Polarization and entanglement in $e^+e^- \rightarrow J/\psi \rightarrow \Lambda\overline{\Lambda}$

Jianyu Zhang June 7, 2019

Outline

- BEPCII and BESIII
- Polarization and CP violation
- Event selection
- Data analysis method
- Results
- Supplementary

BEPCII and **BESIII**

- **BEPCII** is a e^+e^- collider for the studies of light and charm quarks physics and τ -charm physics, which designed peak luminosity is 10^{33} cm⁻²s⁻¹ at about 3.7 GeV.
- The BESIII detector with a geometrical acceptance of 93% of 4π, consists of: main drift chamber(MDC), electromagnetic calorimeter(EMC), Time-Of-Flight system(TOF), and muon chamber system(MUC)

Fig. 1: Structure of BESIII detector

$\Lambda\overline{\Lambda}$ pair produced

Fig. 2: Illustration of the $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$ process. In the CMS, Λ particle is emitted in the \hat{z} direction at an angle θ_{Λ} between the e^- beam direction. The hyperons are polarized in the direction perpendicular to the production plane (\hat{y}).

Polarization

- For a spin \hat{s} particle, the component of polarization is $p_i = <\hat{s_i} >$
- The decay of Λ , the amplitude and angular distribution are:
 - $|M|^2 \sim 1 + \alpha_- \hat{s}_\Lambda \cdot n_p$ • $\frac{dN}{d\Omega} \sim 1 + \alpha_- P_\Lambda \cdot n_p$ • $< n_p^i n_p^j > = \delta^{ij}$
- So the n_p^x , n_p^y , n_p^z are the observables of P_{Λ}^x , P_{Λ}^y , P_{Λ}^z

Polarized Λ produced in e^+e^- annihilation

Phys. Rev.185 D 75, 074026 (2007)

- Joint amplitude: $M = \frac{ie^2}{a^2} j_\mu \bar{u}(p_1) \left(F_1 \gamma_\mu + \frac{F_2}{2m} p_\nu \sigma^{\nu\mu} \gamma_5\right) v(p_2)$
- Differential cross section:

$$\frac{d\sigma}{1 + \alpha_{\psi}\cos^{2}\theta_{\Lambda} + (\alpha_{\psi} + \cos^{2}\theta_{\Lambda})s_{\Lambda}^{z}s_{\Lambda}^{z}} + \frac{d\sigma}{1 + \alpha_{\psi}^{x}s_{\Lambda}^{x}s_{\Lambda}^{x} - \alpha_{\psi}\sin^{2}\theta_{\Lambda}s_{\Lambda}^{y}s_{\Lambda}^{y} + \sqrt{1 - \alpha_{\psi}^{2}\cos\Delta\Phi\sin\theta_{\Lambda}\cos\theta_{\Lambda}(s_{\Lambda}^{x}s_{\Lambda}^{z} + s_{\Lambda}^{z})} + \sqrt{1 - \alpha_{\psi}^{2}\sin\Delta\Phi\sin\theta_{\Lambda}\cos\theta_{\Lambda}(s_{\Lambda}^{y} + s_{\Lambda}^{y})}$$

• Only $\langle s^{y} \rangle$ could be non-zero, if $\sin \Delta \Phi \neq 0$

Joint angular distribution

Physics Letters B 772(2017) 16–20

The differential-cross-section distribution: $d\sigma \propto \mathcal{W}(\boldsymbol{\xi}) d\cos\theta \ d\Omega_1 d\Omega_2$.

$$W\left(\xi;\alpha_{J/\psi},\Delta\Phi,\alpha_{-},\alpha_{+}\right) = 1 + \alpha_{J/\psi}\cos^{2}\theta_{\Lambda} + \alpha_{-}\alpha_{+}\left[\sin^{2}\theta_{\Lambda}\left(n_{1,x}n_{2,x} - \alpha_{J/\psi}n_{1,y}n_{2,y}\right) + \left(\cos^{2}\theta_{\Lambda} + \alpha_{J/\psi}\right)n_{1,z}n_{2,z}\right] + \alpha_{-}\alpha_{+}\sqrt{1 - \alpha_{J/\psi}^{2}}\cos(\Delta\Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}\left(n_{1,x}n_{2,z} + n_{1,z}n_{2,x}\right) + \sqrt{1 - \alpha_{J/\psi}^{2}}\sin(\Delta\Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}\left(\alpha_{-}n_{1,y} + \alpha_{+}n_{2,y}\right)$$

$$\boldsymbol{\xi} = (\hat{n}_1, \hat{n}_2) \qquad \qquad \boldsymbol{\alpha}_{-} = \alpha(\Lambda \to p\pi^{-}) \qquad \qquad \boldsymbol{\alpha}_{+} = \alpha(\overline{\Lambda} \to \overline{p}\pi^{+})$$

For $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{n}\pi^0$: $\alpha_+ \to \overline{\alpha}_0(\overline{\Lambda} \to \overline{n}\pi^0)$

Polarization and CP violation

• Polarization:
$$P_y(\cos\theta_{\Lambda}) = \frac{\sqrt{1-\alpha_{\psi}^2 \sin\Delta\Phi\sin\theta_{\Lambda}\cos\theta_{\Lambda}}}{1+\alpha_{\psi}\cos^2\theta_{\Lambda}}$$

• CP violation: $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$

Event selection

For $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+$:

- Using four charged track to reconstruct $\Lambda\overline{\Lambda}$
- Applying a four-constraint kinematic fit on $\Lambda\overline{\Lambda}$ hypothesis

For $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{n}\pi^0$:

- $\overline{\Lambda}$ is reconstructed by $\overline{n}\pi^0$
- A one-constraint kinematic fit is performed because the momentum of \overline{n} is unmeasured.

Fig. 3: An example $J/\psi \rightarrow (\Lambda \rightarrow p\pi^{-})(\overline{\Lambda} \rightarrow \overline{p}\pi^{+})$ event in the BESIII detector.

Data analysis method

Maximum likelihood fit:

• Likelihood function:

$$\mathcal{L} = \prod_{i=1}^{N} \mathcal{P}(\xi^{i}; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) = \prod_{i=1}^{N} CW(\xi^{i}; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) \epsilon(\xi^{i}),$$

• Normalization factor:

$$\mathcal{C}^{-1} = \frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}} \mathcal{W}(\xi^j; \alpha_{\psi}, \Delta \Phi, \alpha_-, \alpha_+) \epsilon(\xi^j)$$

• Minimum function: $S = -\ln \mathcal{L}_{data} + \ln \mathcal{L}_{bg}$

λI

Analysis results

• A clear polarization:

$$\mu(\cos\theta_{\Lambda}) = \frac{m}{N} \sum_{i=1}^{N_{k}} (n_{1,y}^{(i)} - n_{2,y}^{(i)}) = \frac{\alpha_{-} - \alpha_{2}}{2} \frac{1 + \alpha_{\psi} \cos^{2}\theta_{\Lambda}}{3 + \alpha_{\psi}} P_{y}(\theta_{\Lambda})$$

$$\Delta \Phi = (42.4 \pm 0.6 \pm 0.5)^{\circ}$$

• CP violation:

 $A_{CP} = -0.006 \pm 0.012 \pm 0.007$

Fig. 4: The polarization signal for $\Lambda(\Lambda)$ in $e^+e^- \rightarrow J/\psi \rightarrow \Lambda\overline{\Lambda}$

Analysis results

Table 1 | Summary of the results

Parameters	This work	Previous results		
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 (ref. ¹⁴)		
$\Delta \Phi$	$42.4 \pm 0.6 \pm 0.5^{\circ}$	-		
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642±0.013 (ref. 6)		
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71±0.08 (ref. ⁶)		
$\overline{\alpha}_{0}$	$-0.692 \pm 0.016 \pm 0.006$	-		
A _{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 (ref. ⁶)		
$\overline{\alpha}_0 / \alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-		

Parameters: $J/\psi \rightarrow \Lambda \overline{\Lambda}$ angular distribution parameter $\alpha_{\psi'}$ helicity phase $\Delta \Phi$, asymmetry parameters for the $\Lambda \rightarrow p\pi^-(\alpha_-)$, $\overline{\Lambda} \rightarrow \overline{p}\pi^+(\alpha_+)$ and $\overline{\Lambda} \rightarrow \overline{n}\pi^0(\overline{\alpha}_0)$ decays, CP asymmetry A_{CP} and ratio $\overline{\alpha}_0/\alpha_+$. The first uncertainty is 1s.d. statistical, and the second is systematic, calculated as described in the Methods.

The measurement of helicity phase $\Delta \Phi$ is firstly.

The value of α_{-} is $17 \pm 3\%$ higher than the current world average.

Supplementary

Background analysis

Fig (supplementary) 1: Identification of $J/\psi \to \Lambda \overline{\Lambda}$, $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+$

Background analysis

Fig (supplementary) 2: Identification of $J/\psi \to \Lambda \overline{\Lambda}$, $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{n}\pi^0$

Systematic uncertainties

Source	α_{ψ}	α_{-}	α_+	$\bar{\alpha}_0$	$\Delta \Phi$
Tracking, π^0 , $ar{n}$	1.5	0.1	0.3	0.6	1.1
Kinematic fit	0.2	0.1	0.8	0.6	0.0
Fit method	0.0	0.5	0.4	0.4	0.1
Total	1.5	0.5	0.9	0.8	1.1

Table (supplementary) 1: Relative systematic uncertainties (in %) for the measurements of parameters $\alpha_{\psi}, \alpha_{-}, \alpha_{+}, \overline{\alpha_{0}}$, and $\Delta \Phi$.