Probe Chiral Magnetic Effect with Signed Balance Function

arXiv:1903.04622

Aihong Tang Brookhaven National Laboratory

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Conventional approach :

An angular correlation problem in conventional approach.

Where are we from ?

 α is "leading" β if examined with the consideration of azimuthal angle only in lab frame (α being closer to y-axis than β). But the reality is the opposite when the same pair is viewed in the rest frame.

The rest frame holds the ultimate answer. This is by definition.

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

$$r = \frac{\sigma_{\Delta B_y}}{\sigma_{\Delta B_x}}$$
. (>1 with CME)

r can be calculated in both lab. (r_{lab}) and pair's rest frame (r_{rest}) , the latter has the best sensitivity for real charge separation (but not guaranteed so for background).

To study separation, the natural and best choice of frame is pair's rest frame.

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

\mathbf{r}_{lab} and \mathbf{r}_{rest}

Exaggerated views of how r_{lab} and r_{rest} respond to backgrounds, to help navigating simulation plots in this talk:

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Resonance v_2 as fixed value

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Global Spin Alignment (ρ₀₀)

The 00-component of spin density matrix (ρ_{00}) can be measured via angular distribution of decay daughter using : \overline{L} $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[\left(1 - \rho_{00} \right) + (3\rho_{00} - 1)\cos^2\theta^* \right]$ p rest frame A deviation of ρ_{00} from 1/3 would indicate a non-zero spin alignment. $\rho_{00} = \frac{1}{3}$ $\rho_{00} > \frac{1}{3}$ $\rho_{00} < \frac{1}{3}$ " v_2 " = 0 "v₂" < 0 "v₂" > 0 Finite spin alignment acts like "elliptic flow" in rest frame.

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Global Spin Alignment (ρ₀₀)

Yang, Fang, Wang & Wang, PRC 97 034917 (2018)

Implication for isobar collisions :

A stronger B in ${}^{96}_{44}$ Ru + ${}^{96}_{44}$ Ru than in ${}^{96}_{40}$ Zr + ${}^{96}_{40}$ Zr may cause artificial increase of CME observables via larger ρ_{00} .

We need to check ρ_{00} of resonances !

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Keep $v_2(p_T)$ unchanged, change v_3 so that v_3 / v_2 changes.

No noticeable resonance v_3 effect.

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Resonance ρ_{00} together with p_T dependent $v_2 \& v_3$ of primordial pions and ρ resonances

 r_{rest} and R_B responds in opposite directions to ρ_{00} change.

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Noticeable effect due to resonance p_T . Similar to [PRC 98 034904]. However, a realistic change in spectra slope (T) causes no visible effect. Not a new effect -- already taken into account in simulations with realistic p_T spectra.

28

AMPT and AVFD Models

AMPT^[1] version v2.25t4cu With string melting and **charge conservation assured.** No CME.

AVFD^[2] (anomalous viscous fluid dynamics) With CME implemented. (See S. Shi's talk on Monday.)

r_{rest} and R_B behave as expected in realistic models.

Even r_{rest} by itself is a sensitive probe.

[1] Lin, Ko, Li, Zhang & Pal, Phys. Rev. C 72 064901 (2005), and private communication with Z.W.Lin and G.L. Ma

[2] Jiang, Shi, Yin & Liao, Chin. Phys. C 42 n0. 1 011001 (2018) Shi, Jiang, Lilleskov & Liao, Annals.Phys. 394, 50 (2018)

Recap: r_{lab} and r_{rest}

Exaggerated views of how r_{lab} and r_{rest} respond to backgrounds, to help navigating simulation plots in this talk:

if $\rho_{00} > 1/3$ and both r_{rest} and $R_B > 1$, then a strong case supporting CME

Aihong Tang Chirality Workshop, Tsinghua U., April 2019

Proposed a pair of observables, r_{rest} and R_B , to probe CME effect. Verified with toy model as well as realistic models.

Finite spin alignment can cause an effect resembling CME.

The difference in B between isobars can cause fake CME signal via the change in spin alignment. We need to address it !

 r_{rest} and R_B respond in opposite directions to identifiable backgrounds from resonance flow and spin alignment. Useful for CME study (e.g., if $\rho_{00} > 1/3$ and both r_{rest} and $R_B > 1$, then a strong case supporting CME)

arXiv:1903.04622

Thank G.Wang, J.Liao, S.Shi, N. Magdy, Z. Lin, G. Ma, B. Tu, H. Ke and Y.Lin for discussion/help !