

Background estimation in search of the CME at STAR

Gang Wang (for STAR Collaboration) UCLA

Chiral Magnetic Effect: magnetic field + chirality = current

Y. Hirono, D. E. Kharzeev and Y. Yin PRD 92,125031 (2015)

CME observable: γ correlator

Charge separation signal

Nonflow-related BG

- Comparison between TPC EP and BBC EP shows significant nonflow effects in small systems.
- Nonflow effects are present in both v_2 and $\Delta\gamma$
- Better controlled in larger systems (more central Au+Au)

|η_{TPC}| < 1 3.8 < |η_{BBC}| < 5.1

Flow-related background

A specific configuration as shown below could solely come from statistical fluctuations.

Aparent anisotropy: explicit v₂ (of final-state particles). even w/o visual charge separation

controllable with measured v_2

Hidden anisotropy:

implicit v₂ (of resonance parents).

real charge separation, but not CME

γ_{112} VS γ_{132}

Consider flowing resonances that decay:

$$\gamma_{112} = \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi) \rangle$$

= $\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{res} + 2\varphi_{res} - 2\Psi) \rangle$
 $\approx f_{res}/N_{\pi} \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{res}) \rangle v_{2,res}$

$$\begin{split} \gamma_{132} &= \langle \cos(\varphi_{\alpha} - 3\varphi_{\beta} + 2\Psi) \rangle \\ &= \langle \cos(3\varphi_{\alpha} - \varphi_{\beta} - 2\Psi) \rangle \\ &= \langle \cos(3\varphi_{\alpha} - \varphi_{\beta} - 2\varphi_{res} + 2\varphi_{res} - 2\Psi) \rangle \\ &\approx f_{res}/N_{\pi} \langle \cos(3\varphi_{\alpha} - \varphi_{\beta} - 2\varphi_{res}) \rangle v_{2,res} \end{split}$$

Assume then

$$\varphi_{\alpha} \approx \varphi_{\beta} \rightarrow \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{res}) \rangle \approx \langle \cos(3\varphi_{\alpha} - \varphi_{\beta} - 2\varphi_{res}) \rangle \rangle$$

$$\gamma_{112}^{BG} \approx \gamma_{132}^{BG}$$

How wrong can that be? _____

γ_{112} VS γ_{132}

K₁₁₂ **VS K**₁₃₂

- κ_{132} from data is close to 1 for 20 70% most central events.
- AMPT also confirms that. κ_{132} connects data and model.
- AMPT has κ_{112} above κ_{132} (so $\varphi_{\alpha} \neq \varphi_{\beta}$), but not as high as data.
- If AMPT is trustable, then data show extra correlations beyond flow.

 \mathbf{Z}

Why is κ_{132} close to 1?

Cumulant: $\langle A^*B \rangle = \langle A^*B \rangle - \langle A \rangle^* \langle B \rangle$

$$\begin{split} \gamma_{132} &= \langle \cos(\varphi_{\alpha} - 3\varphi_{\beta} + 2\Psi) \rangle \\ &= \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle - \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle - \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ \gamma_{112} &= \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi) \rangle \\ &= \langle \cos(\varphi_{\alpha} - \varphi_{\beta} + 2\varphi_{\beta} - 2\Psi) \rangle \\ &= \langle \cos(\varphi_{\alpha} - \varphi_{\beta} + 2\varphi_{\beta} - 2\Psi) \rangle + \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle + \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle + \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle + \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle + \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle \\ \\ &= \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi)$$

but is contaminated with other effects, and scaled down by v_2 .

 γ_{132} : SS and OS

 $(\gamma_{132} \approx \delta^* v_2)$ qualitatively holds for both same charge and oppoite charge.

γ_{132} : further understanding

Event-shape Engineering

 $\overrightarrow{q} = (q_x, q_y)$

Extension of ESE to γ_{132}

Extension of ESE to γ_{132}

•
$$N_{part} * \gamma_{132} = (1.24 \pm 1.10) * 10^{-3}$$

ESE: centrality dependence

The shaded boxes reflect the cuts of $|\Delta\eta|>0.15$ and $|\Delta p_T|>0.15$ GeV/c.

- Both $\Delta \gamma_{112}$ and $\Delta \gamma_{132}$ are substantially reduced with this ESE approach.
 - $\Delta \gamma_{132}$ almost vanishes: still possible residue BKG.

Extension of ESE to γ_{123}

Extension of ESE to γ_{123}

even higher

• $N_{part} * \gamma_{123} = (8.67 \pm 2.65) * 10^{-3}$

Summary on γ_{132}

 γ_{132} is a good starting point to study the coupling between v₂ and δ .

$$\gamma_{132} = \delta^* v_2 + \langle \cos(\varphi_{\beta} - \varphi_{\alpha}) \cos(2\varphi_{\beta} - 2\Psi) \rangle - \langle \sin(\varphi_{\beta} - \varphi_{\alpha}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \rangle$$

Cancellation qualitatively holds, especially in 20-70% events

$$\varphi_{\alpha} \approx \varphi_{\beta} \rightarrow \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{res}) \rangle \approx \langle \cos(3\varphi_{\alpha} - \varphi_{\beta} - 2\varphi_{res}) \rangle \approx \langle \cos(\varphi_{\alpha} + 2\varphi_{\beta} - 3\varphi_{res}) \rangle$$

$$\gamma_{112}^{BG}/v_{2} \approx \gamma_{132}^{BG}/v_{2} \approx \gamma_{123}^{BG}/v_{3}$$

violated by 20-40% according to AMPT

oveshooting when using ESE

 Ψ_{RP}

- κ_{132} goes below 1 for peripheral and central collisions:
 - $\sim \bullet$ could be a sign of "implicit v₂" or nonflow.
- ESE substantially reduces $\Delta \gamma_{112}$ and $\Delta \gamma_{132}$
 - but residue BKG and over-subtraction could both exist.
- Isobar is still the best solution.

Gang Wang

 $\gamma_{112,OS} = 1/2$

 $\gamma_{112,SS} = -1$

 $\mathbf{v}_2 =$

 $\gamma_{132,SS} = 1$

 $\gamma_{132,OS} = -1/2$

Isobar: Ru+Ru vs Zr+Zr

- Significant difference in the magnetic field between the two collision systems.
- Flow-background gives similar contributions for intermediate centralities.

Data taking for isobaric collisions

Requested and **performed**

• Optimized luminosity: maximum STAR data acquisition rate and minimum background and pile-up

- Stable luminosity leveling at ZDC ~10K Hz (L ~ 2.2 x 10²⁷cm⁻²s⁻¹)
- Stochastic beam cooling to control emittance
- Rapid (~daily) switching between Ru and Zr: minimize systematic uncertainties
 20 hr/store/isobar
- Maximize the purity and reconstruction efficiency: minimum-bias trigger with tight vertex cut (with VPD ±30cm)

Data taking for isobaric collisions

•

STAR Data Acquisition Rates

Data taking for isobaric collisions

- Collected 3.1B minimum-bias events for both Ru+Ru and Zr+Zr (vs goal 1.5B) [3/15-5/9]
- Good event fraction ~ 95%

Data taking hours/day

My personal outlook: new possibility (isobars at 27 GeV)

Gang Wang

Backup

γ_{112} VS γ_{123}

ESE: γ_{123}

- The raw signals are different between γ_{112} and $\gamma_{123.}$ (a factor of 3)
- The ESE signals are, however, similar for γ_{112} and γ_{123} .
- Origin of these finite intercepts: residue nonflow? implicit $v_{2(3)}$? CME?