Flavor Changing Neutral Current transitions in Warped Extra Dimension

Faisal Munir Bhutta

Institute of Theoretical Physics, Beijing University of Technology

October 19, 2018

北京工业大学理论物理研究所 Institute of Theoretical Physics BJUT

Outline

Motivations

- Introduction to the RS model and its variants
- (3) Wrong sign $b \rightarrow ss\bar{d}$ and $b \rightarrow dd\bar{s}$ transitions
- $\textcircled{9} \ \overline{B}{}^0 \to K^+\pi^- \text{ decay in the RS models}$
- (5) $\Lambda_b \to \Lambda(\to p\pi^-)\mu^+\mu^-$ decay in the RS_c model

6 Summary

Motivations I

- Need to go beyond the SM
- Hierarchies
 - \star Gauge hierarchy problem : $M_{\rm EW} \ll M_{\rm Pl}$
 - \star SM flavor puzzle : $m_e \ll m_t$
- The Randall-Sundrum model is among few proposals which can solve both issues.
- Interesting solutions by considering fifth dimension and a warped metric (warped extra dimension).
- Search for the Warped Extra Dimension
- Direct Search: Find KK resonances
- Indirect Search: Flavor Phenomenology of the RS model

Motivations II

- Rare B-meson and Λ_b -baryon decays induced by FCNC transitions.
- Radiative and semi-leptonic *B*-meson decays in RS model.

[Burdman, 2004; Agashe *et al.*, 2005; Casagrande *et al.*, 2008; Blanke *et al.*, 2009; Bauer *et al.*, 2010; Blanke *et al.*, 2012; Biancofiore *et al.*, 2014]

• Alternative approach: Highly suppressed wrong-sign Kaon decays.

[Huitu, Lü, Singer, Zhang, Phys. Rev. Lett. 81, 4313 (1998)]

- Wrong-sign Kaon decays are $\Delta S = -1(b \rightarrow dd\bar{s})$ and $\Delta S = +2(b \rightarrow ss\bar{d})$ transitions in the SM which are highly suppressed compared to the Right-sign Kaon decays which are $\Delta S = 0$ and $\Delta S = +1$ transitions.
- Inclusive $b \to dd\bar{s}$ and $b \to ssd$ decays studies in different beyond SM scenarios. [Huitu et al., 1999; Wu et al., 2004; Cai et al., 2004; Fajfer et al., 2006]
- Exclusive doubly weak decays studies in various NP models. [Faifer et al., 2000; Faifer et al., 2001; Chun et al., 2003; Faifer et al., 2006; Pirjol et al., 2010]
- Only three body modes are searched in the experiments. Two body exclusive decays never suggested before. Why?
- $\overline{B}{}^0 \to K^+\pi^-$ decay never studied before. Experimentally measureable by observing deviations in the B^0 - $\overline{B}{}^0$ mixing oscillation curve in the study of time dependent decay of $B^0 \to K^+\pi^-$ with large experimental data.
- Impact of RS model with tree level FCNCs on the doubly weak rare hadronic B-meson decays and on semi-leptonic Λ_b -baryon decays.

F. Munir (BJUT)

Introduction to the Randall-Sundrum model

5D spacetime with warped metric

$$ds^{2} = e^{-2kr|\phi|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - r^{2} d\phi^{2}, \quad \phi \in [-\pi, \pi]$$

[Randall, Sundrum, Phys. Rev. Lett. 83, 3370 (1999)]

 The fundamental scale is M_{PI}, and the effective 4D electroweak scale emerges through the warped factor

$$M_{
m EW} \sim e^{-kr\pi} M_{
m Pl} \sim {
m TeV}$$

- natural explanation of gauge hierarchy problem.
- Kaluza-Klein (KK) excitations live close to the IR brane.

Solution to the flavor problem and flavor implications

The profiles of zero mode fermions depend heavily on bulk mass parameter c

 $f^{(0)}(y,c) \propto e^{(\frac{1}{2}-c)ky}$

c > 1/2: Localized near UV brane c < 1/2: Localized near IR brane

- Hierarchical structure can be naturally generated.
 - Light fermions live close to UV brane.
 - Third generation localized closest to the IR brane.

 $m_{ij} \propto \upsilon(Y_{u,d}^{(5D)})_{ij}f(c_{Q_i})f(c_{u_j,d_j})$

- Warped extra dimension with bulk fields have explanation for fermion masses and CKM hierarchies.
- Couplings involve overlap integrals of profiles, so different SM fermion profiles lead to flavour non-universal couplings of KK gauge bosons.
- Rotation to the fermion mass basis generates tree level FCNCs.
- New tree level FCNC effects strongly suppressed for light SM fermions by RS-GIM mechanism.

F. Munir (BJUT)

New Physics

c > 1/2

The RS model with Custodial protection

• The RS_c model is based on a single warped extra dimension with the bulk gauge group

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times P_{LR}$

The Only free parameter coming from space-time geometry

 $M_{
m KK}\equiv ke^{-k\pi r}\sim {\cal O}(
m TeV)$

- SM matter fields and gauge bosons are allowed to propage in the bulk while the Higgs sector is localized on the IR brane.
- Discrete P_{LR} symmetry interchanging the two SU(2)_{L,R} provide the custodial protection of Zb_L b
 _L coupling.
- The mass of the lowest Kaluza-Klein (KK) states is $M_{q^{(1)}} \approx 2.45 M_{\rm KK}$.
- The mixing among zero modes and higher KK modes of neutral gauge bosons give rise to new heavy electroweak Z_H and Z' gauge bosons.

The bulk-Higgs RS model

• The bulk-Higgs RS model is based on a single warped extra dimension with the bulk gauge group

 $SU(3)_c \times SU(2)_V \times U(1)_Y$

- All the fields in SM including matter fields, gauge bosons as well as Higgs boson are allowed to propagate in the 5D spacetime.
- We consider the summation over the contributions from the entire KK towers, with the lightest KK states having mass $M_{a^{(1)}} \approx 2.45 \ M_{\rm KK}$.
- Mixing among the Goldstone bosons $\varphi^{\pm}, \varphi^{3}$ and the fifth components of the gauge fields give rise to additional KK towers of physical scalars known as the extended scalar sector.

$b \rightarrow ssd$ and $b \rightarrow dd\bar{s}$ transitions in the SM

• Local $\Delta S=2$ SM effective Hamiltonian for $b
ightarrow ssar{d}$ transition

$$\mathcal{H}_{\text{eff}}^{\Delta S=2} = \frac{G_F^2 m_W^2}{4\pi^2} \left(V_{td} \, V_{ts}^* \, V_{tb} \, V_{ts}^* S_0 \left(\frac{m_l^2}{m_W^2} \right) + \, V_{cd} \, V_{cs}^* \, V_{tb} \, V_{ts}^* S_0 \left(\frac{m_c^2}{m_W^2} , \frac{m_l^2}{m_W^2} \right) \right) \left[\left(\bar{s}_L^i \gamma^\mu \, b_L^i \right) \left(\bar{s}_L^j \gamma_\mu \, d_L^j \right) \right] \left(\bar{s}_L^i \gamma^\mu \, b_L^i \right) \left(\bar{s}_L^i \gamma^\mu \, b_L^i \gamma^\mu \, b_L^i \right) \left(\bar{s}_L^i \gamma^\mu$$

• Local $\Delta S = -1$ SM effective Hamiltonian for $b o dd\bar{s}$ transition $s \leftrightarrow d$

$$\mathcal{B}(b \to ss\bar{d})_{\rm SM} = (2.19 \pm 0.38) \times 10^{-12}$$
$$\mathcal{B}(b \to dd\bar{s})_{\rm SM} = (2.24 \pm 0.41) \times 10^{-14}$$

• $b \rightarrow ss\bar{d}$ and $b \rightarrow dd\bar{s}$ decays with very small strengths in the SM serve as a sensitive probe for new physics searches.

$$\mathcal{B}(B^+ \to K^+ K^+ \pi^-) < 1.1 \times 10^{-8}$$

$$\mathcal{B}(B^+ \to \pi^+ \pi^+ K^-) < 4.6 \times 10^{-8}$$

[R. Aaij et al. (LHCb), Phys. Lett. B765, 307 (2017)]

$b \rightarrow ssd$ decay in the RS_c model

• $b \rightarrow ss\bar{d}$ decay receives tree level contributions from the Kaluza-Klein (KK) gluons, the heavy KK photons, new heavy electroweak (EW) gauge bosons Z_H and Z', and in principle the Z boson.

 $M_{\mathcal{G}^{(1)}} = M_{Z_H} = M_{Z'} = M_{A^{(1)}} \equiv M_{q^{(1)}} pprox 2.45 \ M_{\mathrm{KK}}$

• Custodial protection of the $Zb_L \bar{b}_L$ coupling through the discrete P_{LR} symmetry renders tree-level Z contributions negligible.

$$\begin{split} [\mathcal{H}_{\text{eff}}^{\Delta S=2}]_{\text{KK}} &= \frac{1}{(M_{g^{(1)}})^2} [C_1^{VLL} \mathcal{Q}_1^{VLL} + C_1^{VRR} \mathcal{Q}_1^{VRR} \\ &\quad + C_1^{LR} \mathcal{Q}_1^{LR} + C_2^{LR} \mathcal{Q}_2^{LR} + C_1^{RL} \mathcal{Q}_1^{RL} + C_2^{RL} \mathcal{Q}_2^{RL}]. \end{split}$$

$$\mathcal{Q}_1^{VLL} &= (\bar{s}\gamma_{\mu} P_L b)(\bar{s}\gamma^{\mu} P_L d), \qquad \mathcal{Q}_1^{VRR} = (\bar{s}\gamma_{\mu} P_R b)(\bar{s}\gamma^{\mu} P_R d) \\ \mathcal{Q}_1^{LR} &= (\bar{s}\gamma_{\mu} P_L b)(\bar{s}\gamma^{\mu} P_R d), \qquad \mathcal{Q}_1^{RL} = (\bar{s}\gamma_{\mu} P_R b)(\bar{s}\gamma^{\mu} P_L d) \\ \mathcal{Q}_2^{LR} &= (\bar{s}P_L b)(\bar{s}P_R d), \qquad \mathcal{Q}_2^{RL} = (\bar{s}P_R b)(\bar{s}P_L d). \end{split}$$

$$\begin{split} & [\Delta C_1^{VLL}(M_{g(1)})]^{ZH,Z'} = [\Delta_L^{sb}(Z^{(1)})\Delta_L^{sd}(Z^{(1)}) + \Delta_L^{sb}(Z_X^{(1)})\Delta_L^{sd}(Z_X^{(1)})], \\ & [\Delta C_1^{VRR}(M_{g(1)})]^{ZH,Z'} = [\Delta_R^{sb}(Z^{(1)})\Delta_R^{sd}(Z^{(1)}) + \Delta_R^{sb}(Z_X^{(1)})\Delta_R^{sd}(Z_X^{(1)})], \\ & [\Delta C_1^{LR}(M_{g(1)})]^{ZH,Z'} = [\Delta_L^{sb}(Z^{(1)})\Delta_R^{sd}(Z^{(1)}) + \Delta_L^{sb}(Z_X^{(1)})\Delta_R^{sd}(Z_X^{(1)})], \\ & [\Delta C_1^{RL}(M_{g(1)})]^{ZH,Z'} = [\Delta_R^{sb}(Z^{(1)})\Delta_L^{sd}(Z^{(1)}) + \Delta_R^{sb}(Z_X^{(1)})\Delta_R^{sd}(Z_X^{(1)})], \end{split}$$

$$\begin{split} &[C_1^{VLL}(M_{g(1)})]^{\mathcal{G}^{(1)}} = 1/3[\Delta_k^{sb}(\mathcal{G}^{(1)})][\Delta_k^{sd}(\mathcal{G}^{(1)})], \\ &[C_1^{VRR}(M_{g(1)})]^{\mathcal{G}^{(1)}} = 1/3[\Delta_R^{sb}(\mathcal{G}^{(1)})][\Delta_R^{sd}(\mathcal{G}^{(1)})], \\ &[C_1^{LR}(M_{g(1)})]^{\mathcal{G}^{(1)}} = -1/6[\Delta_k^{sb}(\mathcal{G}^{(1)})][\Delta_R^{sd}(\mathcal{G}^{(1)})], \\ &[C_2^{LR}(M_{g(1)})]^{\mathcal{G}^{(1)}} = -[\Delta_k^{sb}(\mathcal{G}^{(1)})][\Delta_R^{sd}(\mathcal{G}^{(1)})], \\ &[C_1^{LL}(M_{g(1)})]^{\mathcal{G}^{(1)}} = -1/6[\Delta_R^{sb}(\mathcal{G}^{(1)})][\Delta_k^{sd}(\mathcal{G}^{(1)})], \\ &[C_2^{RL}(M_{g(1)})]^{\mathcal{G}^{(1)}} = -[\Delta_R^{sb}(\mathcal{G}^{(1)})][\Delta_L^{sd}(\mathcal{G}^{(1)})], \end{split}$$

$$\begin{split} & [\Delta C_1^{VLL}(M_{g(1)})]^{A^{(1)}} = [\Delta_L^{sb}(A^{(1)})][\Delta_L^{sd}(A^{(1)})], \\ & [\Delta C_1^{VRR}(M_{g(1)})]^{A^{(1)}} = [\Delta_R^{sb}(A^{(1)})][\Delta_R^{sd}(A^{(1)})], \\ & [\Delta C_1^{LR}(M_{g(1)})]^{A^{(1)}} = [\Delta_L^{sb}(A^{(1)})][\Delta_R^{sd}(A^{(1)})], \\ & [\Delta C_1^{RL}(M_{g(1)})]^{A^{(1)}} = [\Delta_R^{sb}(A^{(1)})][\Delta_L^{sd}(A^{(1)})], \end{split}$$

 $b \rightarrow s s \bar{d}$ decay in the RS $_c$ model

 $b \rightarrow ssd$ decay in the RS $_c$ model

$$\begin{split} C_1^{VLL}(M_{g^{(1)}}) &= [0.333 + 0.01 + 0.28] \widetilde{\Delta}_L^{sb} \widetilde{\Delta}_L^{sd} = 0.623 \widetilde{\Delta}_L^{sb} \widetilde{\Delta}_L^{sd}, \\ C_1^{VRR}(M_{g^{(1)}}) &= [0.333 + 0.01 + 0.49] \widetilde{\Delta}_R^{sb} \widetilde{\Delta}_R^{sd} = 0.833 \widetilde{\Delta}_R^{sb} \widetilde{\Delta}_R^{sd}, \\ C_1^{LR}(M_{g^{(1)}}) &= [-0.167 + 0.01 + 0.28] \widetilde{\Delta}_L^{sb} \widetilde{\Delta}_R^{sd} = 0.123 \widetilde{\Delta}_L^{sb} \widetilde{\Delta}_R^{sd}, \\ C_1^{RL}(M_{g^{(1)}}) &= [-0.167 + 0.01 + 0.28] \widetilde{\Delta}_R^{sb} \widetilde{\Delta}_L^{sd} = 0.123 \widetilde{\Delta}_R^{sb} \widetilde{\Delta}_R^{sd}, \end{split}$$

• After renormalization group running of the Wilson coefficients to a low energy scale $\mu_b = 4.6 \text{ GeV}$, the decay width in the RS_c model

$$\begin{split} \Gamma_{\text{RS}_c} &= \frac{m_b^5}{3072(2\pi)^3 (M_{g^{(1)}})^4} [16(|C_1^{VLL}(\mu_b)|^2 + |C_1^{VRR}(\mu_b)|^2) \\ &+ 12(|C_1^{LR}(\mu_b)|^2 + |C_1^{RL}(\mu_b)|^2) + 3(|C_2^{LR}(\mu_b)|^2 + |C_2^{RL}(\mu_b)|^2) \\ &- 2\mathcal{R}e(C_1^{LR}(\mu_b)C_2^{*LR}(\mu_b) + C_2^{LR}(\mu_b)C_1^{*LR}(\mu_b) \\ &+ C_1^{RL}(\mu_b)C_2^{*RL}(\mu_b) + C_2^{RL}(\mu_b)C_1^{*RL}(\mu_b))]. \end{split}$$

$b \rightarrow s s \bar{d}$ decay in the bulk-Higgs RS model

We start with the effective Hamiltonian

$$\begin{split} [\mathcal{H}_{\text{eff}}^{\Delta S=2}]_{\text{KK}} &= \sum_{n=1}^{5} [C_n \mathcal{O}_n + \widetilde{C}_n \widetilde{\mathcal{O}}_n], \\ \mathcal{O}_1 &= (\bar{s}_L \gamma_\mu b_L) (\bar{s}_L \gamma^\mu d_L), \\ \mathcal{O}_2 &= (\bar{s}_R b_L) (\bar{s}_R d_L), \\ \mathcal{O}_3 &= (\bar{s}_R^\alpha b_L^\beta) (\bar{s}_R^\beta d_L^\alpha), \end{split} \qquad \begin{array}{l} \mathcal{O}_4 &= (\bar{s}_R b_L) (\bar{s}_L d_R), \\ \mathcal{O}_5 &= (\bar{s}_R^\alpha b_L^\beta) (\bar{s}_L^\beta d_R^\alpha). \end{split}$$

$$\begin{split} C_1 &= \frac{4\pi L}{M_{\rm KK}^2} (\widetilde{\Delta}_D)_{23} \otimes (\widetilde{\Delta}_D)_{21} [\frac{\alpha_s}{2} (1 - \frac{1}{N_c}) + \alpha Q_d^2 + \frac{\alpha}{s_w^2 c_w^2} (T_3^d - Q_d s_w^2)^2], \\ \widetilde{C}_1 &= \frac{4\pi L}{M_{\rm KK}^2} (\widetilde{\Delta}_d)_{23} \otimes (\widetilde{\Delta}_d)_{21} [\frac{\alpha_s}{2} (1 - \frac{1}{N_c}) + \alpha Q_d^2 + \frac{\alpha}{s_w^2 c_w^2} (-Q_d s_w^2)^2], \\ C_4 &= -\frac{4\pi L \alpha_s}{M_{\rm KK}^2} (\widetilde{\Delta}_D)_{23} \otimes (\widetilde{\Delta}_d)_{21} - \frac{L}{\pi \beta M_{\rm KK}^2} (\widetilde{\Omega}_d)_{23} \otimes (\widetilde{\Omega}_D)_{21}, \\ \widetilde{C}_4 &= -\frac{4\pi L \alpha_s}{M_{\rm KK}^2} (\widetilde{\Delta}_d)_{23} \otimes (\widetilde{\Delta}_D)_{21} - \frac{L}{\pi \beta M_{\rm KK}^2} (\widetilde{\Omega}_D)_{23} \otimes (\widetilde{\Omega}_d)_{21}, \\ C_5 &= \frac{4\pi L}{M_{\rm KK}^2} (\widetilde{\Delta}_D)_{23} \otimes (\widetilde{\Delta}_d)_{21} [\frac{\alpha_s}{N_c} - 2\alpha Q_d^2 + \frac{2\alpha}{s_w^2 c_w^2} (T_3^d - Q_d s_w^2) (Q_d s_w^2)], \\ \widetilde{C}_5 &= \frac{4\pi L}{M_{\rm KK}^2} (\widetilde{\Delta}_d)_{23} \otimes (\widetilde{\Delta}_D)_{21} [\frac{\alpha_s}{N_c} - 2\alpha Q_d^2 + \frac{2\alpha}{s_w^2 c_w^2} (T_3^d - Q_d s_w^2) (Q_d s_w^2)]. \end{split}$$

F. Munir (BJUT)

$b \to ssd$ decay in the bulk-Higgs RS model

$$\begin{split} (\widetilde{\Delta}_{D})_{23} &\otimes (\widetilde{\Delta}_{d})_{21} \to (U_{d}^{\dagger})_{2i}(U_{d})_{i3}(\widetilde{\Delta}_{Dd})_{ij}(W_{d}^{\dagger})_{2j}(W_{d})_{j1}, \\ &\qquad (\widetilde{\Delta}_{Dd})_{ij} = \frac{F^{2}(c_{Q_{i}})}{3 + 2c_{Q_{i}}} \frac{3 + c_{Q_{i}} + c_{d_{j}}}{2(2 + c_{Q_{i}} + c_{d_{j}})} \frac{F^{2}(c_{d_{j}})}{3 + 2c_{d_{j}}}, \\ &\qquad (\widetilde{\Omega}_{D})_{23} \otimes (\widetilde{\Omega}_{d})_{21} \to (U_{d}^{\dagger})_{2i}(W_{d})_{j3}(\widetilde{\Omega}_{Dd})_{ijkl}(W_{d}^{\dagger})_{2k}(U_{d})_{l1}, \\ &\qquad (\widetilde{\Omega}_{Dd})_{ijkl} = \frac{\pi(1 + \beta)}{4L} \frac{F(c_{Q_{i}})F(c_{d_{j}})}{2 + \beta + c_{Q_{i}} + c_{d_{j}}} \frac{(Y_{d})_{ij}(Y_{d}^{\dagger})_{kl}}{1} \\ &\qquad \times \frac{(4 + 2\beta + c_{Q_{i}} + c_{d_{j}} + c_{d_{k}} + c_{Q_{l}})}{4 + c_{Q_{i}} + c_{d_{k}} + c_{Q_{l}}} \frac{F(c_{d_{k}})F(c_{Q_{l}})}{2 + \beta + c_{d_{k}} + c_{Q_{l}}} \end{split}$$

• The decay width in the bulk-Higgs RS model

$$\begin{split} \Gamma_{\mathrm{KK}} &= \frac{m_b^5}{3072(2\pi)^3} [64(|C_1(\mu_b)|^2 + |\widetilde{C}_1(\mu_b)|^2) \\ &+ 12(|C_4(\mu_b)|^2 + |\widetilde{C}_4(\mu_b)|^2 + |C_5(\mu_b)|^2 + |\widetilde{C}_5(\mu_b)|^2) \\ &+ 4\mathcal{R}e(C_4(\mu_b)C_5^*(\mu_b) + C_4^*(\mu_b)C_5(\mu_b) \\ &+ \widetilde{C}_4(\mu_b)\widetilde{C}_5^*(\mu_b) + \widetilde{C}_4^*(\mu_b)\widetilde{C}_5(\mu_b))]. \end{split}$$

F. Munir (BJUT)

$\overline{B}{}^0 \rightarrow K^+ \pi^-$ decay in the Standard Model

 $\mathcal{H}^{\rm SM} = \, C^{\rm SM}[(\bar{d}^{\alpha}_L \gamma^{\mu} b^{\alpha}_L)(\bar{d}^{\beta}_L \gamma_{\mu} s^{\beta}_L)],$

 $\mathcal{A}^{\rm SM} = F_{a1}[\frac{4}{3}C^{\rm SM}] + \mathcal{M}_{a1}[C^{\rm SM}],$

$$\begin{split} F_{a1} &= 4\pi C_F m_B^2 f_B \int_0^1 dx_2 dx_3 \int_0^\infty b_2 db_2 b_3 db_3 \Big[\Big\{ x_3 \phi_K^A(x_2) \phi_\pi^A(x_3) + 2r_\pi r_K \phi_K^P(x_2) \Big[\left(\phi_\pi^P(x_3) - \phi_\pi^T(x_3) \right) \\ &+ x_3 \left(\phi_\pi^P(x_3) + \phi_\pi^T(x_3) \right) \Big] \Big\} E_a(t_a) h_a(x_2, x_3, b_2, b_3) S_t(x_3) - \Big\{ (1 - x_2) \phi_K^A(x_2) \phi_\pi^A(x_3) + 4r_\pi r_K \phi_K^P(x_2) \phi_\pi^P(x_3) \\ &- 2r_\pi r_K x_2 \phi_\pi^P(x_3) \left(\phi_K^P(x_2) - \phi_K^T(x_2) \right) \Big\} E_a(t_b) h_b(x_2, x_3, b_2, b_3) S_t(x_2) \Big], \\ \mathcal{M}_{a1} &= 8\pi C_F \frac{\sqrt{2N_c}}{N_c} m_B^2 \int_0^1 dx_1 dx_2 dx_3 \int_0^\infty b_1 db_1 b_3 db_3 \phi_B \Big[\Big\{ (1 - x_2) \phi_K^A(x_2) \phi_\pi^A(x_3) + r_\pi r_K \Big[(1 - x_2) (\phi_K^P(x_2) - \phi_K^T(x_2)) \\ &\times (\phi_\pi^P(x_3) + \phi_\pi^T(x_3)) + x_3 (\phi_K^P(x_2) + \phi_K^T(x_2)) (\phi_\pi^P(x_3) - \phi_\pi^T(x_3)) \Big] \Big\} E_a'(t_c) h_c(x_1, x_2, x_3, b_1, b_3) \\ &- \Big\{ x_3 \phi_K^A(x_2) \phi_\pi^A(x_3) + r_\pi r_K \Big[4 \phi_K^P(x_2) \phi_\pi^T(x_3) - (1 - x_3) (\phi_K^P(x_2) - \phi_K^T(x_2)) (\phi_\pi^P(x_3) + \phi_\pi^T(x_3)) \\ &- x_2 (\phi_K^P(x_2) + \phi_K^T(x_2)) (\phi_\pi^P(x_3) - \phi_\pi^T(x_3)) \Big] \Big\} E_a'(t_d) h_d(x_1, x_2, x_3, b_1, b_3) \Big], \end{split}$$

$$\mathcal{B}(\overline{B}{}^0 \to K^+\pi^-)^{\mathrm{SM}} = 1.0 \times 10^{-19}$$

F. Munir (BJUT)

$\overline{B}{}^0 \rightarrow K^+ \pi^-$ decay in the RS_c model

$$\begin{array}{c} b \\ \bar{B} \\ d \\ \bar{B} \\ d \\ \bar{S} \\ \bar{S}$$

$$\begin{split} \mathcal{H}_{\text{eff}}]_{\text{RS}_c} &= \frac{1}{[M_{g^{(1)}}]^2} [C_1^{VLL} \mathcal{O}_1 + C_1^{VRR} \widetilde{\mathcal{O}}_1 + C_4^{LR} \mathcal{O}_4 + C_4^{RL} \widetilde{\mathcal{O}}_4 \\ &\quad + C_5^{LR} \mathcal{O}_5 + C_5^{RL} \widetilde{\mathcal{O}}_5]. \end{split}$$

$$\begin{split} & \left[C_1^{YLL} {(M_{g(1)})} \right]^{g^{(1)}} = 1/3 p_0 v^2 \Delta_L^{b} \Delta_L^{ds}, \\ & \left[C_1^{YRR} {(M_{g(1)})} \right]^{g^{(1)}} = 1/3 p_0 v^2 \Delta_R^{db} \Delta_R^{ds}, \\ & \left[C_4^{LR} {(M_{g(1)})} \right]^{g^{(1)}} = -p_0 v^2 \Delta_L^{db} \Delta_R^{ds}, \\ & \left[C_6^{RL} {(M_{g(1)})} \right]^{g^{(1)}} = -p_0 v^2 \Delta_R^{db} \Delta_R^{ds}, \\ & \left[C_5^{RL} {(M_{g(1)})} \right]^{g^{(1)}} = 1/3 p_0 v^2 \Delta_R^{db} \Delta_R^{ds}, \\ & \left[C_5^{RL} {(M_{g(1)})} \right]^{g^{(1)}} = 1/3 p_0 v^2 \Delta_R^{db} \Delta_R^{ds}, \end{split} \end{split}$$

$$\begin{split} & [\Delta C_1^{VLL}(\boldsymbol{M}_{g(1)})]^{A^{(1)}} = [\Delta_{k}^{db}(A^{(1)})][\Delta_{k}^{dc}(A^{(1)})], \\ & [\Delta C_1^{VRR}(\boldsymbol{M}_{g(1)})]^{A^{(1)}} = [\Delta_{k}^{db}(A^{(1)})][\Delta_{k}^{dc}(A^{(1)})], \\ & [\Delta C_{b}^{LR}(\boldsymbol{M}_{g(1)})]^{A^{(1)}} = -2[\Delta_{k}^{db}(A^{(1)})][\Delta_{k}^{dc}(A^{(1)})], \\ & [\Delta C_{b}^{LR}(\boldsymbol{M}_{g(1)})]^{A^{(1)}} = -2[\Delta_{k}^{db}(A^{(1)})][\Delta_{k}^{dc}(A^{(1)})]. \end{split}$$

$$\begin{split} & [\Delta C_1^{VLL}(M_{g(1)})]^Z_{H'}z'' = [\Delta_R^{db}(Z^{(1)})\Delta_L^{dc}(Z^{(1)}) + \Delta_L^{db}(Z_X^{(1)})\Delta_L^{dc}(Z_X^{(1)})], \\ & [\Delta C_1^{VRR}(M_{g(1)})]^Z_{H'}z'' = [\Delta_R^{db}(Z^{(1)})\Delta_R^{dc}(Z^{(1)}) + \Delta_R^{db}(Z_X^{(1)})\Delta_R^{dc}(Z_X^{(1)})], \\ & [\Delta C_5^{LR}(M_{g(1)})]^Z_{H'}z'' = -2[\Delta_L^{db}(Z^{(1)})\Delta_R^{dc}(Z^{(1)}) + \Delta_R^{db}(Z_X^{(1)})\Delta_R^{dc}(Z_X^{(1)})], \\ & [\Delta C_5^{RL}(M_{g(1)})]^Z_{H'}z'' = -2[\Delta_R^{db}(Z^{(1)})\Delta_L^{dc}(Z^{(1)}) + \Delta_R^{db}(Z_X^{(1)})\Delta_R^{dc}(Z_X^{(1)})], \\ & [\Delta C_5^{RL}(M_{g(1)})]^Z_{H'}z'' = -2[\Delta_R^{db}(Z^{(1)})\Delta_L^{dc}(Z^{(1)}) + \Delta_R^{db}(Z_X^{(1)})\Delta_L^{dc}(Z_X^{(1)})]. \end{split}$$

$$\begin{split} \mathcal{A} &= \frac{1}{[M_g(\mathbf{1})]^2} \Big[F_{a1} \Big[\frac{4}{3} (C_1^{VLL} + C_1^{VRR}) \Big] + F_{a4} \Big[\frac{4}{3} (C_4^{LR} + C_4^{RL}) \Big] + F_{a5} \Big[\frac{4}{3} (C_5^{LR} + C_5^{RL}) \Big] \\ &+ \mathcal{M}_{a1} \Big[C_1^{VLL} - C_1^{VRR} \Big] + \mathcal{M}_{a4} \Big[C_4^{LR} - C_4^{RL} \Big] + \mathcal{M}_{a5} \Big[C_5^{LR} - C_5^{RL} \Big] \Big]. \end{split}$$

F. Munir (BJUT)

$\overline{B}{}^0 \rightarrow K^+ \pi^-$ decay in the bulk-Higgs RS model

We start with the effective Hamiltonian

$$[\mathcal{H}_{\text{eff}}^{\Delta S=-1}]_{\text{KK}} = \sum_{n=1}^{5} [C_n \mathcal{O}_n + \widetilde{C}_n \widetilde{\mathcal{O}}_n],$$

$$\begin{array}{ll} \mathcal{O}_1 = (\bar{d}_L \gamma_\mu \, b_L) (\bar{d}_L \gamma^\mu \, s_L), \\ \mathcal{O}_2 = (\bar{d}_R \, b_L) (\bar{d}_R \, s_L), \\ \mathcal{O}_3 = (\bar{d}_R^\alpha \, b_L^\beta) (\bar{d}_R^\beta \, s_L^\alpha), \end{array} \begin{array}{ll} \mathcal{O}_4 = (\bar{d}_R \, b_L) (\bar{d}_L \, s_R), \\ \mathcal{O}_5 = (\bar{d}_R^\alpha \, b_L^\beta) (\bar{d}_L^\beta \, s_L^\alpha), \end{array}$$

$$\mathcal{A} = F_{a1} \left[\frac{4}{3} (C_1 + \widetilde{C}_1) \right] + F_{a4} \left[\frac{4}{3} (C_4 + \widetilde{C}_4) \right] + F_{a5} \left[\frac{4}{3} (C_5 + \widetilde{C}_5) \right] \\ + \mathcal{M}_{a1} \left[C_1 - \widetilde{C}_1 \right] + \mathcal{M}_{a4} \left[C_4 - \widetilde{C}_4 \right] + \mathcal{M}_{a5} \left[C_5 - \widetilde{C}_5 \right],$$

$$\Gamma = \frac{m_B^3}{64\pi} \left| \mathcal{A} \right|^2.$$

Constraints on the RS Parameter space

Direct Searches

[A. M. Sirunyan et al. (CMS), JHEP 07 (2017) 001]

 $M_{q^{(1)}} > 3.3 \; {\rm TeV} \qquad (95\% \; {\rm CL}). \label{eq:mass_star}$

More Constraints

- The RS_c model
 - Constraint from tree-level analysis of the S and T parameters

[Malm, Neubert, Novotny, Schmell, JHEP 01 (2014) 173]

 $M_{a(1)} > 4.8 \text{ TeV}$ (95% CL).

The bulk-Higgs RS model

$$\begin{split} S &= \frac{2\pi v^2}{M_{\rm KK}^2} \left(1 - \frac{1}{(2+\beta)^2} - \frac{1}{2L} \right) \\ T &= \frac{\pi v^2}{2c_W^2 M_{\rm KK}^2} \frac{2L(1+\beta)^2}{(2+\beta)(3+2\beta)} \\ U &= 0. \end{split}$$

[M. Baak *et al.* (Gfitter), Eur. Phys. J. C74 (2014) 3046] $S = 0.06 \pm 0.09$ $T = 0.10 \pm 0.07$

$$I = 0.10 \pm 0$$

$$U = 0.$$

$$\begin{split} M_{\rm KK} &> 5 \mbox{ TeV}, \quad \mbox{with } \beta = 10 \\ M_{\rm KK} &> 3 \mbox{ TeV}, \quad \mbox{with } \beta = 0 \end{split}$$

More Constraints

The RS_c model

[Malm, Neubert, Schmell, JHEP 02 (2015) 008] Stringent bounds emerge from the signal rates for $pp \to h \to ZZ^*, WW^*$, at 95% CL

$$\frac{M_{g(1)}}{\text{brane-Higgs}} > 22.7 \text{ TeV} \times (\frac{y_{\star}}{3}), \quad \frac{M_{g(1)}}{M_{g(1)}} \frac{\text{narrow bulk-} > 13.2 \text{ TeV} \times (\frac{y_{\star}}{3})}{\text{Higgs}} > 13.2 \text{ TeV} \times (\frac{y_{\star}}{3}) = 13.2 \text{$$

Branching ratio of $b \rightarrow ss\bar{d}$ in the RS_c model

Branching ratio of $b \rightarrow ss\bar{d}$ in the bulk-Higgs RS model

Branching ratio of $\overline{B}{}^0 \to K^+\pi^-$ decay in the RS_c model

5

20

15

10

M_{a⁽¹⁾} [TeV]

Branching ratio in the bulk-Higgs RS model

Model Independent Analysis of $\overline{B}{}^0 \rightarrow K^+\pi^-$ decay

Assuming new physics contribution only to local operator O₁

$$\begin{split} & [\mathcal{H}_{\text{eff}}^{\Delta S=-1}] = C_1^{dd\bar{s}}(\bar{d}_L\gamma_\mu b_L)(\bar{d}_L\gamma^\mu s_L), \\ & [\mathcal{H}_{\text{eff}}^{\Delta S=2}] = C_1^K(\bar{d}_L\gamma_\mu s_L)(\bar{d}_L\gamma^\mu s_L), \\ & [\mathcal{H}_{\text{eff}}^{\Delta B=2}] = C_1^{B_d}(\bar{d}_L\gamma_\mu b_L)(\bar{d}_L\gamma^\mu b_L). \end{split}$$

Assuming NP contributions come from non standard model chiralities

$$\begin{aligned} \mathcal{A}_{j}(\overline{B}^{0} \to K^{+}\pi^{-}) &= F_{aj}\left[\frac{4}{3}C_{j}^{dd\bar{s}}\right] + \mathcal{M}_{aj}\left[C_{j}^{dd\bar{s}}\right] \\ \widetilde{\mathcal{A}}_{j}(\overline{B}^{0} \to K^{+}\pi^{-}) &= F_{aj}\left[\frac{4}{3}\widetilde{C}_{j}^{dd\bar{s}}\right] + \mathcal{M}_{aj}\left[-\widetilde{C}_{j}^{dd\bar{s}}\right] \\ R &\equiv \frac{\mathcal{B}(\overline{B}^{0} \to K^{+}\pi^{-})}{\mathcal{B}(\overline{B}^{0} \to K^{-}\pi^{+})} \end{aligned}$$

• For an experimental precision of R < 0.001

Parameter	Allowed range (GeV^{-2})	Parameter	Allowed range (GeV^{-2})
		\widetilde{C}_1	$< 1.1 \times 10^{-7}$
C_2	$< 6.3 \times 10^{-9}$	\widetilde{C}_2	$< 6.8 \times 10^{-9}$
C_3	$< 5.1 \times 10^{-8}$	\widetilde{C}_3	$< 5.3 \times 10^{-8}$
C_4	$<4.9\times10^{-9}$	\widetilde{C}_4	$<4.2\times10^{-9}$
C_5	$< 1.6 \times 10^{-6}$	\widetilde{C}_5	$<7.3\times10^{-7}$

New Physics with Conserved Charge

• NP Lagrangian of a generic form

$$\mathcal{L}_{\mathrm{flavor}} = g_{b \to d} (\bar{d}\Gamma b) X + g_{d \to b} (\bar{b}\Gamma d) X + g_{s \to d} (\bar{d}\Gamma s) X + g_{d \to s} (\bar{s}\Gamma d) X + \mathrm{h.c.},$$

$$\begin{split} \mathcal{L}_{\text{eff}} &= \frac{1}{M_X^2} \Big[g_{s \to d} g_{d \to s}^* (\bar{d} \Gamma s) (\bar{d} \bar{\Gamma} s) + g_{b \to d} g_{d \to b}^* (\bar{d} \Gamma b) (\bar{d} \bar{\Gamma} b) \\ &\quad + g_{b \to d} g_{d \to s}^* (\bar{d} \Gamma b) (\bar{d} \bar{\Gamma} s) + g_{s \to d} g_{d \to b}^* (\bar{d} \bar{\Gamma} b) (\bar{d} \Gamma s) \Big]. \end{split}$$

•
$$K^0 - \overline{K}^0$$
 and $B^0 - \overline{B}^0$ mixing bounds

$$\frac{|g_{s \to d} g^*_{d \to s}|}{M_X^2} < \frac{1}{(\Lambda_j^K)^2}, \qquad \frac{|g_{b \to d} g^*_{d \to b}|}{M_X^2} < \frac{1}{(\Lambda_j^{B_d})^2}.$$

Scenarios	R_X				Bou
Ocenanos	M_X (TeV)	Case-I	M_X (TeV)	Case-II	11SM
S1		0.085		8.5×10^{-6}	6.8×10^{-15}
S2	1.0	0.074	10	7.3×10^{-6}	
S 3	1.0	55	10	0.005	
S4		0.002		1.9×10^{-7}	

$\Lambda_b ightarrow \Lambda(ightarrow p\pi^-) \mu^+ \mu^-$ decay in the RS $_c$ model

• The effective weak Hamiltonian for $b \to s \mu^+ \mu^-$ transition in the RS $_c$ model

 $H_{\rm eff}^{\rm RS_c} = -\frac{4G_F}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \Big[C_7^{\rm RS_c} O_7 + C_7'^{\rm RS_c} O_7' + C_9^{\rm RS_c} O_9 + C_9'^{\rm RS_c} O_9' + C_{10}'^{\rm RS_c} O_{10} + C_{10}'^{\rm RS_c} O_{10}' \Big],$

$$\begin{aligned} O_{7} &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{L\alpha} \sigma^{\mu\nu} b_{R\alpha}) F_{\mu\nu}, \qquad O_{7}' &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{R\alpha} \sigma^{\mu\nu} b_{L\alpha}) F_{\mu\nu}, \\ O_{9} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L\alpha} \gamma^{\mu} b_{L\alpha}) \bar{\mu} \gamma_{\mu} \mu, \qquad O_{9}' &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{R\alpha} \gamma^{\mu} b_{R\alpha}) \bar{\mu} \gamma_{\mu} \mu, \\ O_{10} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L\alpha} \gamma^{\mu} b_{L\alpha}) \bar{\mu} \gamma_{\mu} \gamma_{5} \mu, \qquad O_{10}' &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{R\alpha} \gamma^{\mu} b_{R\alpha}) \bar{\mu} \gamma_{\mu} \gamma_{5} \mu. \end{aligned}$$

$$C_i^{(\prime)\mathsf{RS}_c} = C_i^{(\prime)\mathsf{SM}} + \Delta C_i^{(\prime)},$$

$$\begin{split} \Delta C_9 &= \frac{\Delta Y_s}{\sin^2 \theta_W} - 4\Delta Z_s, \quad \Delta Y_s = -\frac{1}{V_{tb}V_{ts}^*} \sum_X \frac{\Delta_L^{\mu\mu}(X) - \Delta_R^{\mu\mu}(X)}{4M_X^2 g_{SM}^2} \Delta_L^{bs}(X), \\ \Delta C_9' &= \frac{\Delta Y_s'}{\sin^2 \theta_W} - 4\Delta Z_s', \quad \Delta Y_s' = -\frac{1}{V_{tb}V_{ts}^*} \sum_X \frac{\Delta_L^{\mu\mu}(X) - \Delta_R^{\mu\mu}(X)}{4M_X^2 g_{SM}^2} \Delta_R^{bs}(X), \end{split}$$

$$\Delta C_{10} = -\frac{\Delta Y_s}{\sin^2 \theta_W}, \qquad \Delta Z_s = \frac{1}{V_{tb} V_{ts}^*} \sum_X \frac{\Delta_R^{\mu\mu}(X)}{8M_X^2 g_{SM}^2 \sin^2 \theta_W} \Delta_L^{bs}(X),$$

$$\Delta C'_{10} = \frac{\Delta Y'_s}{\sin^2 \theta_W}, \qquad \Delta Z'_s = \frac{1}{V_{tb} V_{ts}^*} \sum_X \frac{\Delta_R^{\mu\mu}(X)}{8M_X^2 g_{SM}^2 \sin^2 \theta_W} \Delta_R^{bs}(X).$$

F. Munir (BJUT)

Angular distributions

- θ = θ_Λ : angle of emission between Λ and p in di-meson rest frame
- θ_l = θ_μ : angle of emission between μ⁻ and z-axis in di-muon rest frame
- ϕ : angle between the two planes
- $q^2 = s$: di-muon invariant mass squared

• The angular decay distribution of the four-fold decay $\Lambda_b \to \Lambda(\to p\pi)\mu^+\mu^ \frac{d^4\Gamma}{ds \ d\cos\theta_\Lambda \ d\cos\theta_l \ d\phi} = \frac{3}{8\pi} \left[K_{1ss} \sin^2\theta_l + K_{1cc} \cos^2\theta_l + K_{1c} \cos\theta_l + (K_{2ss} \sin^2\theta_l + K_{2cc} \cos^2\theta_l + K_{2cc} \cos^2\theta_l + K_{2cc} \cos\theta_l) \cos\theta_\Lambda + (K_{3sc} \sin\theta_l \cos\theta_l + K_{3s} \sin\theta_l) \sin\theta_\Lambda \sin\phi + (K_{4sc} \sin\theta_l \cos\theta_l + K_{4s} \sin\theta_l) \sin\theta_\Lambda \cos\phi \right].$ $\frac{d\Gamma}{ds} = 2K_{1ss} + K_{1cc}, \qquad F_L = \frac{2K_{1ss} - K_{1cc}}{2K_s - K_{1cc}}, \qquad A_{FB}^l = \frac{3K_{1c}}{4K_s - 2K_{1c}},$

$$\begin{aligned} ds & 2K_{1ss} + K_{1cc}, & 12 & 4K_{1ss} + 2K_{1cc}, \\ A_{FB}^{\Lambda} &= \frac{2K_{2ss} + K_{2cc}}{4K_{1ss} + 2K_{1cc}}, & A_{FB}^{I\Lambda} &= \frac{3K_{2c}}{8K_{1ss} + 4K_{1cc}}. \end{aligned}$$

Wilson coefficients

Correlations plots between the Wilson coefficients

Numerical Results

$\left\langle \frac{d\mathcal{B}}{ds} \times 10^{-7} \right\rangle$	$\langle F_L \rangle$	$\left\langle A_{FB}^{\ell} \right\rangle$	$\langle A_{FB}^{\Lambda} \rangle$	$\langle A_{FB}^{l\Lambda} \rangle$
$\begin{array}{c} 0.238\substack{+0.230\\ -0.230}\\ 0.219\substack{+0.218\\ -0.217}\\ 0.233\substack{+0.225\\ -0.225}\\ 0.36\substack{+0.122\\ -0.112}\end{array}$	$\begin{array}{c} 0.535\substack{+0.065\\-0.078}\\ 0.552\substack{+0.069\\-0.084}\\ 0.539\substack{+0.066\\-0.080}\\ 0.56\substack{+0.244\\-0.566\end{array}$	$\begin{array}{c} 0.097^{+0.006}_{-0.007}\\ 0.093^{+0.005}_{-0.006}\\ 0.096^{+0.006}_{-0.007}\\ 0.37^{+0.371}_{-0.481}\end{array}$	$\begin{array}{r} -0.310\substack{+0.015\\-0.008}\\ -0.313\substack{+0.013\\-0.004}\\ -0.311\substack{+0.015\\-0.015}\\ -0.12\substack{+0.344\\-0.318}\end{array}$	$-0.031^{+0.003}_{-0.002}\\-0.030^{+0.003}_{-0.002}\\-0.031^{+0.003}_{-0.002}\\-$
$\begin{array}{c} 0.180 \substack{+0.123\\-0.123}\\ 0.171 \substack{+0.117\\-0.117}\\ 0.177 \substack{+0.120\\-0.120}\\ 0.11 \substack{+0.120\\-0.091}\end{array}$	$\begin{array}{c} 0.855\substack{+0.008\\-0.012}\\ 0.860\substack{+0.008\\-0.006}\\ 0.857\substack{+0.008\\-0.011}\\-\end{array}$	$ \begin{smallmatrix} 0.054^{+0.037}_{-0.030} \\ 0.040^{+0.035}_{-0.026} \\ 0.051^{+0.037}_{-0.030} \\ - \end{smallmatrix} $	$\begin{array}{r} -0.306\substack{+0.022\\-0.012}\\-0.311\substack{+0.016\\-0.005}\\-0.309\substack{+0.010\\-0.010}\end{array}$	$-0.016^{+0.009}_{-0.009}\\-0.013^{+0.009}_{-0.010}\\-0.016^{+0.008}_{-0.009}$
$\begin{array}{c} 0.232\substack{+0.10\\-0.10}\\ 0.224\substack{+0.108\\-0.108}\\ 0.230\substack{+0.10\\-0.110}\\ 0.02\substack{+0.091\\-0.010}\end{array}$	$\begin{array}{r} 0.807\substack{+0.018\\-0.012}\\ 0.806\substack{+0.021\\-0.016}\\ 0.807\substack{+0.019\\-0.013}\\-\end{array}$	$-0.063^{+0.038}_{-0.026}\\-0.078^{+0.034}_{-0.021}\\-0.067^{+0.037}_{-0.025}$	$-0.311^{+0.014}_{-0.008}\\-0.314^{+0.008}_{-0.002}\\-0.313^{+0.013}_{-0.006}$	$\begin{array}{c} 0.021 \substack{+0.007 \\ -0.009 \\ 0.024 \substack{+0.008 \\ -0.009 \\ 0.022 \substack{+0.007 \\ -0.009 \\ -0.009 \end{array}}$
$\begin{array}{c} 0.312\substack{+0.094\\-0.094}\\ 0.306\substack{+0.094\\-0.093}\\ 0.310\substack{+0.094\\-0.094}\\ 0.25\substack{+0.120\\-0.111}\end{array}$	$\begin{array}{c} 0.724\substack{+0.025\\-0.014}\\ 0.720\substack{+0.026\\-0.016}\\ 0.723\substack{+0.025\\-0.014}\\-\end{array}$	$-0.162^{+0.025}_{-0.017}\\-0.174^{+0.021}_{-0.013}\\-0.165^{+0.024}_{-0.016}\\-$	$-0.317^{+0.007}_{-0.004}\\-0.314^{+0.002}_{-0.001}\\-0.317^{+0.006}_{-0.003}$	$\begin{array}{c} 0.052\substack{+0.007\\-0.007}\\ 0.054\substack{+0.005\\-0.007}\\ 0.053\substack{+0.006\\-0.007}\\-\end{array}$
$\begin{array}{c} 0.199\substack{+0.120\\-0.120}\\ 0.190\substack{+0.120\\-0.119}\\ 0.197\substack{+0.120\\-0.120}\\ 0.09\substack{+0.061\\-0.051}\end{array}$	$\begin{array}{c} 0.818\substack{+0.011\\-0.011}\\ 0.824\substack{+0.010\\-0.007}\\ 0.819\substack{+0.011\\-0.011}\\-\end{array}$	$\begin{array}{c} 0.009\substack{+0.027\\-0.018}\\ -0.005\substack{+0.025\\-0.014}\\ 0.006\substack{+0.026\\-0.017}\\-\end{array}$	$-0.309^{+0.018}_{-0.010}\\-0.312^{+0.012}_{-0.004}\\-0.311^{+0.017}_{-0.008}$	$\begin{array}{c} -0.002\substack{+0.004\\-0.005}\\ 0.001\substack{+0.005\\-0.001\substack{+0.004\\-0.005}\end{array}$

Numerical Results

		$\left\langle \frac{d\beta}{ds} \times 10^{-7} \right\rangle$	$\langle F_L \rangle$	$\left\langle A_{FB}^{\ell} \right\rangle$	$\langle A_{FB}^{\Lambda} \rangle$	$\langle A_{FB}^{l\Lambda} \rangle$
[15, 16]	$\begin{split} & \text{SM} \\ & \text{RS}_c _{M_{g(1)}} = 4.8 \\ & \text{RS}_c _{M_{g(1)}} = 10 \\ & \text{LHCb} \end{split}$	$\begin{array}{c} 0.798\substack{+0.073\\-0.073}\\ 0.832\substack{+0.073\\-0.073}\\ 0.804\substack{+0.074\\-0.074}\\ 1.12\substack{+0.197\\-0.187}\end{array}$	$\begin{array}{c} 0.454\substack{+0.032\\-0.017}\\ 0.447\substack{+0.033\\-0.017}\\ 0.452\substack{+0.032\\-0.017}\\ 0.49\substack{+0.304\\-0.304} \end{array}$	$\begin{array}{r} -0.382\substack{+0.017\\-0.008}\\-0.365\substack{+0.016\\-0.006}\\-0.378\substack{+0.016\\-0.0183}\\-0.10\substack{+0.183\\-0.163}\end{array}$	$\begin{array}{r} -0.307\substack{+0.002\\-0.004}\\ -0.287\substack{+0.003\\-0.005}\\-0.304\substack{+0.002\\-0.004}\\-0.19\substack{+0.143\\-0.163}\end{array}$	$\begin{array}{c} 0.131^{+0.004}_{-0.008}\\ 0.132^{+0.004}_{-0.008}\\ 0.132^{+0.004}_{-0.008}\\ -\end{array}$
[16, 18]	$\begin{array}{l} \mathrm{SM} \\ \mathrm{RS}_{c} _{M_{g^{(1)}}}=4.8 \\ \mathrm{RS}_{c} _{M_{g^{(1)}}}=10 \\ \mathrm{LHCb} \end{array}$	$\begin{array}{c} 0.825\substack{+0.075\\-0.075}\\ 0.877\substack{+0.075\\-0.075}\\ 0.835\substack{+0.075\\-0.075}\\ 1.22\substack{+0.143\\-0.152}\end{array}$	$\begin{array}{c} 0.418\substack{+0.033\\-0.017}\\ 0.411\substack{+0.033\\-0.017}\\ 0.416\substack{+0.033\\-0.017}\\ 0.68\substack{+0.158\\-0.216}\end{array}$	$\begin{array}{r} -0.381\substack{+0.013\\-0.006}\\-0.356\substack{+0.010\\-0.0376\substack{+0.012\\-0.007\\-0.126}\end{array}$	$\begin{array}{r} -0.289\substack{+0.005\\-0.006}\\-0.265\substack{+0.005\\-0.0284\substack{+0.005\\-0.0284\substack{+0.005\\-0.044\substack{+0.104\\-0.058}}\end{array}$	$\begin{array}{c} 0.141\substack{+0.004\\-0.008}\\ 0.140\substack{+0.004\\-0.009}\\ 0.141\substack{+0.004\\-0.008}\\-\end{array}$
[18, 20]	$\begin{array}{l} \mathrm{SM} \\ \mathrm{RS}_c _{M_{g^{(1)}}} = 4.8 \\ \mathrm{RS}_c _{M_{g^{(1)}}} = 10 \\ \mathrm{LHCb} \end{array}$	$\begin{array}{c} 0.658 \substack{+0.066\\-0.066}\\ 0.726 \substack{+0.066\\-0.066}\\ 0.672 \substack{+0.066\\-0.066}\\ 1.24 \substack{+0.152\\-0.149}\end{array}$	$\begin{array}{c} 0.371\substack{+0.034\\-0.019}\\ 0.367\substack{+0.034\\-0.020}\\ 0.370\substack{+0.034\\-0.019}\\ 0.62\substack{+0.243\\-0.273}\end{array}$	$\begin{array}{c} -0.317\substack{+0.010\\-0.010}\\ -0.286\substack{+0.010\\-0.309\substack{+0.010\\-0.010}\\ 0.01\substack{+0.155\\-0.146}\end{array}$	$\begin{array}{c} -0.227\substack{+0.011\\-0.011}\\-0.201\substack{+0.010\\-0.221\substack{+0.011\\-0.011}\\-0.13\substack{+0.095\\-0.124}\end{array}$	$\begin{array}{r} 0.153\substack{+0.005\\-0.009}\\ 0.151\substack{+0.005\\-0.009}\\ 0.153\substack{+0.005\\-0.009}\\-\end{array}$
[15, 20]	$\begin{split} & \text{SM} \\ & \text{RS}_c _{M_{g(1)}} = 4.8 \\ & \text{RS}_c _{M_{g(1)}} = 10 \\ & \text{LHCb} \end{split}$	$\begin{array}{c} 0.753 \substack{+0.069\\-0.069}\\ 0.807 \substack{+0.069\\-0.069}\\ 0.764 \substack{+0.069\\-0.069}\\ 1.20 \substack{+0.092\\-0.099} \end{array}$	$\begin{array}{c} 0.409\substack{+0.033\\-0.018}\\ 0.403\substack{+0.034\\-0.019}\\ 0.407\substack{+0.033\\-0.019}\\ 0.407\substack{+0.019\\-0.019}\\ 0.61\substack{+0.114\\-0.143}\end{array}$	$\begin{array}{r} -0.358\substack{+0.012\\-0.007}\\-0.332\substack{+0.009\\-0.053\substack{+0.011}\\-0.053\substack{+0.011\\-0.095}\end{array}$	$\begin{array}{r} -0.271\substack{+0.011\\-0.011}\\-0.247\substack{+0.011\\-0.011}\\-0.266\substack{+0.011\\-0.011}\\-0.29\substack{+0.076\\-0.081}\end{array}$	$\begin{array}{c} 0.143\substack{+0.005\\-0.008}\\ 0.142\substack{+0.005\\-0.009}\\ 0.143\substack{+0.005\\-0.008}\\ \end{array}$

Summary

- In both models, main contributions to the branching ratios of the inclusive b → ssd, b → dds̄ and the exclusive B
 ^B → K⁺π[−] decay come from the KK gluons exchange.
- For the inclusive $b \to ss\bar{d}$ and $b \to dd\bar{s}$ decays in the RS_c model, contributions of EW gauge bosons Z_H and Z' are equally important to that of the KK gluons.
- The RS_c model enhances the branching ratio, such that compared to the SM result, a maximum enhancement of two and six orders of magnitude for $b \to ss\bar{d}$ and $\overline{B}{}^0 \to K^+\pi^-$ decay, respectively is possible for few points in the parameter space with $y_{\star} = 1.5$ case.
- In the bulk-Higgs RS model, branching ratio of the $b \rightarrow ss\bar{d}$ gets a maximum increase of one order of magnitude for $y_{\star} = 1.5$ value with $\beta = 10$ scenario, while for the exclusive $\overline{B}^0 \rightarrow K^+\pi^-$ decay, maximum possible enhancement of five to six orders of magnitude is probable for both cases of y_{\star} within broad and narrow Higgs profile cases.
- In the model independent analysis of $\overline{B}{}^0 \to K^+\pi^-$ decay, it is possible to constrain the Wilson coefficients of different dimension-6 operators for a specific experimental precision for the observable R.
- The current constraints on the parameters of RS_c model are too strict to explain the discrepancies in various observables predicted by LHCb measurements in Λ_b decays.

• This talk is based on, arXiv:1807.05350, 1805.01393, 1607.07713, the work done under the supervision of Prof. Lü Cai-Dian and in collaboration with Ying Li, M. Jamil Aslam and Qin Qin.

THANK YOU!