

Analysis of $e^+e^- \rightarrow J/\psi\eta\eta$

Charmonium Group Meeting 12/19/2018

Florian Feldbauer

Ruhr-Universität Bochum - Experimentalphysik I AG

Motivation

PRL 110, 252001 (2013)

- Obeservation of $Z_c(3900) \rightarrow \pi J/\psi$
- Isospin triplet

- Complete multiplets to be observed?
- e.g. J^P = 0⁺, 1⁺, 2⁺... spin state partners
- Further charmonia channels needed

1

Overview

- Analysis of $e^+e^- \rightarrow J/\psi \eta \eta$ at $\sqrt{s} = 4.23, 4.26, 4.36, 4.42$ and 4.60 GeV
- Determine X-section $e^+e^- \rightarrow J/\psi \eta \eta$
- Search for isospin partner of $Z_c(3900)$ in $J/\psi \eta$
- Using BOSS 6.6.5.p01

Track Selection

Photon Selection

- $E \ge 50 \text{ MeV}$ if $0.86 < |\cos \theta| < 0.92$ (endcaps)
- $E \ge 25 \text{ MeV}$ if $|\cos \theta| < 0.8$ (barrel)
- EMC timing cut: $0 \le T \le 14$ (in units of 50 ns)

•
$$\measuredangle\left(\gamma, X_{charged}
ight) > 20^{\circ}$$

Charged Track Selection

- |z₀| < 10.0 cm
- $|r_{xy}| < 1.0 \, \mathrm{cm}$
- Icos θ| < 0.93</p>

F Feldbauer

Total charge = 0

Particle Identification

- Leptons: $p \ge 1 \text{ GeV} / c$, Pions: p < 1 GeV / c
- e^{\pm} : both tracks with E/(pc) > 0.7
- μ[±]: both tracks with E/(pc) < 0.3 at least one track with N_{layers} > 6
- π^{\pm} : use dE/dx and TOF ($\mathcal{P} > 0.001$)

4

Event Selection - π^0/η Candidate Selections

■
$$\pi^0 \to \gamma \gamma$$
:
► 0.08 GeV/ $c^2 \le m_{\gamma\gamma} \le 0.14$ GeV/ c^2
► 1C fit (m_{π^0}) with cut on $\chi^2_{1C} \le 2500$

•
$$\eta \rightarrow \gamma \gamma$$
: $\mathcal{B} = 39.41$ %

- 0.40 GeV/ $c^{2} \leq m_{\gamma\gamma} \leq$ 0.70 GeV/ c^{2}
- 1C fit (m_η) with cut on $\chi^2_{1C} \leq 2500$

•
$$\eta \to \pi^+ \pi^- \pi^0$$
: $\mathcal{B} = 22.92\%$

- ightarrow 0.40 GeV/ c $^2 \leq m_{3\pi} \leq$ 0.70 GeV/ c 2
- Vertex fit for $\pi^+\pi^-$
- 2C fit (m_{η}, m_{π^0}) with cut on $\chi^2_{2C} \leq 2500$
- n(η) ≥ 2
- = $\eta
 ightarrow 3\pi^0$ omitted due to very low efficiency and high background

5

Candidate Selection

- Combine $\ell^+\ell^-\eta\eta$
- Vertex fit for $\ell^+\ell^- [2(\pi^+\pi^-)]$
- 7C kinematic fit (initial *P*, $m_{J/\psi}$, 2 × m_{η})
- Best candidate with smallest χ²_{7C}

Naming:

(1)
$$\eta \to \gamma \gamma$$

(4) $\eta \to \pi^+ \pi^- \pi^0$

$\pi^0\pi^0$ -Veto

- Largest background from $e^+e^-
 ightarrow \pi^0 J/\psi$
- Define \(\pi^0\) -Veto:

$$\chi^2_{\textit{veto}} = \chi^2_{1\textit{C}}(\eta_1) + \chi^2_{1\textit{C}}(\eta_2) - \chi^2_{1\textit{C}}(\pi^0_1) - \chi^2_{1\textit{C}}(\pi^0_2)$$

- If $\chi^2_{veto} \ge 0$ event is rejected
- Only applied for mode (11)

Efficiency

 $\sqrt{s} = 4.6 \, {
m GeV} \, (44)$

F. Feldbauer

$$\sqrt{s} = 4.6 \, \text{GeV} \, (14)$$

channel	ϵ
(11)	0.24
(14)	0.09
(44)	0.03

Dalitz Plots

14 F 14 14.

data @4.36 GeV

- Dalitz plots symmetrized
- Only very few events in data
- No events for $\sqrt{s} =$ 4.23 and 4.26 GeV

9

 $e^+e^- \rightarrow J/\psi\eta\eta$

Reduced Luminosity

- Include systematic uncertainties from L and B
- Both have influence on upper limit, but *no* influence on reconstruction efficiency
- \Rightarrow Define "Reduced Luminosity" as:

$$\mathcal{L}_{\textit{red}} = \mathcal{L} \, \sum \mathcal{B}_{\textit{ij}} \, \epsilon_{\textit{ij}}$$

-					
\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
\mathcal{L}/pb^{-1}	1086.20	825.68	541.38	1074.40	563.45
€ <u>11</u>	0.264	0.250	0.236	0.232	0.227
\mathcal{B}_{11}			0.01853		
ϵ_{14}	0.095	0.091	0.086	0.084	0.085
\mathcal{B}_{14}			0.01065		
ϵ_{44}	0.029	0.028	0.029	0.028	0.030
\mathcal{B}_{44}			0.00612		
$\mathcal{L}_{red}/\text{pb}^{-1}$	6.324	4.766	2.960	5.517	2.983

Background Study

Analyzed inclusive MC samples + additional $e^+e^- \rightarrow \textit{hadrons}$ channels

•
$$\sqrt{s} = 4.6 \,\mathrm{GeV}$$

- data
- signal mc
- background (abitrary scaled)

11

Background Channels

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV
$\eta\psi(2S)$	_	< 4.66	< 3.06
$\omega \chi_{c1}$	—	—	< 0.88
$\omega\chi_{c2}$	—	—	< 15.86
$\pi^0 \pi^0 J/\psi$	41.64 ± 1.53	$\textbf{32.88} \pm \textbf{1.51}$	12.65 ± 1.01
$\pi^{0}\pi^{0}\psi(2S)$	13.46 ± 2.37	13.11 ± 2.87	35.65 ± 4.58
$\pi^0\psi(2S)$?	?	?
\sqrt{s}	4.42 GeV	4.60 GeV	
$\eta\psi(2S)$	$1.29^{+0.57}_{-0.46}$	< 1.10	
$\omega \chi_{c1}$	< 3.80	11.73 ± 2.59	
$\omega\chi_{c2}$	$\textbf{26.13} \pm \textbf{4.00}$	< 9.48	
$\pi^0\pi^0 J/\psi$	4.85 ± 1.47	1.63 ± 0.07	
$\pi^{0}\pi^{0}\psi(2S)$	19.49 ± 2.00	4.09 ± 1.39	
$\pi^0\psi(2S)$?	?	

Cross sections σ_{obs} /pb of dominanting background channels:

Study of Background Channel $\pi^0 \psi(2S)$

- Explicitly reconstruct $e^+e^- \rightarrow \pi^0 \psi(2S) \rightarrow (\gamma\gamma) (\pi^+\pi^- J/\psi)$ to determine upper limit for background estimation
- Might be suppresed depending on production mechanism
 (G = +1)
- Same selection criteria for tracks, photons, π^0 as for $e^+e^- \rightarrow \eta\eta J/\psi$
- 7C-Kinematic fit (initial P, m_{J/ψ}, m_{π⁰}, m_{ψ(2S)})
- Best candidate with smallest χ^2_{7C}

Study of Background Channel $\pi^0 \psi(2S)$

Upper Limit for Background Channel $\pi^0 \psi(2S)$

- Assume all reconstructed events are signal $(n_{bkg} = 0)$
- ⇒ Upper limit might be overestimated (worst case for my signal)
- Systematic uncertainties from L, B and tracking/photons
- Use cut and count method by W. Rolke et.al.
- Assume poissonian background and gaussian efficiency

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
n _{data}	28	7	8	13	5
ϵ	0.228	0.230	0.243	0.245	0.256
$\mathcal{L}_{red}/\text{pb}^{-1}$	10.07	7.72	5.35	10.70	5.86
$\sigma_{sys}/{ m pb}^{-1}$	0.496	0.355	0.256	0.512	0.273
$\sigma_{obs}(90\%)/{ m pb}$	3.78	1.60	2.56	1.87	1.65

Estimated Background

- Determine expected background from Monte Carlo
- Number of expected events for $\tau \mathcal{L}$
- \Rightarrow Reduce statistical uncertainty

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
$\eta\psi(2S)$	_	41.99	137.17	183.37	290.50
$\omega \chi_{c1}$	_	—	26.21	290.63	1391.22
$\omega\chi_{c2}$	_	—	331.52	1289.20	625.68
$\pi^0 \pi^0 J/\psi$	17.02	71.09	287.55	338.48	258.22
$\pi^{0}\pi^{0}\psi(2S)$	0.15	5.21	151.38	279.29	111.66
$\pi^0\psi(2S)$	0.03	0.58	48.16	167.88	370.07
au	180.97	288.55	1146.16	1583.49	3878.69
\sum	17.20	118.87	981.98	2548.85	3047.34

Systematic Uncertainties

Add correction factors to "reduced Luminosity":

$$\mathcal{L}_{red} = \mathcal{L} \sum \mathcal{B} \epsilon \, \alpha_{trk}^n \, \alpha_{\gamma}^m \, \alpha_{veto}$$

 Recalulate *L_{red}* 1000 times and vary parameter within its errors Use standard deviation as systematic uncertainty

Source	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
L	1 %	1 %	1 %	1 %	1 %
Tracking/Photons	0.238	0.174	0.108	0.203	0.108
B	0.058	0.045	0.028	0.051	0.027
$\pi^0\pi^0$ -Veto	0.003	0.016	0.005	0.008	0.002
KinFit	0.030	0.025	0.015	0.030	0.016
PID	0.024	0.081	0.050	0.096	0.050
σ_{sys}	0.279	0.204	0.127	0.239	0.127

ISR Correction

- Using method presented by Ryan at Summer CM 2016
- Number of observed events ($x = E_{ISR}/E_{Beam}$):

$$N = \mathcal{L}\sigma(0)\epsilon(0)\underbrace{\int \frac{\sigma(x)}{\sigma(0)} \frac{\epsilon(x)}{\epsilon(0)} W(x) dx}_{(1+\delta)}$$

Use smallest $(1 + \delta)$ from Breit-Wigner with $\Gamma = 10 \text{ MeV}$

UNIVERSITÄT BOCHUM

Results

- Use cut and count method by W. Rolke et.al.
- Assume poissonian background and gaussian efficiency
- Background determined from MC studies

For
$$\sigma_{obs}$$
: $\mathcal{L}_{red} = \mathcal{L} \sum \mathcal{B}_{ij} \epsilon_{ij}$
For σ_{born} : $\mathcal{L}_{red} = \mathcal{L} (1 + \delta) \frac{1}{|1 - \Pi|^2} \sum \mathcal{B}_{ij} \epsilon_{ij}$

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
n _{data}	0	0	2	5	5
n_{bkg}/ au	0.095	0.412	0.857	1.610	0.786
$\mathcal{L}_{red}/pb^{-1}$	6.324	4.767	2.960	5.517	2.983
σ_{svs}/pb^{-1}	0.279	0.204	0.127	0.239	0.127
$(1+\delta)$	0.636	0.636	0.636	0.636	0.636
$ 1 - \Pi ^{-2}$	1.056	1.054	1.051	1.053	1.055
$\sigma_{obs}(90\%)/\text{pb}$	0.826	0.332	1.506	1.459	2.976
$\sigma_{\it born}(90\%)/{ m pb}$	1.231	0.495	2.254	2.180	4.437

Summary and Outlook

• Determined upper limit for $e^+e^- \rightarrow \eta \, \eta \, J/\psi$

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
$\sigma_{obs}(90\%)/pb$	0.826	0.332	1.506	1.459	2.976
$\sigma_{born}(90\%)/{ m pb}$	1.231	0.495	2.254	2.180	4.437

- Statistics for *Z_c* search too low
- Preparing memo

BACKUP

Multiple Candidates per Event

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
Signal MC (11)	0.034	0.046	0.055	0.053	0.055
Signal MC (14)	0.036	0.039	0.044	0.049	0.057
Signal MC (44)	0.520	0.543	0.473	0.411	0.289

Table: Fraction of events with multiple candidates

Table: Average Number of Candidates per Event

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
Signal MC (11)	1.03	1.05	1.06	1.05	1.06
Signal MC (14)	1.04	1.04	1.05	1.05	1.06
Signal MC (44)	1.85	1.93	1.78	1.68	1.44

Table: Correctness for events with more than one candidate

\sqrt{s}	4.23 GeV	4.26 GeV	4.36 GeV	4.42 GeV	4.60 GeV
Signal MC (11)	0.938	0.952	0.952	0.957	0.954
Signal MC (14)	0.998	0.992	0.980	0.965	0.956
Signal MC (44)	0.863	0.806	0.827	0.821	0.823

