

Measurement of Branching Fractions of $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$ with BESIII

Irshad Muzaffar 勤奋

subhani@mail.ustc.edu.cn

Supervisors: Prof. Huang Guangshun 黄光顺, Dr. Zhou Xiaorong 周小蓉

Department of Modern Physics

University of Science and Technology of China

Dec. 19, 2018

Outline

>Motivation

≻Data Analysis

✓ Event Selection

 \checkmark Comparison between Data and MC

✓ Background Study

≻Systematic Uncertainty

≻Fitting Results

≻Summary

Motivation

- Exclusive P-wave Charmonium states χ_{cJ} (J=0,1,2) $\rightarrow \Sigma^- \overline{\Sigma}^+$ into baryon-antibaryon pairs (B \overline{B}) are considered to be a favorable test of pQCD models and QCD based calculations.
- The χ_{cJ} meason are not produced directly in e^+e^- annihilations but assumed to process via annihilations of the constituents \overline{cc} pairs into three gluons or virtual photon.

Figure: Feynman graphs for $\psi(2S)$ decay into $B\overline{B}$ (a) Three-gluon contribution (b) Electromagnetic contribution.

- The large BFs of $\psi(2S) \rightarrow \gamma \chi_{cJ}$ make e^+e^- collision at the $\psi(2S)$ energy a very clean environment for χ_{cJ} investigation.
- The COM play an important role to describing these P-wave quarkonium decays and predictions of this model χ_{cJ} to pair of mesons and baryons are in agreement with earlier experiment.
- BF of $\chi_{cJ} \rightarrow \Sigma^+ \overline{\Sigma}^-$ had been well measured by BesIII [1] and CLEO [2]. [1].Phys. Rev. D 97, 052011, [2].PhysRevD.78.031101
- Experimentally, no measurements for $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$ have been performed yet.

Data Sets

- Boss Version:
 - Analysis Environment: Boss 664p03
- Data Sets:
 - > 107.0 M ψ ' of 2009 year and 341.1 M ψ ' of 2012 year
- Signal MC : Generated 1M Events.
 - ➤ MC Sample: Use KKMC Event Generator.
 - > Decay Chain :

 $\checkmark \psi' \rightarrow \gamma \chi_{cJ} \text{ in } P2GC0, P2GC1 \text{ and } P2GC2.$ $\checkmark \chi_{cJ} \rightarrow \Sigma^{-} \overline{\Sigma}^{+} \text{ in } PHSP.$ $\checkmark \Sigma^{-} \rightarrow n\pi^{-} \text{ and } \overline{\Sigma}^{+} \rightarrow \overline{n}\pi^{+} \text{ are in } PHSP.$

• Inclusive MC: 506 M ψ' MC, ψ' → Anything

Pre-Selection

<u>Good Charged Tracks</u>:

- ▶ $|V_z| < 30 cm$, $|V_r| < 10 cm$ and $|\cos\theta| \le 0.93$, p>1.0 GeV/c
- \succ $N_{Good} = 2$ and $\sum Q_i = 0$.
- **<u>PID</u>** : dE/dX + TOF
 - ▶ $Prob_{\pi} > Prob_{p}$, $Prob_{\pi} > Prob_{K}$ and $N_{\pi^{-}} = N_{\pi^{+}} = 1$
- Good Neutral Tracks:
 - $E_{barrel} > 80 MeV; E_{endcap} > 80 MeV$ (Phys. Rev. D 83, 112009 Published 27 June 2011)
 - ➢ Opening angle: $θ_{(γ,Chge)} > 20°$
 - ▶ At least 2 photons tracks $N_{shower} \ge 2$ (1 for Gamma, 1 for Anti-Neutron).

• <u>n</u> candidate:

- > The most energetic shower consider as \bar{n} candidate.
- > Variable to the further selection for \bar{n} .
 - ✓ $E_{\bar{n}}$: Deposited energy of \bar{n} in EMC; $E_{\bar{n}}$ > 0.2 GeV.
 - ✓ Second Moment of \bar{n} in EMC; Secmom>20
 - ✓ \bar{n} number of hit in EMC within 40 degree cone; numHits>20

• Further Slection :

- > Do Kinematics Fit 1C : $\gamma \chi_{c0,1,2} \rightarrow \gamma \Sigma^{-} \overline{\Sigma}^{+}$
- For N_γ ≥ 2: Minimum $\chi^2_{1C}(\gamma \Sigma^- \overline{\Sigma}^+)$ is chosen.

12/19/2018

Kinematic fit: Loop all the neutral tracks and minimum χ^2

- ✓ Miss Neutron 3-momentum
- ✓ Miss Anti-Neutron Energy
- $\checkmark \quad \text{Mass constraint on } \overline{n}\pi^+$
- \checkmark 4-momentum constraint on ψ' .

Comparison b/w Data and Signal MC

χ^2_{1C} and π^0 Reconstruction

For Further Selection: Other criteria are used

Study of Peaking and Non- Peaking Background in $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$

Event Selection to Minimized the Background

> Event Selection: $\psi' \rightarrow \pi^0 \pi^0 J/\psi$:

Extracted BKG Channel In Inclusive MC

No.	decay chain	final states	iTopology	nEvt	nTot
0	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Sigma^- \overline{\Sigma}^+, \Sigma^- \rightarrow n\pi^-, \overline{\Sigma}^+ \rightarrow \overline{n}\pi^+$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	2	10511	10511
1	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \pi^0 \overline{\Delta}^- \Delta^-, \overline{\Delta}^- \rightarrow \overline{n} \pi^+, \Delta^- \rightarrow n \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	4	9966	20477
2	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \overline{\Delta}^- \pi^- n, \overline{\Delta}^- \rightarrow \overline{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n$	1	6526	27003
3	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow n\bar{n}\pi^+\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	0	4547	31550
4	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \overline{\Delta}^- \Delta^-, \overline{\Delta}^- \rightarrow \overline{n}\pi^+, \Delta^- \rightarrow n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	5	2815	34365
5	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \pi^- \Delta^0 \overline{\Delta}^-, \Delta^0 \rightarrow n \pi^0, \overline{\Delta}^- \rightarrow \overline{n} \pi^+$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	6	2526	36891
6	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \gamma \Sigma^- \overline{\Sigma}^+, \Sigma^- \rightarrow n\pi^-, \overline{\Sigma}^+ \rightarrow \overline{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n \gamma$	10	2120	39011
7	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \overline{\Sigma}^+ \pi^0 \Sigma^-, \overline{\Sigma}^+ \rightarrow \overline{n} \pi^+, \Sigma^- \rightarrow n \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	7	2088	41099
8	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \bar{n}\pi^+\Delta^-, \Delta^- \rightarrow n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	8	1896	42995
9	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Sigma^+ \Sigma^{*-}, \Sigma^+ \rightarrow \bar{n}\pi^+, \Sigma^{*-} \rightarrow \Lambda \pi^-, \Lambda \rightarrow n\pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	3	1615	44610
10	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \overline{\Delta}^{++} \pi^0 \Delta^{++}, \overline{\Delta}^{++} \rightarrow \overline{p} \pi^-, \Delta^{++} \rightarrow p \pi^+$	$\pi^{-}\bar{p}\pi^{0}\pi^{0}\pi^{0}\pi^{+}p$	11	1426	46036
11	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Delta^- \pi^+ \overline{\Delta}^0, \Delta^- \rightarrow n \pi^-, \overline{\Delta}^0 \rightarrow \overline{n} \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	9	1156	47192
12	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \bar{n}\pi^- \Delta^+, \Delta^+ \rightarrow n\pi^+$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n$	12	1101	48293

Minimized the Background

Minimized the Background

 $\succ \text{Event Selection}: \quad \psi' \to \Sigma^- \overline{\Sigma}^+ \text{OR } \pi^0 \Sigma^- \overline{\Sigma}^+ \\ \checkmark \chi^2_{\Sigma^+ \overline{\Sigma}^-} > \chi^2_{\gamma \Sigma^+ \overline{\Sigma}^-}$

Extracted BKG Channel In Inclusive MC

No.	decay chain	final states	iTopology	nEvt	nTot
0	$\psi' \to \Sigma^- \bar{\Sigma}^+ \pi^0, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n$	0	3148	3148
1	$\psi' \to \gamma \Sigma^- \bar{\Sigma}^+, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n}\pi^+ n\gamma$	2	487	3635
2	$\psi' \to \Sigma^- \bar{\Sigma}^+, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^+ n$	1	476	4111

Background channel Extracted from Inclusive MC Sample

No.	decay chain	final states	iTopology	nEvt	nTot
0	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \Sigma^- \bar{\Sigma}^+, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n$	<mark>44</mark>	3616	3616
1	$\psi' \rightarrow \Delta^- \pi^0 \bar{\Delta}^-, \bar{\Delta}^- \rightarrow n \pi^-, \bar{\Delta}^- \rightarrow \bar{n} \pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n$	19	2137	5753
2	$\psi' ightarrow J/\psi \pi^0 \pi^0, J/\psi ightarrow ar{\Delta}^- \pi^- n, ar{\Delta}^- ightarrow ar{n} \pi^+$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	0	1922	7675
3	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \pi^0 \bar{\Delta}^- \Delta^-, \bar{\Delta}^- \to \bar{n} \pi^+, \Delta^- \to n \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	8	1841	9516
4	$\psi' ightarrow J/\psi \pi^0 \pi^0, J/\psi ightarrow n \bar{n} \pi^+ \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	31	1185	10701
5	$\psi' ightarrow \Sigma^+ \overline{\Sigma}^+ \pi^0, \Sigma^- ightarrow n\pi^-, \overline{\Sigma}^+ ightarrow ar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n$	2	865	11566
6	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \Delta^- \bar{\Delta}^-, \Delta^- \to n\pi^-, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n$	73	775	12341
7	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \Sigma^0 \bar{\Sigma}^+ \pi^-, \Sigma^0 \to \gamma \Lambda, \bar{\Sigma}^+ \to \bar{n} \pi^+, \Lambda \to n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma\gamma$	59	661	13002
8	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \gamma \Sigma^- \overline{\Sigma}^+, \Sigma^- \to n \pi^-, \overline{\Sigma}^+ \to \overline{n} \pi^+$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n \gamma$	163	628	13630
9	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow n\bar{n}$	$\pi^- \bar{n}\pi^+ n$	406	624	14254
10	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \bar{\Delta}^- \Delta^0 \pi^-, \bar{\Delta}^- \to \bar{n}\pi^+, \Delta^0 \to n\pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	25 25	<mark>590</mark>	14844
11	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to \Sigma^- \bar{\Sigma}^+, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	33	569	15413
12	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \Delta^- \pi^+ \bar{n}, \Delta^- \to n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	117 117	555 	15968
13	$\psi' \to J/\psi\eta, J/\psi \to \Sigma^- \bar{\Sigma}^+, \eta \to \gamma\gamma, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	36	486	16454
14	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \bar{\Sigma}^+ \Sigma^{*-}, \bar{\Sigma}^+ \to \bar{n}\pi^+, \Sigma^{*-} \to \Lambda \pi^-, \Lambda \to n\pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	112	44 8	16902
15	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to \pi^0 \Delta^- \Delta^-, \Delta^- \to n\pi^-, \Delta^- \to \bar{n}\pi^+$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma\gamma$	20	434	17336
16	$\psi' \to \Delta^0 \bar{\Delta}^- \pi^-, \Delta^0 \to n\pi^0, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n$	7	433	17769
17	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \bar{\Sigma}^+ \pi^0 \bar{\Sigma}^-, \bar{\Sigma}^+ \to \bar{n}\pi^+, \bar{\Sigma}^- \to n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	<mark>52</mark>	410	18179
18	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \bar{\Sigma}^+ \Sigma^- \pi^0, \bar{\Sigma}^+ \to \bar{n}\pi^+, \Sigma^- \to n\pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	133	409	18588
19	$\psi' \to J/\psi \pi^+ \pi^-, J/\psi \to \bar{n}n\eta, \eta \to \gamma\gamma$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	150	385	18973
20	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to \bar{\Delta}^- \pi^- n, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	110	358	19331
21	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \bar{n} \pi^- \Delta^+, \Delta^+ \to n \pi^+$	$\pi^- \overline{n} \pi^0 \pi^0 \pi^+ n$	<mark>114</mark>	<mark>339</mark>	19670
22	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Sigma^0 \Sigma^+ \pi^-, \Sigma^0 \to \gamma \Lambda, \Sigma^+ \to \bar{n} \pi^+, \Lambda \to n \pi^0$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma \gamma$	207	330	20000
23	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \Sigma^0 \pi^- \Sigma^+, \Sigma^0 \to \gamma \Lambda, \Sigma^+ \to \bar{n} \pi^+, \Lambda \to n \pi^0$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma \gamma$	181	330	20330
24	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \eta \bar{n} n, \eta \to \pi^- \pi^+ \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	10	316	20646
25	$\psi' \to \Delta^- \Delta^-, \Delta^- \to n\pi^-, \Delta^- \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^+ n$	68	314	20960
26	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \pi^- \Lambda \bar{\Sigma}^+, \Lambda \to n \pi^0, \bar{\Sigma}^+ \to \bar{n} \pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	22	310	21270
27	$\psi' \to J/\psi \pi^+ \pi^-, J/\psi \to \Delta^- \Delta^- \pi^0, \Delta^- \to \bar{n}\pi^+, \Delta^- \to n\pi^-$	$\pi^-\pi^-\bar{n}\pi^0\pi^+\pi^+n$	142	307	-21577
28	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \Delta^- \bar{\Delta}^- \pi^0, \Delta^- \to n\pi^-, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	97	272	21849
29	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \Xi^+ \Xi^-, \Xi^+ \to \bar{\Lambda} \pi^+, \Xi^- \to \Lambda \pi^-, \bar{\Lambda} \to \bar{n} \pi^0, \Lambda \to n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	120	270	22119

No.	decay chain	final states	iTopology	nEvt	nTot
30	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \pi^- \bar{\Delta}^- \Delta^0, \bar{\Delta}^- \to \bar{n} \pi^+, \Delta^0 \to n \pi^0$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	37	270	22389
31	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \pi^0 \bar{\Delta}^{++} \Delta^{++}, \bar{\Delta}^{++} \rightarrow \bar{p} \pi^-, \Delta^{++} \rightarrow p \pi^+$	$\pi^{-}\bar{p}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}p$	229	263	22652
32	$\psi' \to \bar{\Delta}^- \pi^- n, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^{-}\bar{n}\pi^{+}n$	225	257	22909
33	$\psi' \rightarrow J/\psi\eta, J/\psi \rightarrow \bar{\Delta}^- \pi^0 \Delta^-, \eta \rightarrow \gamma\gamma, \bar{\Delta}^- \rightarrow \bar{n}\pi^+, \Delta^- \rightarrow n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma\gamma$	139	250	23159
34	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \bar{\Delta}^0 \pi^+ \Delta^-, \bar{\Delta}^0 \rightarrow \bar{n} \pi^0, \Delta^- \rightarrow n \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	293	247	23406
35	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \pi^0 \bar{\Sigma}^+ \Sigma^-, \bar{\Sigma}^+ \to \bar{n} \pi^+, \Sigma^- \to n \pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	174	247	23653
36	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \pi^0 n \bar{n}$	$\pi^- \bar{n} \pi^0 \pi^+ n$	327	245	23898
37	$\psi' \to J/\psi \pi^+ \pi^-, J/\psi \to \Sigma^- \bar{\Sigma}^+, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^{-}\pi^{-}\bar{n}\pi^{+}\pi^{+}n$	320	245	24143
38	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \eta \bar{n} n, \eta \rightarrow \pi^0 \pi^0 \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	130	243	24386
39	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to n\bar{n}\pi^+\pi^-$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	55	241	24627
40	$\psi' ightarrow \gamma \Sigma^+ \overline{\Sigma}^+, \Sigma^- ightarrow n \pi^-, \overline{\Sigma}^+ ightarrow ar{n} \pi^+$	$\pi^- \bar{n} \pi^+ n \gamma$	186	239	24866
41	$\psi' \rightarrow J/\psi\eta, J/\psi \rightarrow \overline{\Delta}^- \pi^- n, \eta \rightarrow \gamma\gamma, \overline{\Delta}^- \rightarrow \overline{n}\pi^+$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	146	230	25096
42	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \Sigma^- \bar{\Sigma}^+ \pi^0, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	30	227	25323
43	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to n\pi^- \bar{\Delta}^-, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^{-}\bar{n}\pi^{+}n\gamma$	215	224	25547
44	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to p \bar{\Lambda} K^{*-}, \bar{\Lambda} \to \bar{p} \pi^+, K^{*-} \to \bar{K}^0 \pi^-$	$\pi^- \bar{p} K_L \pi^+ \gamma p$	86	215	25762
45	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \phi K^{*-} K^{*+}, \phi \to K^+ K^-, K^{*-} \to \bar{K}^0 \pi^-, K^{*+} \to K^0 \pi^+$	$\pi^- K^- K_L K_L \pi^+ \gamma K^+$	69	204	25966
46	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \pi^0 K^{*+} K^{*-}, K^{*+} \to K^0 \pi^+, K^{*-} \to \bar{K}^0 \pi^-$	$\pi^{-}\pi^{0}K_{L}K_{L}\pi^{+}\gamma$	135	201	26167
47	$\psi' \to \Sigma^- \bar{\Sigma}^+, \Sigma^- \to n\pi^-, \bar{\Sigma}^+ \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^+ n$	692	196	26363
48	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow n\pi^- \bar{\Delta}^-, \bar{\Delta}^- \rightarrow \bar{n}\pi^+$	$\pi^-\pi^-\overline{n}\pi^+\pi^+n$	621	190	26553
49	$\psi' \to J/\psi \pi^0 \pi^0, J/\psi \to \Delta^+ \pi^- \bar{\Delta}^0, \Delta^+ \to n\pi^+, \bar{\Delta}^0 \to \bar{n}\pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	663	189	26742
50	$\psi' \to pK^{*-}\overline{\Lambda}, K^{*-} \to \overline{K}^{0}\pi^{-}, \overline{\Lambda} \to \overline{p}\pi^{+}$	$\pi^- \bar{p} K_L \pi^+ p$	78	187	26929
51	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Delta^- \pi^0 \bar{\Delta}^-, \Delta^- \to n \pi^-, \bar{\Delta}^- \to \bar{n} \pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	173	187	27116
52	$\psi' \to K^{*-} n \bar{\Sigma}^+, K^{*-} \to \bar{K}^0 \pi^-, \bar{\Sigma}^+ \to \bar{n} \pi^+$	$\pi^- \bar{n} K_L \pi^+ n$	65	186	27302
53	$\psi' \to J/\psi\eta, J/\psi \to \bar{\Sigma}^+ \Sigma^-, \eta \to \pi^0 \pi^0 \pi^0, \bar{\Sigma}^+ \to \bar{n}\pi^+, \Sigma^- \to n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	103	186	27488
54	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \gamma J/\psi, J/\psi \to \bar{\Sigma}^+ \Sigma^-, \bar{\Sigma}^+ \to \bar{n}\pi^+, \Sigma^- \to n\pi^-$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	640	183	27671
55	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \Lambda \bar{\Sigma}^+ \pi^-, \Lambda \to n \pi^0, \bar{\Sigma}^+ \to \bar{n} \pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	5	179	27850
56	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Lambda \bar{\Sigma}^+ \pi^-, \Lambda \to n \pi^0, \bar{\Sigma}^+ \to \bar{n} \pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	165	170	28020
57	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to p \bar{\Lambda} K^{*-}, \bar{\Lambda} \to \bar{p} \pi^+, K^{*-} \to \bar{K}^0 \pi^-$	$\pi^- \bar{p} K_L \pi^+ \gamma p$	502	169	28189
192/	$1 \psi 9 + 2 Q_2 R_2 \rightarrow \gamma J/\psi, J/\psi \rightarrow \Delta^- \pi^0 \bar{\Delta}^-, \Delta^- \rightarrow n\pi^-, \bar{\Delta}^- \rightarrow \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma \gamma$	71	168	28357
59'	$\psi' \xrightarrow{\prime} J/\psi \eta, J/\psi \to n\bar{n}\pi^+\pi^-, \eta \to \gamma\gamma$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	491	160	28517

Categorization of the BKG In Inclusive MC

Signal MC Efficiency

No. of Obs.	Selection Criteria	Survived Events	Percentage Efficiency %	Percentage Total Efficiency %
01.	Total Number	1000000	100	100
02.	Charge Track cut	644720	65	65
03.	EMC Shower cut	513507	79.6	51.4
04.	Nbar Shower cut	513507	79.6	51.4
05.	Pass PID	484992	75.3	48.6
06.	Pass KM Fit	319121	62.1	31.9

Rate of Cut Flow for chi_c0 After KM Fit

All: =	319121
mpi0<0.12 >0.15: =	275206
<pre>mpippim<1.2: =</pre>	275198
<pre> mpippim-0.497 >0.01: =</pre>	263681
<pre> mrecpip-3.097 >0.01: =</pre>	254987
msigmam<1.5: =	251648
<pre>mchicJ <3.6 mchicJ >3.3:=</pre>	244733
mchisq<20: =	221767
mchisq1>chisq: =	169194
nbar_energy>0.2: =	168840
nbar_hit_40d>20: =	154326
nbar_secmom >20: =	128423
nbar_match>10: =	127562
gam_match>10: =	95562

Tot. Signal MC Efficiency = 9.6 %

Rate of Cut Flow for chi_c1 After KM Fit

All: =	322617
mpi0<0.12 >0.15: =	267986
<pre>mpippim<1.2: =</pre>	267979
<pre> mpippim-0.497 >0.01: =</pre>	257420
<pre> mrecpip-3.097 >0.01: =</pre>	249849
msigmam<1.5: =	246681
mchicJ <3.6 mchicJ >3.3:=	239433
mchisq<20: =	220967
mchisq1>chisq: =	155709
nbar_energy>0.2: =	153363
nbar_hit_40d>20: =	141591
nbar_secmom >20: =	118077
nbar_match>10: =	117323
gam_match>10: =	85754

Tot. Signal MC Efficiency = 8.6 %

Rate of Cut Flow for chi_c2 After KM Fit

308394
249435
249421
239804
233059
230300
221963
205695
137617
135018
125058
104089
103395
69679

Tot. Signal MC Efficiency = 6.9 %

Invariant Mass of χ_{cJ} and Σ^-

2D Scatter Plot for Data

Measurement of Branching Fractions of $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$

Extraction of Signal $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$

- The peaking background have been seen in both Σ^- and χ_{cJ} mass spectrum.
- The constitution of peaking backgrounds are complex.
- Here, we fit the $M(\chi_{cJ})$ in each Σ^- mass interval of data and extracted the number of signal events of $N_{\chi_{c0}}$ and upper limit for χ_{c1} and χ_{c2} .

Fitting Result

Resolve Problem: Fix the computation of fit parameters errors in χ^2 goodness of fit, since root version 5.34 -14 till up to now.

Fitting Result for Upper Limit

Numerical Result for Branching Fractions of $\chi_{cI} \rightarrow \Sigma^- \overline{\Sigma}^+$

•
$$\mathfrak{B}(\chi_{cJ} \to \Sigma^{-}\overline{\Sigma}^{+}) = \frac{N_{\chi_{cJ}}^{Obs.}}{N_{\psi_{data}}^{\prime}\mathfrak{B}(\psi^{\prime} \to \gamma\chi_{cJ})\mathfrak{B}(\Sigma^{-} \to n\pi^{-})\mathfrak{B}(\overline{\Sigma}^{+} \to \overline{n}\pi^{+})\epsilon_{J}}$$

$\chi_{c0} \to \Sigma^- \overline{\Sigma}^+$ $\chi_{c1} \to \Sigma^- \overline{\Sigma}^+$ $\chi_{c2} \rightarrow \Sigma^- \overline{\Sigma}^+$ Channel N^{Obs.} 2098 ± 57 208 + 52132 + 21594 (90%C.L) 152 (90%C.L) Efficiency(ϵ_I) % 9.6 8.6 6.97 $N_{\psi'_{data}}$ (M) 448.1 448.1 448.1 $\mathfrak{B}(\psi' \to \gamma \chi_{cI})\%$ 9.99 9.55 9.11 $\mathfrak{B}(\Sigma^- \to n \pi^-)\%$ **99.848** 99.848 **99.848** $\mathfrak{B}(\overline{\Sigma}^+ \to \overline{n}\pi^+)\%$ **99.848 99.848 99.848**

Number used to Calculate the Branching Fractions:

1. $\mathfrak{B}(\chi_{c0} \rightarrow \Sigma^- \overline{\Sigma}^+) = 4.90 \pm 0.13 * 10^{-4}$

in PDG 3.9 * 10⁻⁴

2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-} \overline{\Sigma}^{+}) = 5.67 \pm 1.42 * 10^{-5} < 16.2 * 10^{-5}$ in PDG < 6 * 10⁻⁵ 3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.65 \pm 0.74 * 10^{-5} < 5.6 * 10^{-5}$ in PDG < 7 * 10⁻⁵

This result taken from $\chi_{cJ} \rightarrow \Sigma^+ \overline{\Sigma}^$ as a reference

Channel	This work	PDG	Previous BESIII [6]	CLEO [5]	Theory	$\mathcal{B}_{ ext{prod}}$
$\chi_{c0} \to \Sigma^+ \bar{\Sigma}^-$	$50.4 \pm 2.5 \pm 2.7$	39 ± 7	$43.7\pm4.0\pm2.8$	$32.5\pm5.7\pm4.3$	5.5-6.9 <u>3</u>	$4.99 \pm 0.24 \pm 0.24$
$\chi_{c1} \to \Sigma^+ \bar{\Sigma}^-$	$3.7\pm0.6\pm0.2$	< 6	$5.2 \pm 1.3 \pm 0.5 (< 8.3)$	< 6.5	3.3 4	$0.35 \pm 0.06 \pm 0.02$
$\chi_{c2} \to \Sigma^+ \bar{\Sigma}^-$	$3.5\pm0.7\pm0.3$	< 7	$4.7 \pm 1.8 \pm 0.7 (< 8.4)$	< 6.7	$5.0 \ [4]$	$0.32 \pm 0.06 \pm 0.03$

Ref: M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 97, 052011

Measurement of Systematic Uncertainty

Systematic Uncertainty in $M(\pi^o)$ Rejection

Channel	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+$ M(π^o) \in [0. 115, 0. 155]GeV	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+$ $M(\pi^o) \in$ [0. 125, 0. 145] GeV	$egin{aligned} \chi_{c1} & ightarrow \Sigma^- \overline{\Sigma}^+ \ M(\pi^o) \in \ [0.115,0.155] ext{GeV} \end{aligned}$	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+$ $M(\pi^0) \in$ [0.125, 0.145] GeV	$egin{aligned} \chi_{c2} & ightarrow arsigma^- \overline{\Sigma}^+ \ \mathbf{M}(\pi^o) \in \ [0.\ 115, 0.\ 155] \mathrm{GeV} \end{aligned}$	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+ M(\pi^o) \in [0.125, 0.145] ext{GeV}$
$N_{fit}^{Obs.}$	2093 ± 56	2102 ± 57	207 ± 52	209 ± 52	132 ± 21	132 ± 21
Efficiency(ϵ_J) %	9.3	9.9	8.3	8.9	6.65	7.32
$N_{\psi_{data}^{\prime}}\left(\mathbf{M} ight)$	448.1	448.1	448.1	448.1	448.1	448.1
$\mathfrak{B}(\psi' o \gamma \chi_{cJ})$ %	9.99	9.99	9.55	9.55	9.11	9.11
$\mathfrak{B}(\varSigma^- o n \pi^-)\%$	99.848	99.848	99.848	99.848	99.848	99.848
$\mathfrak{B}(\overline{\Sigma}^+ o \overline{n}\pi^+)$ %	99.848	99.848	99.848	99.848	99.848	99.848

$M(\pi^o) \in [0.125, 0.145]$ GeV

1.
$$\mathfrak{B}(\chi_{c0} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.76 * 10^{-4}$$

2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-} \overline{\Sigma}^{+}) = 5.50 * 10^{-5}$
3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.43 * 10^{-5}$

Systematic Uncertainty in $M(\pi^{-}\pi^{+})$ Rejection

Channel	$\chi_{c0} o \Sigma^- \overline{\Sigma}^+ \ M(\pi^- \pi^+) - 0.497 \ > 0.015 \text{ GeV}$	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+$ $ M(\pi^- \pi^+) - 0.497 $ > 0.02 GeV	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+ M(\pi^- \pi^+) - 0.497 > 0.015 \text{ GeV}$	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+$ $ M(\pi^- \pi^+) - 0.497 $ > 0.02 GeV	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+$ $ M(\pi^- \pi^+) - 0.497 $ > 0.015 GeV	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+$ $ M(\pi^- \pi^+) - 0.497 $ > 0.02 GeV
N ^{0bs.} fit	2096 ± 56	2095 ± 56	208 ± 52	207 ± 52	132 ± 21	132 ± 21
Efficiency(<i>\epsilon_J</i>) %	9.4	9.2	8.4	8.2	6.84	6.71
$N_{\psi_{data}^{\prime}}\left(\mathbf{M} ight)$	448.1	448.1	448.1	448.1	448.1	448.1
$\mathfrak{B}(\psi' o \gamma \chi_{cJ})$ %	9.99	9.99	9.55	9.55	9.11	9.11
$\mathfrak{B}(\Sigma^- o n \pi^-)\%$	99.848	99.848	99.848	99.848	99.848	99.848
$\mathfrak{B}(\overline{\Sigma}^+ o \overline{n}\pi^+)\%$	99.848	99.848	99.848	99.848	99.848	99.848

 $|M(\pi^{-}\pi^{+}) - 0.497| > 0.015 \text{ GeV}$ 1. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-}\bar{\Sigma}^{+}) = 4.99 * 10^{-4}$ 2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-}\bar{\Sigma}^{+}) = 5.80 * 10^{-5}$ 3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-}\bar{\Sigma}^{+}) = 4.74 * 10^{-5}$

 $|M(\pi^{-}\pi^{+}) - 0.497| > 0.02 \text{ GeV}$ 1. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-}\overline{\Sigma}^{+}) = 5.10 * 10^{-4}$ 2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-}\overline{\Sigma}^{+}) = 5.92 * 10^{-5}$ 3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-}\overline{\Sigma}^{+}) = 4.83 * 10^{-5}$

Systematic Uncertainty in $M_{rec}(\pi^+\pi^-)$ Rejection

Channel	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+ M_{rec}(\pi^+ \pi^-) - 3.097 > 0.015$	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+ \ M_{rec}(\pi^+ \pi^-) - 3.097 \ > 0.02$	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+ \ M_{rec}(\pi^+ \pi^-) - 3.097 \ > 0.015$	$\chi_{c1} \rightarrow \Sigma^- \overline{\Sigma}^+$ $ M_{rec}(\pi^+ \pi^-) - 3.097 $ > 0.02	$\chi_{c2} \rightarrow \Sigma^- \overline{\Sigma}^+$ $ M_{rec}(\pi^+ \pi^-) - 3.097 $ > 0.015	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+$ $ M_{rec}(\pi^+ \pi^-) - 3.097 $ > 0.02
N ^{0bs.} fit	2095 ± 56	2092 ± 56	208 ± 52	207 ± 52	132 ± 21	132 ± 21
Efficiency(<i>\epsilon J</i>) %	9.4	9.3	8.5	8.3	6.88	6.79
$N_{\psi_{data}^{\prime}}\left(\mathbf{M} ight)$	448.1	448.1	448.1	448.1	448.1	448.1
$\mathfrak{B}(\psi' o \gamma \chi_{cJ})$ %	9.99	9.99	9.55	9.55	9.11	9.11
$\mathfrak{B}(\Sigma^- o n \pi^-)\%$	99.848	99.848	99.848	99.848	99.848	99.848
$\mathfrak{B}(\overline{\Sigma}^+ o \overline{n}\pi^+)\%$	99.848	99.848	99.848	99.848	99.848	99.848

 $|M_{rec}(\pi^{+}\pi^{-}) - 3.097| > 0.015$ 1. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-}\bar{\Sigma}^{+}) = 4.99 * 10^{-4}$ 2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-}\bar{\Sigma}^{+}) = 5.74 * 10^{-5}$ 3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-}\bar{\Sigma}^{+}) = 4.71 * 10^{-5}$

$$|M_{rec}(\pi^{+}\pi^{-}) - 3.097| > 0.02 \text{ GeV}$$

1. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-}\overline{\Sigma}^{+}) = 5.04 * 10^{-4}$
2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-}\overline{\Sigma}^{+}) = 5.85 * 10^{-5}$
3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-}\overline{\Sigma}^{+}) = 4.78 * 10^{-5}$
2092 ± 56 $N_{\chi_{c1}}^{obs.} = 207 \pm 52$ $N_{\chi_{c2}}^{obs.} = 132 \pm$

Systematic Uncertainty in Fitting Method

For χ_{c0}

	Bin Size 5 MeV	Bin Size 15 MeV Si	gnal MC \otimes Gaussian	2 nd to 3 rd Order poly.
Channel	$\chi_{c0} \rightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c0} ightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c0} o \Sigma^- \overline{\Sigma}^+$
N ^{Obs.} fit	$2177 {\pm}~101$	2155 ± 57	2097 ± 57	2053 ± 57
Efficiency (ϵ_J) %	9.6	9.6	9.6	9.6
$N_{\psi'_{data}}\left(\mathbf{M} ight)$	448.1	448.1	448.1	448.1
$\mathfrak{B}(\psi' \to \gamma \chi_{cJ})\%$	9.99	9.99	9.99	9.99
$\mathfrak{B}(\varSigma^{-} \rightarrow$	99.848	99.848	99.848	99.848
$\mathfrak{B}(\overline{\Sigma}^+ \to \overline{n}\pi^+)\%$	99.848	99.848	99.848	99.848

1.
$$\mathfrak{B}(\chi_{c0} \to \Sigma^{-} \overline{\Sigma}^{+}) = 5.08 * 10^{-4}$$

2. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-} \overline{\Sigma}^{+}) = 5.01 * 10^{-4}$
3. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.89 * 10^{-4}$
4. $\mathfrak{B}(\chi_{c0} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.79 * 10^{-4}$

The maximum difference on the No. of Signal Events are assigned as the systematic uncertainty in the fitting methods.

Systematic Uncertainty in Fitting Method

For χ_{c1}

	Bin Size 5 MeV Bin Size 15 MeV		Bin Size 5 MeV Bin Size 15 MeV Signal MC & Gaussian 2		2 nd to 3 rd Order poly.
Channel	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c1} \to \Sigma^- \overline{\Sigma}^+$	$\chi_{c1} ightarrow \Sigma^- \overline{\Sigma}^+$	
$N_{fit}^{Obs.}$	217 ± 51	272 ± 31	251± 57	154 ± 54	
Efficiency(<i>ε</i> _J) %	8.6	8.6	8.6	8.6	
$N_{\psi'_{data}}$ (M)	448.1	448.1	448.1	448.1	
$\mathfrak{B}(\psi' o \gamma \chi_{cJ})\%$	9.99	9.99	9.99	9.99	
$\mathfrak{B}(\varSigma^{-} ightarrow$	99.848	99.848	99.848	99.848	
$\mathfrak{B}(\overline{\Sigma}^+ \to \overline{n}\pi^+)\%$	99.848	99.848	99.848	99.848	

1.
$$\mathfrak{B}(\chi_{c1} \to \Sigma^{-} \overline{\Sigma}^{+}) = 5.65 * 10^{-5}$$

2. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-} \overline{\Sigma}^{+}) = 7.08 * 10^{-5}$
3. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-} \overline{\Sigma}^{+}) = 6.54 * 10^{-5}$
4. $\mathfrak{B}(\chi_{c1} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.01 * 10^{-5}$

The maximum difference on the No. of Signal Events are assigned as the systematic uncertainty in the fitting methods.

Systematic Uncertainty in Fitting Method

For χ_{c2}

	Bin Size 5 MeV	Bin Size 15 MeV S	ignal MC ⊗ Gaussian	2 nd to 3 rd Order poly.
Channel	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+$	$\chi_{c2} \to \Sigma^- \overline{\Sigma}^+$	$\chi_{c2} ightarrow \Sigma^- \overline{\Sigma}^+$
N ^{0bs.}	116 ± 50	114 ± 22	132 ± 21	103 ± 21
Efficiency(<i>ε</i> _J) %	6.97	6.97	6.97	6.97
$N_{\psi'_{data}}\left(\mathbf{M} ight)$	448.1	448.1	448.1	448.1
$\mathfrak{B}(\psi' o \gamma \chi_{cJ})\%$	9.99	9.99	9.99	9.99
$\mathfrak{B}(\varSigma^{-} \rightarrow$	99.848	99.848	99.848	99.848
$\mathfrak{B}(\overline{\Sigma}^+ \to \overline{n}\pi^+)\%$	99.848	99.848	99.848	99.848

1.
$$\mathfrak{B}(\chi_{c2} \to \Sigma^{-} \overline{\Sigma}^{+}) = 3.73 * 10^{-5}$$

2. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-} \overline{\Sigma}^{+}) = 3.67 * 10^{-5}$
3. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-} \overline{\Sigma}^{+}) = 4.24 * 10^{-5}$
4. $\mathfrak{B}(\chi_{c2} \to \Sigma^{-} \overline{\Sigma}^{+}) = 3.31 * 10^{-5}$

The maximum difference on the No. of Signal Events are assigned as the systematic uncertainty in the fitting methods.

Systematic Uncertainty

Sources	Comments	Systematic Uncertainty (%)			
Charged Pions $(\pi^+\pi^-)$	1.4 per charged track	2.8 (By Dr.Xiaorong)			
Neutral particle (γ)	Ref: PhysRevD.83.112009		1.0		
Nbar (\overline{n}) Selections	Solvet control completed $I/2h \rightarrow \Sigma^{*-}\overline{\Sigma}^{+}$			`	
Kinematic Fit	Select control sample of $J/\psi \rightarrow Z^{-}Z^{+}$		5.0 (By Dr.Alaorong)	
π^0 mass Window	Varying the region [0.12, 0.15] →[0.115, 0.155]	Xc0	Xc1	Xc2	
n mass window	(OR) [0.125, 0.145] GeV	2.9	3.2	5.2	
$\pi^+\pi^-$ mass Window	Varying the region → 0.01 GeV → 0.015 GeV (OR) 0.02 GeV	4.1 4.4 3.9		3.9	
Recoil $\pi^+\pi^-$ mass Window	Varying the region → 0.01 GeV → 0.015 GeV (OR) 0.02 GeV	2.9 3.2 2.8		2.8	
	Using different bin size of X _{cJ} mass spectrum 5 MeV (OR) 15 MeV	3.7	24.9	21.1	
Fitting Method	By Changing MC to (Signal MC \otimes Gaussian)	2.0	15.3	8.8	
	By Changing 2 nd Order Chebychev polynomial to 3 rd order poly. function.	0.6	29.3	28.8	
Branching Fraction	Uncertainty from $\psi(3686) \rightarrow \gamma \chi_{cJ}$	2.4 3.3 3.4		3.4	
Number of $\psi(3686)$	Ref: Chin. Phys. C 42, 023001 (2018)	0.6			
Total		9.6	42.4	38.1	

Summary

- ▷ By Reconstruction of $\gamma n \overline{n} \pi^+ \pi^-$ final states, the process of $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$ are observed for the first time at BESIII.
- > The signal is extracted by fitting of $M(\chi_{cl})$ mass spectra (*un-binned*) in each Σ^- mass interval (*bin-by-bin*).
- → The branching fraction of $\chi_{cJ} \rightarrow \Sigma^- \overline{\Sigma}^+$ to be given, which are consistent with $\chi_{cJ} \rightarrow \Sigma^+ \overline{\Sigma}^-$ process.

> Memo is ready and uploaded soon.

Channal	This Work	PDC	Previous Bl	Theory	
Channel		1 DG	$\chi_{cJ} \rightarrow \Sigma^+ \overline{\Sigma}^-$	$\chi_{cJ} \rightarrow \Sigma^0 \overline{\Sigma}^0$	i neoi y
$\chi_{c0}\to \Sigma^-\overline{\Sigma}{}^+$	$(4.90\pm 0.13\pm 0.47)*10^{-4}$	$(3.9\pm0.7)*10^{-4}$	$(5.04\pm 0.25\pm 0.27)*10^{-4}$	$(4.8 \pm 1.8 \pm 3.5) * 10^{-4}$	$(0.55 - 0.69) * 10^{-4} [2]$
$\chi_{c1}\to \Sigma^-\overline{\Sigma}{}^+$	$ \begin{array}{r} (5.67 \pm 1.42 \pm 0.24) * 10^{-5} \\ < 16.2 * 10^{-5} \end{array} $	$< 6 * 10^{-5}$	$(3.7 \pm 0.6 \pm 0.2) * 10^{-5}$	$(4.3 \pm 0.5 \pm 0.3) * 10^{-5}$	3.3 * 10 ⁻⁵ [3]
$\chi_{c2}\to \Sigma^-\overline{\Sigma}{}^+$	$\begin{array}{c} (4.65\pm 0.74\pm 0.14)*10^{-5} \\ < 5.6*10^{-5} \end{array}$	$< 7 * 10^{-5}$	$(3.5 \pm 0.7 \pm 0.3) * 10^{-5}$	$(3.9 \pm 0.5 \pm 0.3) * 10^{-5}$	5.0 * 10 ⁻⁵ [3]

References:

[1]. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 97, 052011

[2]. X. H. Liu and Q. Zhao, J. Phys. G 38, 035007 (2011)

[3]. S. M. H. Wong, Eur. Phys. J. C 14, 643 (2000).

Thank you for your Attention

Backup

Measurement of Branching Fractions of $\chi_{cJ} \rightarrow \Sigma^+ \overline{\Sigma}^-$

Background channel Extracted from Inclusive MC Sample

27		0.1	100 1	T	(T) (
No.	decay chain	final states	Topology	nEvt	nTot
0	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Delta^- \bar{n}\pi^+, \Delta^- \rightarrow n\pi^-$	$\pi^{-}n\pi^{0}\pi^{0}\pi^{+}n$	17	1716	1716
1	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Delta^- \Delta^- \pi^0, \Delta^- \rightarrow \bar{n}\pi^+, \Delta^- \rightarrow n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	32	1292	3008
2	$\psi' \to \Sigma^+ \bar{\Sigma}^-, \Sigma^+ \to n\pi^+, \bar{\Sigma}^- \to \bar{n}\pi^-$	$\pi^{-}\bar{n}\pi^{+}n$	33	1262	4270
3	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow n\bar{n}\pi^+\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	11	1177	5447
4	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \rightarrow n\pi^+, \overline{\Sigma}^- \rightarrow \overline{n}\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	70	897	6344
5	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow n\bar{n}$	$\pi^- \bar{n}\pi^+ n$	15	652	6996
6	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \pi^+ \Delta^- \overline{\Delta}^0, \Delta^- \rightarrow n\pi^-, \overline{\Delta}^0 \rightarrow \overline{n}\pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	4	529	7525
7	$\psi' \rightarrow \Delta^- \pi^0 \bar{\Delta}^-, \Delta^- \rightarrow n\pi^-, \bar{\Delta}^- \rightarrow \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n$	80	410	7935
8	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow n\pi^- \overline{\Delta}^-, \overline{\Delta}^- \rightarrow \overline{n}\pi^+$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	200	379	8314
9	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow n\pi^+ \overline{\Delta}^+, \overline{\Delta}^+ \rightarrow \overline{n}\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	90	375	8689
10	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \bar{n}n\eta, \eta \rightarrow \gamma\gamma$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	122	368	9057
11	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to \Delta^- \pi^+ \bar{n}, \Delta^- \to n\pi^-$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	280	339	9396
12	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \pi^0 \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \to n \pi^+, \overline{\Sigma}^- \to \overline{n} \pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	82	338	9734
13	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \eta n \bar{n}, \eta \rightarrow \pi^- \pi^+ \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	116	289	10023
14	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to \pi^0 \Delta^- \bar{\Delta}^-, \Delta^- \to n\pi^-, \bar{\Delta}^- \to \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma \gamma$	9	284	10307
15	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \Sigma^0 \overline{\Sigma}^- \pi^+, \Sigma^0 \to \gamma \Lambda, \overline{\Sigma}^- \to \overline{n} \pi^-, \Lambda \to n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma\gamma$	104	265	10572
16	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \overline{\Delta}^- \Delta^- \pi^0, \overline{\Delta}^- \rightarrow \overline{n} \pi^+, \Delta^- \rightarrow n \pi^-$	$\pi^{-}\pi^{-}\bar{n}\pi^{0}\pi^{+}\pi^{+}n$	118	246	10818
17	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \pi^0 \bar{n} n$	$\pi^- \bar{n} \pi^0 \pi^+ n$	170	235	11053
18	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to n\bar{n}\pi^+\pi^-$	$\pi^{-}\bar{n}\pi^{+}n\gamma\gamma$	273	232	11285
19	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Delta^{++} \overline{\Delta}^{++} \pi^0, \Delta^{++} \rightarrow p \pi^+, \overline{\Delta}^{++} \rightarrow \overline{p} \pi^-$	$\pi^{-}\bar{p}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}p$	236	228	11513
20	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Sigma^+ \overline{\Sigma}^- \pi^0, \Sigma^+ \to n \pi^+, \overline{\Sigma}^- \to \overline{n} \pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma$	43	227	11740
21	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \Sigma^+ \overline{\Sigma}^- \pi^0, \Sigma^+ \to n \pi^+, \overline{\Sigma}^- \to \overline{n} \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma$	40	227	11967
22	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \overline{\Sigma}^- \Sigma^{*+}, \overline{\Sigma}^- \rightarrow \overline{n} \pi^-, \Sigma^{*+} \rightarrow \Lambda \pi^+, \Lambda \rightarrow n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	27	221	12188
23	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \bar{n}n\eta, \eta \rightarrow \pi^0 \pi^0 \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	25	217	12405
24	$\psi' \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow K^{*+} \Lambda \bar{p}, K^{*+} \rightarrow K^0 \pi^+, \Lambda \rightarrow p \pi^-$	$\pi^- \bar{p} K_L \pi^+ \gamma p$	215	214	12619
25	$\psi' \rightarrow J/\psi\eta, J/\psi \rightarrow \bar{n}\Delta^-\pi^+, \eta \rightarrow \gamma\gamma, \Delta^- \rightarrow n\pi^-$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	81	212	12831
26	$\psi' \to \Sigma^+ \pi^0 \bar{\Sigma}^-, \Sigma^+ \to n \pi^+, \bar{\Sigma}^- \to \bar{n} \pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n$	343	211	13042
27	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \pi^+ \Delta^0 \bar{\Delta}^+, \Delta^0 \rightarrow n \pi^0, \bar{\Delta}^+ \rightarrow \bar{n} \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	0	203	13245
28	$\psi' \rightarrow \Sigma^{*+} \overline{\Sigma}^{*-}, \Sigma^{*+} \rightarrow \Lambda \pi^+, \overline{\Sigma}^{*-} \rightarrow \overline{\Lambda} \pi^-, \Lambda \rightarrow n \pi^0, \overline{\Lambda} \rightarrow \overline{n} \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	14	196	13441
29	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to K^{*-} \pi^0 K^{*+}, K^{*-} \to \overline{K}^0 \pi^-, K^{*+} \to K^0 \pi^+$	$\pi^-\pi^0 K_L K_L \pi^+ \gamma$	209	187	13628

No.	decay chain	final states	iTopology	nEvt	nTot
- 30	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to K^{\bullet+} K^{\bullet-} \phi, K^{\bullet+} \to K^0 \pi^+, K^{\bullet-} \to \bar{K}^0 \pi^-, \phi \to K^+ K^-$	$\pi^- K^- K_L K_L \pi^+ \gamma K^+$	79	180	13808
31	$\psi' \rightarrow J/\psi\eta, J/\psi \rightarrow \Delta^-\pi^0\bar{\Delta}^-, \eta \rightarrow \gamma\gamma, \Delta^- \rightarrow n\pi^-, \bar{\Delta}^- \rightarrow \bar{n}\pi^+$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma \gamma$	206	178	13986
32	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \gamma \Sigma^- \overline{\Sigma}^+, \Sigma^- \rightarrow n \pi^-, \overline{\Sigma}^+ \rightarrow \overline{n} \pi^+$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n\gamma$	114	174	14160
33	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \gamma \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \rightarrow n \pi^+, \overline{\Sigma}^- \rightarrow \overline{n} \pi^-$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n \gamma$	195	174	14334
34	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \overline{\Delta}^- \Delta^0 \pi^-, \overline{\Delta}^- \rightarrow \overline{n} \pi^+, \Delta^0 \rightarrow n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	164	168	14502
35	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Lambda \overline{\Sigma}^- \pi^+, \Lambda \rightarrow n \pi^0, \overline{\Sigma}^- \rightarrow \overline{n} \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	102	167	14669
-36	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \Delta^- \bar{n}\pi^+, \Delta^- \rightarrow n\pi^-$	$\pi^{-}\pi^{-}n\pi^{+}\pi^{+}n$	78	165	14834
37	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to K^{*+} \Lambda \bar{p}, K^{*+} \to K^0 \pi^+, \Lambda \to p \pi^-$	$\pi^- \bar{p} K_L \pi^+ \gamma p$	283	164	14998
38	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \pi^+ \Delta^- \bar{n}, \Delta^- \to n\pi^-$	$\pi^{-}\bar{n}\pi^{+}n\gamma$	342	155	15153
39	$\psi' \rightarrow \bar{n}n\eta', \eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma\gamma$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	12	154	15307
40	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \bar{\Delta}^0 \pi^0 \Delta^0, \bar{\Delta}^0 \rightarrow \bar{n} \pi^0, \Delta^0 \rightarrow n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	228	150	15457
41	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \Sigma^+ \Sigma^-, \Sigma^+ \rightarrow \bar{n}\pi^+, \Sigma^- \rightarrow n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{+}n$	296	148	15605
42	$\psi' \rightarrow J/\psi\eta, J/\psi \rightarrow n\bar{n}\pi^+\pi^-, \eta \rightarrow \gamma\gamma$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	44	147	15752
43	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \tilde{\Sigma}^+ \Sigma^- \pi^0, \tilde{\Sigma}^+ \rightarrow \bar{n}\pi^+, \Sigma^- \rightarrow n\pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{0}\pi^{0}\pi^{+}n$	261	142	15894
44	$\psi' \rightarrow \pi^+ \bar{\Delta}^0 \Delta^-, \bar{\Delta}^0 \rightarrow \bar{n} \pi^0, \Delta^- \rightarrow n \pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n$	558	142	16036
45	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Sigma^0 \pi^+ \Sigma^-, \Sigma^0 \to \gamma \Lambda, \Sigma^- \to \bar{n} \pi^-, \Lambda \to n \pi^0$	$\pi^- \bar{n} \pi^0 \pi^+ n \gamma \gamma$	111	141	16177
46	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \Lambda \pi^+ \Sigma^-, \Lambda \to n \pi^0, \Sigma^- \to \bar{n} \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma$	103 103	141	16318
47	$\psi' \rightarrow \Delta^0 \Delta^+ \pi^+, \Delta^0 \rightarrow n\pi^0, \Delta^+ \rightarrow \bar{n}\pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n$	746	140	16458
48	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \gamma J/\psi, J/\psi \to \Sigma^+ \bar{\Sigma}^-, \Sigma^+ \to n\pi^+, \bar{\Sigma}^- \to \bar{n}\pi^-$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	548 -	138	16596
49	$\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow n\bar{n}\pi^+\pi^-$	$\pi^{-}\pi^{-}n\pi^{+}\pi^{+}n$	22	136	16732
50	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \pi^+ \Sigma^0 \Sigma^-, \Sigma^0 \to \gamma \Lambda, \Sigma^- \to \bar{n} \pi^-, \Lambda \to n \pi^0$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma\gamma$	225 225	136	16868
51	$\psi' \rightarrow J/\psi\eta, J/\psi \rightarrow \Sigma^+\Sigma^-, \eta \rightarrow \gamma\gamma, \Sigma^+ \rightarrow n\pi^+, \Sigma^- \rightarrow \bar{n}\pi^-$	$\pi^- \bar{n}\pi^+ n\gamma\gamma$	520	133	17001
52	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow n\eta' \bar{n}, \eta' \rightarrow \rho^0 \gamma, \rho^0 \rightarrow \pi^+ \pi^-$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n \gamma$	420	133	17134
53	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \bar{p}\Lambda K^{*+}, \Lambda \to p\pi^-, K^{*+} \to K^0\pi^+$	$\pi^- \bar{p} K_L \pi^+ \gamma p$	38	132	17266
54	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to \Delta^0 \pi^+ \bar{\Delta}^+, \Delta^0 \to n \pi^0, \bar{\Delta}^+ \to \bar{n} \pi^-$	$\pi^{-}\bar{n}\pi^{0}\pi^{+}n\gamma$	411	130	17396
55	$\psi' \rightarrow \Lambda \bar{p} K^{*+}, \Lambda \rightarrow p \pi^-, K^{*+} \rightarrow K^0 \pi^+$	$\pi^- \bar{p} K_L \pi^+ p$	47	128	17524
56	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow \pi^+ \pi^- \pi^0 K^+ K^-$	$\pi^- K^- \pi^0 \pi^0 \pi^0 \pi^+ K^+$	115	128	17652
57	$\psi' \rightarrow J/\psi \pi^0 \pi^0, J/\psi \rightarrow p\bar{p}\pi^+\pi^-$	$\pi^- \bar{p} \pi^0 \pi^0 \pi^+ p$	39	125	17777
58	$\psi' \rightarrow \overline{\Delta}^- \pi^- n, \overline{\Delta}^- \rightarrow \overline{n}\pi^+$	$\pi^- \bar{n}\pi^+ n$	109	122	17899
59	$\psi_{a}^{\prime} \xrightarrow{\rightarrow} \gamma \chi_{c0} \chi_{c0} b_{a}^{0} \overline{n} n, b_{1}^{0} \xrightarrow{\rightarrow} \omega \pi^{0}, \omega \pi^{-} \pi^{+} \pi^{0}$	$\pi^- \bar{n} \pi^0 \pi^0 \pi^+ n \gamma$	318 318	120	18019

12/19/2010

Data with Inclusive MC after All sections

Categorization of the BKG In Inclusive MC

Extraction of Signal for $\chi_{cI} \rightarrow \Sigma^+ \overline{\Sigma}^-$

- The peaking background have been seen in both Σ^+ and χ_{cJ} mass spectrum.
- The constitution of peaking backgrounds are complex.
- Here, we fit the $M(\chi_{cJ})$ mass spectra in each Σ^+ mass interval of data and extracted the number of signal events for $N_{\chi_{c0}}$, $N_{\chi_{c1}}$, $N_{\chi_{c2}}$.

Version 5.34/19-2014

Version 5.34/34-2015

□ Version 5.34/36-2016

Resolve Problem: Fix the computation of fit parameters errors in weighted Extended Maximum likelihood fit since root version 5.34-19-2014 till up to now.

Numerical Result for Branching Fractions of $\chi_{cI} \rightarrow \Sigma^+ \overline{\Sigma}^-$

•
$$\mathfrak{B}(\chi_{cJ} \to \Sigma^+ \overline{\Sigma}^-) = \frac{N_{\chi_{cJ}}^{Obs.}}{N_{\psi'_{data}} \mathfrak{B}(\psi' \to \gamma \chi_{cJ}) \mathfrak{B}(\Sigma^+ \to n \pi^+) \mathfrak{B}(\overline{\Sigma}^- \to \overline{n} \pi^-) \epsilon_J}$$

Number used to Calculate the Branching Fractions:

Channel	$\chi_{c0} o \Sigma^+ \overline{\Sigma}^-$	$\chi_{c1} o \Sigma^+ \overline{\Sigma}^-$	$\chi_{c2} o \Sigma^+ \overline{\Sigma}^-$
N ^{Obs.}	513 ± 73	22 ± 19	71 ± 37
Efficiency(<i>ε</i> _J) %	9.97	8.94	7.27
$N_{\psi_{data}'}$ (M)	448.1	448.1	448.1
$\mathfrak{B}(oldsymbol{\psi}' o \gamma \chi_{cJ}) \%$	9.99	9.55	9.11
$\mathfrak{B}(\varSigma^+ o n \ \pi^+)\%$	48.31	48.31	48.31
$\mathfrak{B}(\overline{\Sigma}^- o \overline{n}\pi^-)\%$	48.31	48.31	48.31

1. $\mathfrak{B}(\chi_{c0} \to \Sigma^+ \overline{\Sigma}^-) = (4.9 \pm 0.7) * 10^{-4}$ in PDG 3.9 * 10⁻⁴

2. $\mathfrak{B}(\chi_{c1} \to \Sigma^+ \overline{\Sigma}^-) = (2.5 \pm 2.1) * 10^{-5}$ in PDG < 6 * 10⁻⁵

3. $\mathfrak{B}(\chi_{c2} \to \Sigma^+ \overline{\Sigma}^-) = (10.2 \pm 5.3) * 10^{-5}$ in PDG < 7 * 10⁻⁵

Channel	This work	PDG	Previous BESIII [6]	CLEO [5]	Theory	$\mathcal{B}_{ ext{prod}}$
$\chi_{c0} \to \Sigma^+ \bar{\Sigma}^-$	$50.4 \pm 2.5 \pm 2.7$	39 ± 7	$43.7\pm4.0\pm2.8$	$32.5\pm5.7\pm4.3$	5.5-6.9 <u>[3]</u>	$4.99 \pm 0.24 \pm 0.24$
$\chi_{c1} \to \Sigma^+ \bar{\Sigma}^-$	$3.7 \pm 0.6 \pm 0.2$	< 6	$5.2 \pm 1.3 \pm 0.5 (< 8.3)$	< 6.5	3.3 4	$0.35 \pm 0.06 \pm 0.02$
$\chi_{c2} \rightarrow \Sigma^+ \bar{\Sigma}^-$	$3.5 \pm 0.7 \pm 0.3$	< 7	$4.7 \pm 1.8 \pm 0.7 (< 8.4)$	< 6.7	5.0 4	$0.32 \pm 0.06 \pm 0.03$

Ref: https://arxiv.org/abs/1710.07922

Signal MC Efficiency without chisq_sigma cut

No. of Obs.	Selection Criteria	Survived Events	Percentage Efficiency %	Percentage Total Efficiency %
01.	Total Number	1000000	100	100
02.	Charge Track cut	644720	65	65
03.	EMC Shower cut	513507	79.6	51.4
04.	Nbar Shower cut	513507	79.6	51.4
05.	Pass PID	484992	75.3	48.6
06.	Pass KM Fit	319121	62.1	31.9

Rate of Cut Flow for chi_c0 After KM Fit

All:	=	319121
mpi0<0.12 >0.15:	=	275206
mpippim<1.2:	=	275198
mpippim-0.497 >0.01:	=	263681
mrecpip-3.097 >0.01:	=	254987
msigmam<1.5:	=	251648
<pre>mchicJ <3.6 mchicJ >3.3:</pre>	=	244733
mchisq<20:	=	221767
mchisq1>chisq:	Ξ	0
nbar_energy>0.2:	Ξ	221347
nbar_hit_40d>20:	Ξ	203292
nbar_secmom >20:	Ξ	169354
nbar_match>10:	=	168075
gam_match>10:	=	119225

Tot. Signal MC Efficiency = 11.9 %

Rate of Cut Flow for chi_c1 After KM Fit

All: =	= 322617
mpi0<0.12 >0.15: =	= 267986
<pre>mpippim<1.2: =</pre>	= 267979
mpippim-0.497 >0.01: =	= 257420
mrecpip-3.097 >0.01: =	= 249849
msigmam<1.5: =	= 246681
mchicJ <3.6 mchicJ >3.3:=	= 239433
mchisq<20: =	= 220967
mchisq1>chisq: =	= 0
nbar_energy>0.2: =	= 218122
nbar_hit_40d>20: =	= 202394
nbar_secmom >20: =	= 168971
nbar_match>10: =	= 167818
<pre>gam_match>10:</pre>	= 116882

Tot. Signal MC Efficiency = 11.7 %

Rate of Cut Flow for chi_c2 After KM Fit

All: =	308394
mpi0<0.12 >0.15: =	249435
<pre>mpippim<1.2: =</pre>	249421
<pre> mpippim-0.497 >0.01: =</pre>	239804
<pre> mrecpip-3.097 >0.01: =</pre>	233059
msigmam<1.5: =	230300
<pre>mchicJ <3.6 mchicJ >3.3:=</pre>	221963
mchisq<20: =	205695
<pre>mchisq1>chisq: =</pre>	0
<pre>nbar_energy>0.2: =</pre>	202448
nbar_hit_40d>20: =	188500
nbar_secmom >20: =	157285
<pre>nbar_match>10: =</pre>	156225
<pre>gam match>10:</pre> =	101855

Tot. Signal MC Efficiency = 10.2 %

Latest Root Version Comparison with chi^2 method

Version	5.34/36	5 April 2016
---------	---------	--------------

5.34/09

26 June 2013

Version

FCN = 46.24 ; Deg. Of Freedom = 4 FCN = 62.39;Degree of Freedom = 3 Significance = 4σ

FCN = 158.37; Deg. Of Freedom = 4 FCN = 217.51; Deg. Of Freedom = 3 Significance = 7σ

Noted that if we cut the mass of sigma⁻,Nominal value of chic_2 is not changes and statistical uncertainty also remain same, Also, we have seen that no. of observed events not increasing ,So we can say this is not cause in systematic uncertainty in fitting method

Results for Chic2

Upper Limit for chi_c1 & chi_c2

N_Signal for chi_c1 with 90% C.L For bin size 10MeV N_signal for chi_c2 with 90% C.L For bin size 10MeV

N_Signal for chi_c1 with 90% C.L For bin size 5MeV

N_signal for chi_c2 with 90% C.L For bin size 5 MeV

N_Signal for chi_c1 with 90% C.L For bin size 15MeV N_signal for chi_c2 with 90% C.L For bin size 15 MeV

N_Signal for chi_c1 with 90% C.L By changing 2nd to 3rd order Poly.

N_signal for chi_c2 with 90% C.L By Changing 2nd to 3rd Order Poly.

Angular Distribution of Chi_cJ in lab and C.M frame

MC_Truth Angle Gamma in C.M frame

12/19/2018