Muon g-2 and EDM

cLFV school July 5-6, 2019 Tsutomu Mibe (IPNS, KEK)

Comparison between SM and a_{μ}

A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

Note that electron g-2 is consistent with the SM.

Comparison of experiments

	BNL-E821	Fermilab-E989	Our experiment
Muon momentum	3.09 GeV/c		300 MeV/c
Lorentz γ	29.3	3	3
Polarization	100%	50%	
Storage field	B = 1.4	B = 3.0 T	
Focusing field	Electric qua	Very weak magnetic	
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37 \ \mu s$		$2.11 \ \mu s$
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}
Number of detected e^-	3.6×10^{9}	_	_
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
(syst.)	280 ppb	100 ppb	<70 ppb
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	_	$1.5 \times 10^{-21} e \cdot cm$
(syst.)	$0.9 imes 10^{-19} e \cdot \mathrm{cm}$	_	$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

Contents

- Spin properties of muon
- Building a magnet from SM
- Measurement of g-2
- Searching for EDM
- Technical advances for higher precision
- Auxiliary measurements with muonium

muon g-2 and EDM measurements

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
BNL E821 approach
 $\gamma = 30 \ (P = 3 \ \text{GeV/c})$
J-PARC approach
 $E = 0 \ \text{at any } \gamma$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B}\right) \right]$$
FNAL E989
J-PARC E34

Momentum

Three steps of g-2 measurement

1. Prepare a polarized muon beam.

2. Store in a magnetic field (muon's spin precesses)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

3. Measure decay positron

BNL & FNAL Experimental Technique

Injection

Injection

Injection efficiency 3-5%

Kicker

- Muons enter 77 mm outside ideal closed orbit with radius 7112 mm
- Muons cross ideal orbit at 90° , angle off by 77 mm/7112 mm pprox 11 mrads
- \Rightarrow Reduce B by \approx 300 Gauss over 4 metres for 149 ns at 100 Hz, 10% homogeneity
 - \bullet Kicker steers muons onto stored orbit with \approx 50 kV, 5000 Amp pulse

Electric quadrupoles

- Use electric quadrupoles for linear restoring force in vertical
- Uniform quadrupole field leads to simple harmonic motion about closed orbit

$$x = x_e + A_x \cos\left(\nu_x \frac{s}{R_0} + \delta_x\right), \ y = A_y \cos\left(\nu_y \frac{s}{R_0} + \delta_y\right)$$

V=~24 kV n =~0.14

Slide by D. Kawall

Beam distribution at storage

Storage magnet

Magnet Reassembly at Fermilab June 2014 - June 2015

Measurement of magnetic field

NMR (Nuclear Magnetic Resonance)

$$\omega_p = \mu_p B$$

Field mapping trolley

(a) NMR Trolley

(b) Distribution of NMR probes over a cross section of the trolley

Magnetic field distribution along the muon beam orbit

The ± 1 ppm uniformity in the average field is obtained with special shimming tools.

Positron detectors

Time distribution of e+ (BNL E821)

21

Pitch and E-field corrections

• Corrections to ω_a determined by calorimeter required because:

(1) Not all muons at magic momentum \Rightarrow not on center orbit \Rightarrow see net electric field (2) Vertical betatron motion: muons pitching up/down out of horizontal plane

$$\vec{\omega}_a \approx \vec{\omega}_S - \vec{\omega}_C = \underbrace{-\frac{e}{m} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \underbrace{\left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]}_{\text{What we want}}$$
Pitch Correction
E-Field Correction

 $+0.27 \pm 0.04 \text{ ppm} +0.47 \pm 0.05 \text{ ppm}$

Relating measurements to g-2

muon spin precession

$$\omega_a = \frac{e}{m_\mu} a_\mu B$$

 $\omega_p = \mu_p B$

- proton spin precession
- muon magnetic moment

$$\mu_{\mu} = g \frac{e}{2m_{\mu}} = (1 + a_{\mu}) \frac{e}{m_{\mu}}$$

$$a_{\mu} = \frac{\frac{\omega_{a}}{\omega_{p}}}{\frac{\omega_{a}}{\omega_{p}} - \frac{\mu_{\mu}}{\mu_{p}}}$$
Magnetic moment ratio
LAMPF(1999)
$$\Delta \left(\frac{\mu_{\mu}}{\mu_{p}}\right) = 120 \ ppb \ (30 \ ppb)$$
direct
Using Δv

$$\pm theory$$

Systematic uncertainties ω_a

TABLE XIV. Systematic errors for ω_a in the R99, R00 and R01 data periods.

$\sigma_{ m syst} \omega_a$	R99 (ppm)	R00 (ppm)	R01 (ppm)
Pileup	0.13	0.13	0.08
AGS background	0.10	0.01	а
Lost muons	0.10	0.10	0.09
Timing shifts	0.10	0.02	а
<i>E</i> -field and pitch	0.08	0.03	а
Fitting/binning	0.07	0.06	а
СВО	0.05	0.21	0.07
Gain changes	0.02	0.13	0.12
Total for ω_a	0.3	0.31	0.21

^aIn R01, the AGS background, timing shifts, E field and vertical oscillations, beam debunching/randomization, binning and fitting procedure together equaled 0.11 ppm.

Systematic uncertainties ω_p

TABLE XI. Systematic errors for the magnetic field for the different run periods.			
Source of errors	R99 [ppm]	R00 [ppm]	R01 [ppm]
Absolute calibration of standard probe	0.05	0.05	0.05
Calibration of trolley probes	0.20	0.15	0.09
Trolley measurements of B_0	0.10	0.10	0.05
Interpolation with fixed probes	0.15	0.10	0.07
Uncertainty from muon distribution	0.12	0.03	0.03
Inflector fringe field uncertainty	0.20		
Others ^a	0.15	0.10	0.10
Total systematic error on ω_p	0.4	0.24	0.17
Muon-averaged field [Hz]: $\tilde{\omega}_p/2\pi$	61791256	61791595	61791400

^aHigher multipoles, trolley temperature and its power supply voltage response, and eddy currents from the kicker.

Result of BNL E821 experiment

A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

Why Fermilab? Statistics!

- ⇒ Brookhaven statistics limited: $a_{\mu}^{\text{BNL}} = 0.001\,165\,920\,89\,(54)_{\text{stat}}\,(33)_{\text{sys}}$
- BNL ± 540 ppb uncertainty on a_{μ} , 9×10^9 events
- \Rightarrow Fermilab goal 2×10^{11} , factor 21

Fermilab Advantages:

- Long decay channel for $\pi \ \Rightarrow \mu$
- \bullet Reduced π and p in ring
- Factor 20 reduction in hadronic flash
- \Rightarrow 4× higher fill frequency than BNL
- Muons per fill about the same
- \Rightarrow 21 times more detected $e^+,~2\times10^{11}$

Cycle length 1.4 sec

21 times more detected e⁺

Estimated systematic uncertainties $\boldsymbol{\omega}_{\mathsf{a}}$

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

Estimated systematic uncertainties ω_p

Source of uncertainty	1999	2000	2001 E989
Systematics of calibration probes	50	50	50 🛁 35
Calibration of trolley probes	200	150	90 🗾 30
Trolley measurements of B_0	100	100	50 🗾 30
Interpolation with fixed probes	150	100	70 🗾 30
Uncertainty from muon distribution	120	30	30 🗾 10
Inflector fringe field uncertainty	200	_	
Time dependent external B fields	_	-	- <table-cell-rows> 5</table-cell-rows>
Others †	150	100	100 🗾 30
Total systematic error on ω_p	400	240	170 🗾 70
Muon-averaged field [Hz]: $\omega_p/2\pi$	$61\ 791\ 256$	61791595	61 791 400 -

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

CERNCOURIER

VOLUME 54 NUMBER 9 NOVEMBER 2014

Celebrations of 60 years of science for peace p28

Meeting honours 50 years of a major discovery p32

FROM AMS

Evidence for a new source of positrons p6

Fermilab E989 experiment

B= 1.45 T

Gel

Photo courtesy of Fermilab E989

Slide by Nam Tran

Muon beam line

History of Fermilab muon g-2 (2009-present)

g-2 Magnet in Cross Section

Slide by Nam Tran, FPCP 2019 (May 6)

Mapping the magnetic field

- Map the magnetic field inside the ring every 3 days
- Fixed probes for continuously monitoring

 Measure field while muons are in ring – 378 probes outside storage region

Trolley matrix of 17 NMR probes

 Measure field in storage region during specialized runs when muons are not being stored

Boston University College of Arts & Sciences

Storage Ring Magnet: Centerpiece of the Experiment

- 682 tons, 4 coils \times 24 windings \times 5200 Amps/winding, 72 poles, B=1.4513 T
- $\mathsf{B} \times \mathsf{gap} \approx \ \mu_0 I \ \Rightarrow 1.45 \ \mathsf{T} \times \ \mathsf{0.2} \ \mathsf{m} \approx 4\pi \times 10^{-7} \times 48 \times 5200 \ \mathsf{Amps}, \ \frac{\Delta B}{B} \approx -\frac{\Delta \mathrm{gap}}{\mathrm{gap}}$
- Oct 2015-Aug 2016: adjustments of pole gaps, tilts, 8000+ fine iron laminations
- B uniformity at \pm 20 ppm level (RMS) \Leftrightarrow gap uniform at 4 micron level over 45 m

Slide by Nam Tran, FPCP 2019 (May 6)

Beam profile measurement

Two tracker stations for monitoring

Slide by Nam Tran, FPCP 2019 (May 6)

Data taking progress

- Finished first physics run, Run 1, in July 2018
 - Field uniformity 2x better than BNL
 - 1.75×10^{10} positrons collected, ~ 2x BNL stats
 - 1.4x BNL after data quality cut, $\delta \omega_a(stat) \sim 350 \text{ ppb}$
 - analysis in progress
- Half way through the Run 2
 - · Improvements: muon flux, kicker strength, overall stability, ...

Slide by Nam Tran, FPCP 2019 (May 6)

ω_a in Run 1

Systematic uncertainties

• BNL/FNAL major systematics (on ω_a)

Source	BNL (ppm)	FNAL goal (ppm)	
Gain changes	0.12	0.02	
Lost muons	0.09	0.02	All related with
Pile up	0.08	0.04	beam quality and characteristics.
СВО	0.07	0.04	
E and pitch	0.05	0.03	Largely suppressed if emittance of muon beam is
Total	0.18	0.07	
			small.

39

- Low emittance muon beam (1/100 of BNL)
- No strong focusing (1/1000) & good injection eff. (x10)
- Compact storage ring (1/20)
- Tracking detector with large acceptance
- Completely different from BNL/FNAL method

detector

Conventional muon beam

Muon beam at J-PARC

Experimental sequence 40ms (25 Hz)

Expected time spectrum of e⁺ in $\mu \rightarrow e^+\nu\nu$ decay

Comparison of experiments

	BNL-E821	Fermilab-E989	Our experiment
Muon momentum	3.09 GeV/c		300 MeV/c
Lorentz γ	29.3	3	
Polarization	100%	50%	
Storage field	B = 1.4	B = 3.0 T	
Focusing field	Electric qua	Very weak magnetic	
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37 \ \mu s$		$2.11 \ \mu s$
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}
Number of detected e^-	3.6×10^{9}	_	_
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
(syst.)	280 ppb	100 ppb	<70 ppb
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	_	$1.5 \times 10^{-21} e \cdot cm$
(syst.)	$0.9 imes 10^{-19} e \cdot \mathrm{cm}$	_	$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

Expected uncertainties

 Table 5. Summary of statistics and uncertainties.

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM [$10^{-21} e \cdot cm$]	1.5 (stat.)
	0.36 (syst.)

Table 6. Estimated systmatic uncertainties on	a_{μ} .
---	-------------

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

J-PARC Facility (KEK/JAEA)

CHIER CALL

Neutrino Beam To Kamioka

Main Ring 30 Gel/A

Bird's eye photo in Feb. 2008

48

Hadron Hall

GeV

nchrotron

Proposed experimental site

Material and Life science Facility in J-PARC

H-line being constructed!

Photo by T. Yamazaki

DeeMe MuSEUM(Mu-HFS) Mu 1S-2S

To g-2/EDM

(1 8 1) 9008-537H

Photo by T. Yamazaki H-line being constructed!

Production of thermal energy muonium

Silica aerogel (SiO₂, 30 mg/cc)

surface

muon beam

Laser-ablated holes

Muonium (µ⁺e⁻)

> Efficiency (measured) $3 \times 10^{-3}/\mu$ (laser region 5mm x 50mm)

Data taken at TRIUMF

8 mm P. Bakule et al., PTEP 103C0 (2013) G. Beer et al., PTEP 091C01 (2014)

Laser ionization of muonium

 $1S \rightarrow 2P \rightarrow unbound$

J-PARC MLF U-line laser system (RIKEN+KEK)

efficiency (calculated) 73% @100uJ

Laser ionization of muonium

J-PARC MLF U-line laser system (RIKEN+KEK)

 $1S \rightarrow 2P \rightarrow unbound$

Laser ionization of muonium (Plan B)

Slide by S. Uetake (Muonium WS in Osaka, Dec. 2018)

Muon LINAC

Phase space distributions after muon LINAC (simulation)

RF acceleration of Mu⁻ for the first time!

RF acceleration of Mu⁻ for the first time!

Next step: re-acceleration to 1 MeV

First measurement of beam bunch structure of accelerated Mu-

Y. Sue (Nagoya)

An accelerating structure (IH-DTL cavity) to 1.3 MeV

Mar 2017, Photo by M. Otani

6

-

-

Design: M. Otani et al., Phys. Rev. AB 19, 040101 (2016)

-

Muon beam injection and storage

Horizontal injection + kicker (BNL E821, FNAL E989)

Inflector Slide by Lee Roberts (1.45T) Injection orbit Central orbit Kicker Storage Modules ring R=711.2cm x_c ≈ 77 mm 9cm β **≈ 10 mrad** B·dl ≈ 0.1 Tm **Electric Quadrupoles**

Injection efficiency : 3-5%(*)

3D spiral injection + kicker (J-PARC E34)

Injection efficiency : ~85%

(*) PRD73,072003 (2006)

H. linuma et al., Nucl. Instr. And Methods. A 832, 51 (2016)

Testing spiral injection with electron beam

Injection angle was changed from 47 to 44 deg.

Master thesis, M. A. Rehman (2017)

Muon storage magnet and detector

Average magnetic field

B-field shimming test with the MuSEUM magnet (1.7 T) at J-PARC

Magneti

HITACHI

怒急連絡先

ミュオンS 下村 浩一即 029-284-4706 090-7238-3470

低温 S 佐々木 意一 029-284-460

Field shimming by iron arrays

Cross calibration of B-field probes

Fermilab Probe

ANL, March 27 2018

J-PARC

Probe

Cross calibration between J-PARC and US NMR probes at ANL (Jan 14- 2019)

MRI magnet Movable stage US **J-PARC** probe probe

Initial results reported in H. Yamaguchi et al., IEEE Trans. on Appl. Sup., 29 9000904 (2019)

Positron tracking detector

750 mm

- Requirements
 - Detection of e+ (100<E<300 MeV)
 - Reconstruction of momentum vector
 - Stability over rate changes
 (1.4 MHz → 14 kHz)
- Specifications
 - Sensor: p-on-n single-sided strip
 - Number of vanes: 40
 - Number of sensors : 640
 - Number of strips : 655,360
 - Area of sensors : 6.24 m²

Positron tracking detector

Assembly (Kyushu + KEK)

Test module (Kyushu + KEK)

Great help from ATLAS and Belle II group at KEK $^{\rm 72}$
Typical event positron track in a 5 ns time window

Track finding at low rate (0.6 track/ns)

Y. Sato

Track finding at high rate (6 track/ns)

EvtNo:0, T = 50 ~ 60

EvtNo:0, E(e+)=104.0 MeV, P(e+) = (-19.4, -102.0, -5.6), Clustered Hits

EvtNo:0, T = 50 ~ 60

EvtNo:0, E(e+)=104.0 MeV, P(e+) = (-19.4, -102.0, -5.6), Clustered Hits

Y. Sato

Reconstruction efficiency

Yamanaka + Sato

Status of R&D and remaining milestones

Level of R&D achievements (%)	0	10	20	30	40	50	60	70	80	06	100	Status Remaining milestones
Beamline & Facility												Done Under construction
Muon Source												(1) Hi-power laser (2) ionization test
Accelerator												(3) Demonstration of low emittance acceleration
High Precision Magnet												Done
Beam Transport												Done
Detector												Done Under construction

Technically-driven schedule and cost

Assumption : Major construction fund becomes available in JFY201X

		compo	onent p	roducti	ion	ass	embly	ins	talla	tion	con	nissionin	g	physic	s run									
Calendar Year	CY2020			CY2021			CY2022				CY2023			CY2024					CY2025					
Japanese Fiscal Year		JF	Y2020	-		JF	Y2021	-		JF	Y2022	8		JFY2023		-	JFY2024			=	JFY2025			
Month	F1	F2	F3	F4	F1	F2	F3	F4	F1	F2	F3	F4	F1	F2	F3	F4	F1	F2	F3	F4	F1	F2	F3	F4
Beamline & Facility																								
12.7 Oku					1																			
Muon Source																								
3.3 Oku																								
Accelerator																								
7.9 Oku																								
High Precision Magnet																								
17.0 Oku																								
Beam Transport																								
1.0 Oku																								
Detector																								
4.3 Oku																								
Data taking																								
(3.8 Oku)																								

Relating measurements to g-2

- muon spin precession $\omega_a = rac{e}{m} a_\mu B$ m_{μ}
- proton spin precession $\omega_p=\mu_p B$
- muon magnetic momentum = $g \frac{e}{2m_{\mu}} = (1 + a_{\mu}) \frac{e}{m_{\mu}}$

(F

$$a_{\mu} = \frac{\frac{\omega_{a}}{\omega_{p}}}{\frac{\omega_{a}}{\omega_{p}} - \frac{\mu_{\mu}}{\mu_{p}}} \xrightarrow{\text{Magnetic moment ratio}}{\left(\frac{\mu_{\mu}}{\mu_{p}}\right) = \frac{120 \text{ } ppb \text{ } (30 \text{ } ppb)}{\text{ direct} \text{ } \text{ using } \Delta v + \text{ theory}}$$

Relating measurements to g-2• muon spin precession $\omega_a = \frac{e}{m_{\mu}} a_{\mu} B$ • proton spin precession $\omega_p = \mu_p B$

muon magnetic moment

 $\mu_e = g_e \frac{c}{2m_e}$

$$a_{\mu} = \frac{\omega_a}{\omega_p} \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

540 ppb (BNL) 140 ppb (Fermilab/J-PARC)

120 ppb (using μ_{μ}/μ_{p}) 22 ppb (using Δv + theory)

Energy spectrum of muonium

Muonium Hyperfine Structure

K. Shimomura

$$\mathcal{H} = h\Delta\nu\mathbf{I}_{\mu}\cdot\mathbf{J} - \mu_{B}^{\mu}g_{\mu}'\mathbf{I}_{\mu}\cdot\mathbf{H} + \mu_{B}^{e}g_{J}\mathbf{J}\cdot\mathbf{H}$$

 Δv_{HFS} : Mu Hyperfine Structure

Zeeman Splitting

Most Precise Test of Bound State QED

QED calculation: Effort for 10 Hz accuracy in progress (by Eides et al.) Progress: PRA 86 (2012) 024501, PRL 112 (2014) 173004, PRD 89 (2014) 014034

Improvement of statistics at J-PARC

• RF power stability

K. Shimomura

MRI Magnet for High-Field Experiment

Sasaki, Yamaguchi, T. Tanaka

Second-hand 2.9 T MRI magnet

CW-NMR Field Monitoring System 18 ppb \rightarrow 5.9 ppb (2017 \rightarrow 2018) $\int_{15}^{20} \int_{15}^{115 \text{ peak}: f = (61717489.8729 \pm 0.018) \text{ ptg}/\sigma = (0.0812 \pm 0.0088) \text{ ptg}}{15 \text{ peak}: f = (61717489.8729 \pm 0.021) \text{ ptg}/\sigma = (0.185 \pm 0.0227) \text{ ptg}}{15 \text{ peak}: f = (61717489.6729 \pm 0.021) \text{ ptg}/\sigma = (0.185 \pm 0.0227) \text{ ptg}}{15 \text{ ptg}/\sigma = (0.185 \pm 0.0227) \text{ ptg}}}$

61717490.3

NMR Peak Frequency [Hz]

61717491.0

61717489.6

RF Cavity for High Field Experiment

Mu 1S-2S (Mu-MASS@PSI)

ETH zürich

Mu-MASS vs RAL(1999) - New essential developments

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2			
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$			
μ^+ beam energy	$4 { m MeV}$	$5 { m keV}$	5 keV			
Temperature M atoms	300 K	100 K	100 K			
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)			
Spectroscopy	Pulsed laser	CW (25 W)	CW (50 W)			
Experimental linewidth	$20 \mathrm{MHz}$	750 kHz	300 kHz			
Laser chirping	$10 \ \mathrm{MHz}$	$0~\mathrm{kHz}$	0 kHz			
Residual Doppler shift uncert.	8.4 MHz	$0 \mathrm{~kHz}$	0 kHz			
2nd-order Doppler shift uncert.	44 kHz	$15~\mathrm{kHz}$	1 kHz (corrected)			
Frequency calibration uncert.	$0.8 \mathrm{~MHz}$	$< 1 \mathrm{~kHz}$	< 1 kHz			
Background events	2.8 events/day	1.6 events/day	1.6 events/day			
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz			
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)			

Improved muonium source (higher yield + lower temperature) Continuous wave laser spectroscopy vs pulsed

Mu 1S-2S (Mu-MASS@PSI)

THzürich

Summary

- Mu-MASS aims at improving 3 orders of magnitude on our current knowledge of the 1S-2S of Muonium
- Feasibility builds on expertise acquired during the last decade: Ps CW laser spectroscopy, cryogenic muonium production, high precision detectors development.
- Project funded by European Research Council: start beginning of 2019.
- First results expected in 2020-2021.

Mu 1S-2S at J-PARC

Proposal in preparation

ELECTRIC DIPOLE MOMENT

Dipole moments

• A pair of spatially separated (electric, magnetic) charges

Particle's electric dipole moment

Quantum theory of the electron (1928)

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 117 (778): 610.

This differs from (1) by the two extra terms

$$rac{eh}{c}(\sigma,\mathbf{H})+rac{ieh}{c}
ho_1(\sigma,\mathbf{E})$$

in F. These two terms, when divided by the factor 2m, can be regarded as the additional potential energy of the electron due to its new degree of freedom. The electron will therefore behave as though it has a magnetic moment eh/2mc. σ and an electric moment ieh/2mc. $\rho_1 \sigma$. This magnetic moment is just that assumed in the spinning electron model. The electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful whether the electric moment has any physical meaning, since the Hamiltonian in (14) that we started from is real, and the imaginary part only appeared when we multiplied it up in an artificial way in order to make it resemble the Hamiltonian of previous theories.

Purcell and Ramsey's letter (1950)

E.M. Purcell and N.F. Ramsey Phys. Rev. 78 (1950)

On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei

E. M. PURCELL AND N. F. RAMSEY Department of Physics, Harvard University, Cambridge, Massachusetts April 27, 1950

 \mathbf{I} T is generally assumed on the basis of some suggestive theoretical symmetry arguments¹ that nuclei and elementary particles can have no electric dipole moments. It is the purpose of this note to point out that although these theoretical arguments are valid when applied to molecular and atomic moments whose electromagnetic origin is well understood, their extension to nuclei and elementary particles rests on assumptions not yet tested.

One form of the argument against the possibility of an electric dipole moment of a nucleon or similar particle is that the dipole's orientation must be completely specified by the orientation of the angular momentum which, however, is an axial vector specifying a direction of circulation, not a direction of displacement as would be required to obtain an electric dipole moment from electrical charges. On the other hand, if the nucleon should spend part of its time asymmetrically dissociated into opposite magnetic poles of the type that Dirac² has shown to be theoretically possible, a circulation of these magnetic poles could give rise to an electric dipole moment. To forestall a possible objection we may remark that this electric dipole would be a polar vector, being the product of the angular momentum (an axial vector) and the magnetic pole strength, which is a pseudoscalar in conformity with the usual convention that electric charge is a simple scalar.

The argument against electric dipoles, in another form, raises directly the question of parity. A nucleon with an electric dipole moment would show an asymptetic between left, and right

- EDM not yet tested
- Ignored due to parity violation (Wu's P-violation experiment was in 1956)
- Possible existence is purely an experimental matter

Ramsey Prize of \$5,000 for the first person, or group to discover non zero EDM of any particle.

"I am personally interested in the EDM tests, since I first proposed them and began looking for them <u>56 years aqo</u>, as tests of P, then T, and then CP. Originally I wanted to be the first person to discover an EDM, but now I at least want to know the answer. I have therefore personally established the time limited " Ramsey Prize of \$5000 for the first person, or group, during my lifetime to announce the convincing discovery of a non zero electric dipole moment for any elementary particle or atomic nucleus." Since I am now <u>91 years old</u>, please hurry. "

Norman Ramsey

International Conference on Atomic Physics, 2006, Innsbruck

Norman Ramsey先生は2011年11月に永眠されました。

After 60 years of original proposal...

Workshop photo, Lepton Moments 2010, Capecod, MA

Scales of CPV sources and EDM

Spin precession in E and B field

Spin precession vector in static E and B fields ($\vec{\beta} \cdot \vec{B} = 0, \vec{\beta} \cdot \vec{E} = 0$) arXiv (reference) $a_u = (g-2)/2$

Fukuyama, Silenko, arXiv:1308.1580 (reference therein)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

Anomalous magnetic moment

EDM

Spin precession in E and B field

Spin precession vector in static E and B fields ($\vec{\beta} \cdot \vec{B} = 0, \vec{\beta} \cdot \vec{E} = 0$) arXiv (reference) $a_{\mu} = (g-2)/2$

Fukuyama, Silenko, arXiv:1308.1580 (reference therein)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

Anomalous magnetic moment

Three experimental approaches

Spin precession vector in static E and B fields ($\vec{\beta} \cdot \vec{B} = 0, \vec{\beta} \cdot \vec{E} = 0$)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

(1) Magic momentum (g-2 + EDM)

$$\gamma = 30 \ (P=3 \ GeV/c)$$

(BNL E821,FNAL)
 $\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$

(2) Zero E-field (g-2 + EDM) $E = 0 \text{ at any } \gamma$ (J-PARC E34) $\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$

(3) Spin frozen (EDM only) $E_r = a_\mu Bc \beta \gamma^2$ to kill g-2 precession

$$\vec{\omega} = -\frac{e}{m}\frac{\eta}{2}\left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right)$$

Three experimental approaches

(1) Magic momentum (g-2 + EDM)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Oscillation with g-2 frequency. Amplitude constrained by g-2

No constraint in amplitude by $g_{2} \rightarrow Better sensitivity_{10}$

The Experiment at BNL

BNL E821 trace-back results

Trace back system

 \rightarrow Direct measurement of vertical decay angle

$N^{\pm}(t) \propto [1 \mp A_{EDM} \sin(\omega t + \phi) + A_{\mu} \cos(\omega t + \phi)]$

E821 EDM results

	Analysis	Mean value	Stat. error	Syst. error	Total error	95% C.L.
	CERN (1978)					
Counting	(μ^+)	8.6	4.0	2.0	4.5	
method	(μ^{-})	0.8	3.8	2.0	4.3	
	Combined $\mu^+\mu^-$	-3.7	2.8	2.0	3.4	10.5
	E821					
	Traceback (μ^+)	0.0	1.6	0.1	1.6	
Counting	FSD (μ^+)	-0.1	0.7	1.2	1.4	
method	PSD (μ^{-})	-0.1	0.3	0.7	0.7	
	Combined $\mu^+\mu^-$	0.0	0.2	0.9	0.9	1.8

Traceback method :

- Better systematic control than counting methods.
- Statistically limited (partial coverage in the ring)

E821 : systematic uncertainties

G. W. BENNETT et al.

PHYSICAL REVIEW D 80, 052008 (2009)

TABLE II. Table of systematic errors from the traceback analysis.

Systematic error	Vertical oscillation amplitude (μ rad lab)	Precession plane tilt (mrad)	False EDM generated 10^{-19} (e cm)
Radial field	0.13	0.04	0.045
Acceptance coupling	0.3	0.09	0.1
Horizontal CBO	0.3	0.09	0.1
No. oscillation phase fit	0.01	0.003	0.0034
Precession period	0.01	0.003	0.0034
Totals	0.44	0.13	0.14

Acceptance / CBO coupled with path length difference (incoming vs outgoing decay)

Future prospect: spin frozen technique

- Initially suggested by Yannis Semertizidis, PRL 93, 052001 (2004)
- Muon spin precesses solely by EDM (cf. pEDM experiment)
- Statistical sensitivity:

$$\sigma(d_{\mu}) = \frac{\hbar}{2c(\gamma\tau)(\beta B)A\sqrt{N}}$$

107

Spin-frozen EDM experiment at J-PARC

- J-PARC LOI 22, A. Silenko et al. (2003)
- B = 0.25 T
- E = 2 MV/m
- R = 7 m
- $NP^2 = 5 \times 10^{16}$ (assume PRISM FFAG)
- sensitivity $\sigma(d_{\mu})=8x10^{-25}$ ecm

Spin-frozen EDM at PSI

- Phys. G, 37 085001 (2010)p = 125 MeV/c
- B = 1 T
- E = 0.64 MV/m
- R = 0.42 m
- $N = 2x \ 10^5/s$
- sensitivity $\sigma(d_{\mu})=5x10^{-23} \text{ ecm }/$ year

Summary

- Muon offers rich physics cases to study beyond the standard model in quantum loops.
- BNL muon g-2 results

– More than 3σ deviation from the SM.

- Fermilab muon g-2 experiment is taking physics run.
- J-PARC muon g-2/EDM experiment is in preparation with completely different method.
- Many new results will come in next 10 years.