm 0.08$                           | $53.02\pm0.09$                            | $49.16 \pm 0.13$                                | $58.48 \pm 0.13$                       | $56.94 \pm 0.13$                       |
| 4420 | $76.01 \pm 0.08$                           | $52.76 \pm 0.09$                          | $48.84 \pm 0.13$                                | $58.37 \pm 0.13$                       | $56.82 \pm 0.13$                       |
| 4420 | $76.01\pm0.08$                             | $52.76 \pm 0.09$                          | $48.84 \pm 0.13$                                | $58.37 \pm 0.13$                       | $56.82 \pm 0.13$                       |
| 4470 | $75.62\pm0.09$                             | $52.44 \pm 0.10$                          | $47.94 \pm 0.13$                                | $58.35 \pm 0.13$                       | $56.12 \pm 0.13$                       |
| 4530 | $75.27\pm0.09$                             | $52.33 \pm 0.09$                          | $47.64 \pm 0.13$                                | $58.22 \pm 0.13$                       | $55.83 \pm 0.13$                       |
| 4575 | $75.82\pm0.08$                             | $52.53 \pm 0.09$                          | $48.11 \pm 0.13$                                | $57.81 \pm 0.13$                       | $55.66 \pm 0.13$                       |
| 4600 | $75.36 \pm 0.09$                           | $52.58 \pm 0.09$                          | $47.84 \pm 0.13$                                | $57.88 \pm 0.13$                       | $55.70 \pm 0.13$                       |

#### Yield of $J/\psi$ from different sources normalized to corresponding luminosity



33



### **Deconvolution to Born cross-section**

$$\sigma^{obs} = (1 + \delta) * \sigma^{Born}_{fit} = \int \sigma^{Born}_{fit} (s(1 - x)) F(x, s) dx$$

The cross-section line shape for iteration process is obtained by fitting two Breit-Wigner convoluted with a gaussian functions for resonances and  $const^*\sqrt{(\sqrt{s} - M_J/\psi)}$  for continuum to the measured cross-section

**Masses** and widths of the resonances are fixed parameters, and its values are taken from **BESIII** e+e-  $\rightarrow$  J/ $\psi\pi$ + $\pi$ - paper (arXiv:1611.01317v1 [hep-ex] 4 Nov 2016): M1 = 4222.0 ± 3.1 MeV/c<sup>2</sup>,  $\Gamma$ 1 = 44.1 ± 4.3 MeV M2 = 4320.0 ± 10.4 MeV/c<sup>2</sup>,  $\Gamma$ 2 = 101.4 ± 25.3 MeV



### Observed and Born cross-section of $e{+}e{-} \rightarrow J/\psi_{\text{prompt}}{+} X$



36

## **Observed and Born cross-section** (statistical errors only)

| ID   | $E_{cms}, MeV$ | $\mathcal{L}_{int}, pb^{-1}$ | $\sigma^{obs}$     | $(1+\delta)$ | $\sigma^{Born}$    |
|------|----------------|------------------------------|--------------------|--------------|--------------------|
| 3810 | 3.80765        | 50.54                        | $76.62 \pm 27.37$  | 0.933        | $82.10 \pm 29.33$  |
| 3900 | 3.89624        | 52.61                        | $46.36 \pm 20.99$  | 0.937        | $49.46 \pm 22.39$  |
| 4009 | 4.00762        | 481.96                       | $34.21 \pm 6.21$   | 0.936        | $36.56 \pm 6.64$   |
| 4090 | 4.08545        | 52.63                        | $27.95 \pm 16.17$  | 0.921        | $30.36 \pm 17.56$  |
| 4190 | 4.18859        | 43.09                        | $87.71 \pm 17.90$  | 0.788        | $111.32 \pm 22.71$ |
| 4210 | 4.20773        | 54.55                        | $110.32 \pm 15.58$ | 0.771        | $143.00 \pm 20.20$ |
| 4220 | 4.21713        | 54.13                        | $141.01 \pm 15.91$ | 0.780        | $180.80 \pm 20.39$ |
| 4230 | 4.22626        | 44.40                        | $133.17 \pm 17.87$ | 0.800        | $166.56 \pm 22.36$ |
| 4230 | 4.22626        | 1047.34                      | $142.33 \pm 3.78$  | 0.800        | $178.02 \pm 4.73$  |
| 4245 | 4.24166        | 55.59                        | $127.06 \pm 15.81$ | 0.857        | $148.28 \pm 18.45$ |
| 4260 | 4.25797        | 825.67                       | $94.29 \pm 4.06$   | 0.933        | $101.10 \pm 4.35$  |
| 4310 | 4.30789        | 44.90                        | $99.85 \pm 17.25$  | 0.969        | $103.08 \pm 17.80$ |
| 4360 | 4.35826        | 539.84                       | $54.59 \pm 4.72$   | 1.031        | $52.95 \pm 4.58$   |
| 4390 | 4.3874         | 55.18                        | $28.92 \pm 14.08$  | 1.090        | $26.53 \pm 12.92$  |
| 4420 | 4.41558        | 44.67                        | $46.22 \pm 15.84$  | 1.122        | $41.21 \pm 14.12$  |
| 4420 | 4.41558        | 1028.89                      | $42.99 \pm 3.38$   | 1.122        | $38.32 \pm 3.01$   |
| 4470 | 4.46706        | 109.94                       | $18.96 \pm 10.15$  | 1.132        | $16.75 \pm 8.96$   |
| 4530 | 4.52714        | 109.98                       | $26.63 \pm 9.45$   | 1.120        | $23.78 \pm 8.44$   |
| 4575 | 4.5745         | 47.67                        | $38.75 \pm 14.79$  | 1.107        | $34.99 \pm 13.36$  |
| 4600 | 4.59953        | 566.93                       | $30.41 \pm 4.11$   | 1.101        | $27.62 \pm 3.73$   |

## **Study of systematics : Tracking**

- Due to the discrepancy between MC and data is 1% for charged track reconstructed efficiency and 1% for photon reconstructed efficiency we performed the following variations of reconstructed efficiencies to obtain systematic errors of tracking:
  - $\epsilon_{J/\psi}$ : **2%** variation

$$\varepsilon_{\psi} = \varepsilon_{J/\psi} * \varepsilon_{\pi\pi} = \varepsilon_{J/\psi} * (\varepsilon_{\pi})^2$$
: 2% variation

 $\varepsilon_{\chi c1,2} = \varepsilon_{J/\psi} * \varepsilon_{\gamma}$ : 1% variation

• Errors of charged tracking were summed linearly, errors of photon tracking were also summed linearly, then resulting contributions were summed quadratically.

## **Study of systematics : Tracking**

| ID   | $\mathcal{L}_{int}, pb^{-1}$ | $\sigma^{obs}$    | $\Delta_{\sigma(\epsilon_{J/\psi})}, pb$ | $\Delta_{\sigma(\epsilon_{\psi'ISR})}, pb$ | $\Delta_{\sigma(\epsilon_{\psi'})}, pb$ | $\Delta_{\sigma(\epsilon_{\chi_{c1}})}, pb$ | $\Delta_{\sigma(\epsilon_{\chi_{c2}})}, pb$ |
|------|------------------------------|-------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|
| 3810 | 50.54                        | $76.62 \pm 27.37$ | 10.39                                    | 23.51                                      | 1.13                                    | 0.42                                        | 0.28                                        |
| 3900 | 52.61                        | $46.36\pm20.99$   | 5.81                                     | 13.38                                      | 0.56                                    | 0.28                                        | 0.10                                        |
| 4009 | 481.96                       | $34.21 \pm 6.21$  | 3.59                                     | 8.65                                       | 0.49                                    | 0.17                                        | 0.08                                        |
| 4090 | 52.63                        | $27.95 \pm 16.17$ | 2.74                                     | 6.68                                       | 0.28                                    | 0.18                                        | 0.09                                        |
| 4190 | 43.09                        | $87.71 \pm 17.90$ | 0.72                                     | 5.02                                       | 0.33                                    | 0.11                                        | 0.04                                        |
| 4210 | 54.55                        | $110.32\pm15.58$  | 0.03                                     | 4.50                                       | 0.43                                    | 0.02                                        | 0.09                                        |
| 4220 | 54.13                        | $141.01\pm15.91$  | 0.72                                     | 4.23                                       | 0.65                                    | 0.03                                        | 0.01                                        |
| 4230 | 44.40                        | $133.17\pm17.87$  | 0.47                                     | 4.48                                       | 0.53                                    | 0.20                                        | 0.06                                        |
| 4230 | 1047.34                      | $142.33\pm3.78$   | 0.52                                     | 4.75                                       | 0.55                                    | 0.08                                        | 0.05                                        |
| 4245 | 55.59                        | $127.06\pm15.81$  | 0.15                                     | 4.82                                       | 0.30                                    | 0.11                                        | 0.04                                        |
| 4260 | 825.67                       | $94.29 \pm 4.06$  | 0.23                                     | 4.38                                       | 0.51                                    | 0.07                                        | 0.05                                        |
| 4310 | 44.90                        | $99.85 \pm 17.25$ | 0.36                                     | 3.34                                       | 0.60                                    | 0.09                                        | 0.07                                        |
| 4360 | 539.84                       | $54.59 \pm 4.72$  | 0.67                                     | 3.60                                       | 0.97                                    | 0.09                                        | 0.06                                        |
| 4390 | 55.18                        | $28.92 \pm 14.08$ | 1.07                                     | 3.36                                       | 0.93                                    | 0.15                                        | 0.08                                        |
| 4420 | 44.67                        | $46.22 \pm 15.84$ | 0.73                                     | 3.38                                       | 0.73                                    | 0.09                                        | 0.14                                        |
| 4420 | 1028.89                      | $42.99 \pm 3.38$  | 0.79                                     | 3.38                                       | 0.91                                    | 0.09                                        | 0.05                                        |
| 4470 | 109.94                       | $18.96 \pm 10.15$ | 1.30                                     | 3.50                                       | 0.45                                    | 0.10                                        | 0.07                                        |
| 4530 | 109.98                       | $26.63 \pm 9.45$  | 0.76                                     | 2.71                                       | 0.37                                    | 0.11                                        | 0.02                                        |
| 4575 | 47.67                        | $38.75 \pm 14.79$ | 0.64                                     | 2.94                                       | 0.42                                    | 0.14                                        | 0.03                                        |
| 4600 | 566.93                       | $30.41 \pm 4.11$  | 0.56                                     | 2.44                                       | 0.35                                    | 0.08                                        | 0.02                                        |

## Study of systematics : $E_{emc}$ cut, $N_{J/\psi}$ fit

- To decrease statistical fluctuations we combined the data into 3 groups (3810-4090, 4190-4310, 4360-4600) and we obtained relative systematic errors of the following sources:
  - $E_{emc}$  cut: the value was varied as 0.5 GeV
  - $\bullet\,N_{J/\psi}$  : fit a cubic polynomial to the data for background

• Using relative systematic errors we obtained absolute systematic errors for each energy point in corresponding group

### **Study of systematics: Deconvolution to Born cross-section procedure**



## Study of systematics : $E_{emc}$ cut, $N_{J/\psi}$ fit

| ID   | $\mathcal{L}_{int}, pb^{-1}$ | $\sigma^{obs}$     | $\Delta_{\sigma(E_{emc})}, pb$ | $\Delta_{\sigma(N_{J/\psi})}, pb$ | $\Delta_{\sigma(ISRcor.)}, pb$ |
|------|------------------------------|--------------------|--------------------------------|-----------------------------------|--------------------------------|
| 3810 | 50.54                        | $76.62 \pm 27.37$  | 4.20                           | 3.05                              | 11.55                          |
| 3900 | 52.61                        | $46.36 \pm 20.99$  | 2.54                           | 1.84                              | 5.11                           |
| 4009 | 481.96                       | $34.21 \pm 6.21$   | 1.87                           | 1.36                              | 2.81                           |
| 4090 | 52.63                        | $27.95 \pm 16.17$  | 1.53                           | 1.11                              | 1.88                           |
| 4190 | 43.09                        | $87.71 \pm 17.90$  | 0.61                           | 0.11                              | 2.55                           |
| 4210 | 54.55                        | $110.32 \pm 15.58$ | 0.77                           | 0.14                              | 1.94                           |
| 4220 | 54.13                        | $141.01 \pm 15.91$ | 0.99                           | 0.18                              | 2.06                           |
| 4230 | 44.40                        | $133.17 \pm 17.87$ | 0.93                           | 0.17                              | 1.80                           |
| 4230 | 1047.34                      | $142.33 \pm 3.78$  | 1.00                           | 0.19                              | 1.93                           |
| 4245 | 55.59                        | $127.06 \pm 15.81$ | 0.89                           | 0.17                              | 1.98                           |
| 4260 | 825.67                       | $94.29 \pm 4.06$   | 0.66                           | 0.12                              | 1.60                           |
| 4310 | 44.90                        | $99.85 \pm 17.25$  | 0.70                           | 0.13                              | 17.92                          |
| 4360 | 539.84                       | $54.59 \pm 4.72$   | 0.09                           | 1.51                              | 3.01                           |
| 4390 | 55.18                        | $28.92 \pm 14.08$  | 0.05                           | 0.80                              | 0.61                           |
| 4420 | 44.67                        | $46.22 \pm 15.84$  | 0.07                           | 1.28                              | 2.56                           |
| 4420 | 1028.89                      | $42.99 \pm 3.38$   | 0.07                           | 1.19                              | 2.38                           |
| 4470 | 109.94                       | $18.96 \pm 10.15$  | 0.03                           | 0.53                              | 1.51                           |
| 4530 | 109.98                       | $26.63 \pm 9.45$   | 0.04                           | 0.74                              | 2.14                           |
| 4575 | 47.67                        | $38.75 \pm 14.79$  | 0.06                           | 1.07                              | 2.94                           |
| 4600 | 566.93                       | $30.41 \pm 4.11$   | 0.05                           | 0.84                              | 2.22                           |

**42** 

## **Study of systematics : Luminosity, BF**

• Luminosity: total errors of luminosity measurement were took into account to obtain systematic error for each energy point

**Ref.:** M. Ablikim et al. "Precision measurement of the integrated luminosity of the data taken by BESIII at center of mass energies between 3.810 GeV and 4.600 GeV", arXiv:1503.03408 [hep-ex] 11 Mar 2015

• **Branching fractions:** errors of branching fractions of all charmonia decays used in the analysis were took into account to obtain systematic error for each energy point

Ref.: Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

## **Study of systematics : Luminosity, BF**

| ID   | $\mathcal{L}_{int}, pb^{-1}$ | $\sigma^{obs}$     | $\Delta_{\sigma(\mathcal{L}_{int})}, pb$ | $\Delta_{\sigma(\mathcal{B}_{J/\psi \to \mu^+ \mu^-})}, pb$ | $\Delta_{\sigma(\mathcal{B}_{\psi'\to J/\psi\pi^+\pi^-})}, pb$ | $\Delta_{\sigma(\tilde{\mathcal{B}}_{\psi' \to J/\psi X})}, pb$ |
|------|------------------------------|--------------------|------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| 3810 | 50.54                        | $76.62 \pm 27.37$  | 0.74                                     | 0.42                                                        | 5.50                                                           | 6.97                                                            |
| 3900 | 52.61                        | $46.36\pm20.99$    | 0.45                                     | 0.26                                                        | 3.11                                                           | 3.94                                                            |
| 4009 | 481.96                       | $34.21 \pm 6.21$   | 0.33                                     | 0.19                                                        | 2.10                                                           | 2.66                                                            |
| 4090 | 52.63                        | $27.95 \pm 16.17$  | 0.27                                     | 0.15                                                        | 1.58                                                           | 2.01                                                            |
| 4190 | 43.09                        | $87.71 \pm 17.90$  | 0.85                                     | 0.49                                                        | 1.25                                                           | 1.58                                                            |
| 4210 | 54.55                        | $110.32 \pm 15.58$ | 1.07                                     | 0.61                                                        | 1.16                                                           | 1.47                                                            |
| 4220 | 54.13                        | $141.01\pm15.91$   | 1.37                                     | 0.78                                                        | 1.20                                                           | 1.52                                                            |
| 4230 | 44.40                        | $133.17\pm17.87$   | 1.29                                     | 0.74                                                        | 1.22                                                           | 1.54                                                            |
| 4230 | 1047.34                      | $142.33\pm3.78$    | 1.38                                     | 0.79                                                        | 1.29                                                           | 1.63                                                            |
| 4245 | 55.59                        | $127.06\pm15.81$   | 1.24                                     | 0.70                                                        | 1.18                                                           | 1.49                                                            |
| 4260 | 825.67                       | $94.29 \pm 4.06$   | 0.91                                     | 0.52                                                        | 1.20                                                           | 1.52                                                            |
| 4310 | 44.90                        | $99.85 \pm 17.25$  | 0.97                                     | 0.55                                                        | 1.00                                                           | 1.26                                                            |
| 4360 | 539.84                       | $54.59 \pm 4.72$   | 0.53                                     | 0.30                                                        | 1.21                                                           | 1.53                                                            |
| 4390 | 55.18                        | $28.92 \pm 14.08$  | 0.28                                     | 0.16                                                        | 1.14                                                           | 1.45                                                            |
| 4420 | 44.67                        | $46.22 \pm 15.84$  | 0.45                                     | 0.26                                                        | 1.06                                                           | 1.35                                                            |
| 4420 | 1028.89                      | $42.99 \pm 3.38$   | 0.42                                     | 0.24                                                        | 1.14                                                           | 1.44                                                            |
| 4470 | 109.94                       | $18.96 \pm 10.15$  | 0.18                                     | 0.10                                                        | 0.99                                                           | 1.25                                                            |
| 4530 | 109.98                       | $26.63 \pm 9.45$   | 0.26                                     | 0.15                                                        | 0.77                                                           | 0.98                                                            |
| 4575 | 47.67                        | $38.75 \pm 14.79$  | 0.38                                     | 0.21                                                        | 0.84                                                           | 1.06                                                            |
| 4600 | 566.93                       | $30.41 \pm 4.11$   | 0.30                                     | 0.17                                                        | 0.70                                                           | 0.89                                                            |

## **Observed and Born cross-section**

| ID   | $E_{cms}, MeV$ | $\mathcal{L}_{int}, pb^{-1}$ | $\sigma^{obs}$              | $(1+\delta)$ | $\sigma^{Born}$              |
|------|----------------|------------------------------|-----------------------------|--------------|------------------------------|
| 3810 | 3.80765        | 50.54                        | $76.62 \pm 27.37 \pm 36.53$ | 0.933        | $82.10 \pm 29.33 \pm 40.81$  |
| 3900 | 3.89624        | 52.61                        | $46.36 \pm 20.99 \pm 20.63$ | 0.937        | $49.46 \pm 22.39 \pm 22.59$  |
| 4009 | 4.00762        | 481.96                       | $34.21 \pm 6.21 \pm 13.37$  | 0.936        | $36.56 \pm 6.64 \pm 14.56$   |
| 4090 | 4.08545        | 52.63                        | $27.95 \pm 16.17 \pm 10.22$ | 0.921        | $30.36 \pm 17.56 \pm 11.26$  |
| 4190 | 4.18859        | 43.09                        | $87.71 \pm 17.90 \pm 6.50$  | 0.788        | $111.32 \pm 22.71 \pm 8.63$  |
| 4210 | 4.20773        | 54.55                        | $110.32 \pm 15.58 \pm 5.49$ | 0.771        | $143.00 \pm 20.20 \pm 7.38$  |
| 4220 | 4.21713        | 54.13                        | $141.01 \pm 15.91 \pm 6.22$ | 0.780        | $180.80 \pm 20.39 \pm 8.24$  |
| 4230 | 4.22626        | 44.40                        | $133.17 \pm 17.87 \pm 6.09$ | 0.800        | $166.56 \pm 22.36 \pm 7.83$  |
| 4230 | 4.22626        | 1047.34                      | $142.33 \pm 3.78 \pm 6.46$  | 0.800        | $178.02 \pm 4.73 \pm 8.31$   |
| 4245 | 4.24166        | 55.59                        | $127.06 \pm 15.81 \pm 5.85$ | 0.857        | $148.28 \pm 18.45 \pm 7.10$  |
| 4260 | 4.25797        | 825.67                       | $94.29 \pm 4.06 \pm 5.61$   | 0.933        | $101.10 \pm 4.35 \pm 6.22$   |
| 4310 | 4.30789        | 44.90                        | $99.85 \pm 17.25 \pm 4.78$  | 0.969        | $103.08 \pm 17.80 \pm 18.59$ |
| 4360 | 4.35826        | 539.84                       | $54.59 \pm 4.72 \pm 5.83$   | 1.031        | $52.95 \pm 4.58 \pm 6.41$    |
| 4390 | 4.3874         | 55.18                        | $28.92 \pm 14.08 \pm 5.74$  | 1.090        | $26.53 \pm 12.92 \pm 5.30$   |
| 4420 | 4.41558        | 44.67                        | $46.22 \pm 15.84 \pm 5.32$  | 1.122        | $41.21 \pm 14.12 \pm 5.39$   |
| 4420 | 4.41558        | 1028.89                      | $42.99 \pm 3.38 \pm 5.55$   | 1.122        | $38.32 \pm 3.01 \pm 5.49$    |
| 4470 | 4.46706        | 109.94                       | $18.96 \pm 10.15 \pm 5.53$  | 1.132        | $16.75 \pm 8.96 \pm 5.11$    |
| 4530 | 4.52714        | 109.98                       | $26.63 \pm 9.45 \pm 4.11$   | 1.120        | $23.78 \pm 8.44 \pm 4.25$    |
| 4575 | 4.5745         | 47.67                        | $38.75 \pm 14.79 \pm 4.38$  | 1.107        | $34.99 \pm 13.36 \pm 4.93$   |
| 4600 | 4.59953        | 566.93                       | $30.41 \pm 4.11 \pm 3.65$   | 1.101        | $27.62 \pm 3.73 \pm 3.99$    |

### **Born cross-section with statistical and total errors**



**46** 

### Cross-section of exclusive processes with $J/\psi$

| ID   | $\pi^+\pi^- J/\psi$    | $\pi^0\pi^0 J/\psi$    | $K^+K^-J/\psi$           | $K^0 K^0 J/\psi$  | $\eta J/\psi$           | $\eta' J/\psi$    |
|------|------------------------|------------------------|--------------------------|-------------------|-------------------------|-------------------|
| 3810 | $16.7\pm3.3\pm1$       | —                      | —                        | —                 | —                       | _                 |
| 3900 | $17.1\pm3.4\pm1$       | —                      | —                        | —                 | —                       | —                 |
| 4009 | $16\pm1.1\pm1$         | —                      | _                        | _                 | _                       | _                 |
| 4090 | $15\pm3.1\pm0.9$       | —                      | _                        | —                 | _                       | _                 |
| 4190 | $15.5 \pm 3.8 \pm 0.9$ | $9\pm3.3\pm0.6$        | _                        | _                 | $50.8 \pm 10.2 \pm 2.1$ | _                 |
| 4210 | $53.4 \pm 5.4 \pm 3.1$ | $22.7\pm4.6\pm1.5$     | _                        | —                 | $57.8 \pm 9.6 \pm 3.2$  | _                 |
| 4220 | $60.3 \pm 5.7 \pm 3.5$ | $27.4 \pm 4.9 \pm 1.8$ | —                        | —                 | $57.7\pm9.7\pm3$        | _                 |
| 4230 | $85.1 \pm 1.5 \pm 4.9$ | $35.4 \pm 1.3 \pm 2.2$ | $5.27 \pm 0.63 \pm 0.75$ | $1.6\pm0.5\pm0.3$ | $47 \pm 2 \pm 2.2$      | $3.7\pm0.7\pm0.3$ |
| 4245 | $84.4 \pm 6.3 \pm 4.9$ | $40.3 \pm 5.8 \pm 2.7$ | _                        | _                 | $24.8\pm6.5\pm2$        | _                 |
| 4260 | $59.5 \pm 1.4 \pm 3.4$ | $28.3 \pm 1.3 \pm 1.8$ | $3.08 \pm 0.47 \pm 0.4$  | $1.2\pm0.4\pm0.2$ | $15.7 \pm 1.4 \pm 0.9$  | $3.9\pm0.8\pm0.3$ |
| 4310 | $52\pm5.7\pm3$         | $24.1 \pm 4.9 \pm 1.6$ | _                        | _                 | _                       | _                 |
| 4360 | $25.4 \pm 1.2 \pm 1.5$ | $13.8 \pm 1.1 \pm 0.9$ | _                        | _                 | $5.6\pm1.2\pm0.6$       | _                 |
| 4390 | $20 \pm 3.2 \pm 1.2$   | $4.7\pm1.9\pm0.3$      | _                        | _                 | _                       | _                 |
| 4420 | $12.1 \pm 0.6 \pm 0.7$ | $2.7\pm1.9\pm0.2$      | $0.97 \pm 0.22 \pm 0.14$ | _                 | $7.5\pm0.9\pm0.6$       | _                 |
| 4470 | $13.3 \pm 2.1 \pm 0.8$ | —                      | $3.8\pm1.3\pm0.5$        | _                 | _                       | _                 |
| 4530 | $10.6 \pm 1.9 \pm 0.6$ | _                      | $4.3\pm1.4\pm0.7$        | _                 | _                       | _                 |
| 4575 | $13.4 \pm 3.2 \pm 0.8$ | _                      | _                        | —                 | _                       | —                 |
| 4600 | $6.4\pm0.7\pm0.4$      | _                      | $1.42 \pm 0.33 \pm 0.2$  | _                 | _                       | _                 |



## Conclusion

- Analysis procedure has been elaborated
- The first estimation of e+e-  $\rightarrow J/\psi_{prompt}X$  is obtained
- The result is rather consistent with total exclusive cross-section
- The result for the prompt  $J/\psi$  production in the range above 4.5 GeV is

#### $\sigma = 27.5 \pm 3.3 \pm 4.4 \ pb$

- This value is one of the main result of the performed studies and could be used for tests of  $J/\psi$  production models (NRQCD).
- Memo is almost ready