



# Measurements of the Chiral Magnetic Effect with Background Isolation in 200 GeV Au+Au Collisions at STAR

#### Jie Zhao (for the STAR collaboration) April 10 2019

Purdue University, West Lafayette



- Chiral Magnetic Effect (CME)
- RHIC-STAR experiment
- Background issue
- > Invariant mass dep. of the  $\Delta \gamma$  correlator
- >  $\Delta \gamma$  with respect to  $\Psi_{RP}$  (ZDC) and  $\Psi_{PP}$  (TPC)

#### Summary

 $\Psi_{\text{RP}}$ : reaction plane ;  $\Psi_{\text{PP}}$ : participant plane

# Chiral Magnetic Effect (CME)



 $j_V = \frac{N_c e}{2\pi^2} \mu_A B$ , electric charge separation along the B field

➢ Gluon configuration with non-zero topological charge (Q<sub>w</sub>) converts left (right)-handed fermions to right (left)-handed fermions, generating electric current along B direction and leading to electric charge separation
 ➢ Experimentally,  $\gamma = \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP})$  used to search for the CME



#### The STAR detector





## **Background issue**

STAR, PRL 103,251601 (2009); PRC 81,54908 (2010); PRC 88,64911 (2013)



 $\phi_{\alpha}$ ,  $\phi_{\beta}$ ,  $\phi_{c}$  are the azimuthal angles of the charged particles measure by STAR TPC

- $\succ \Delta \gamma = \gamma_{OS} \gamma_{SS}$  correlator consistent with CME expectation
- Recent measurements of charge correlations suggest dominant, if not all, background contribution
- What is the background?

#### **Resonance decay background**



➢ Resonance background: resonance decay + v<sub>2</sub> → CME-like Δγ

- Can we remove/isolate the background?
- > Exploiting invariant mass dependence of  $\Delta \gamma$
- $\succ$  Δγ with respect to  $\Psi_{RP}$  and  $\Psi_{PP}$

J. Zhao, et al, Eur. Phys. J. C (2019) 79:168

H.-J. Xu, et al, CPC 42 (2018) 084103

J. Zhao

# Identify resonance Bkg by $m_{inv}(\pi^+\pi^-)$



- > Data show resonance structure in  $\Delta \gamma$  as function of invariant mass (m<sub>inv</sub>)
- > At high  $m_{inv} > 1.5 \text{ GeV/c}^2$ ,  $\Delta \gamma$  is  $(5\pm 2\pm 4)\%$  of the inclusive  $\Delta \gamma$  in 200 GeV Au+Au 20-50%
- Systematic uncertainty currently estimated by run differences and different ways of combining runs (combine the  $\Delta\gamma$  first or the fractions directly)

# Bkg shape by event shape engineering



TPC sub-event, one side for ESE (other side for ref.), pion PID by TPC dE/dx
 Obtain the Bkg Δγ m<sub>inv</sub> shape by event shape engineering (ESE)

# Bkg shape by event shape engineering



TPC sub-event, one side for ESE (other side for ref.), pion PID by TPC dE/dx
 Obtain the Bkg Δγ m<sub>inv</sub> shape by event shape engineering (ESE)



#### **Bkg + CME fit at low invariant mass**



# $\mathbf{A}^{\mathbf{A}\mathbf{R}}$ Use $\Psi_{\mathsf{PP}}$ and $\Psi_{\mathsf{RP}}$ to solve Bkg and CME

 $\rightarrow$ 

flow background

**CME** signal



- $\succ$  Ψ<sub>RP</sub> maximizes the magnetic field (B), →
- >  $\Psi_{PP}$  and  $\Psi_{RP}$  are correlated, but not identical due to geometry fluctuations



 $f_{\rm EP}(\rm CME) = \rm CME\{\psi_{\rm TPC}\} / \Delta\gamma\{\psi_{\rm TPC}\} = r / (r+1/a) = (A/a-1) / (1/a^2-1)$ 

#### $\Delta\gamma$ with respect to $\Psi_{PP}$ and $\Psi_{RP}$

TPC sub-event (east and west) method to reduce non-flow effects



STAR

# STAR

### $\Delta\gamma$ with respect to $\Psi_{PP}$ and $\Psi_{RP}$

#### nevertheless also look at full TPC acceptance



| CME (EP) fraction | 20-50%<br>centrality |
|-------------------|----------------------|
| TPC sub-event     | (9±4±7)%             |
| TPC full-event    | (12±4±11)%           |

CME fractions are (9±4±7)% and (12±4±11)% from TPC sub-event and TPC full-event methods in 200 GeV 20-50% Au+Au collisions, respectively



## Summary

- Identify resonance Bkg by ππ invariant mass.
  Observation of resonance structure in Δγ at m<sub>inv</sub><1.5 GeV/c<sup>2</sup>.
  Isolate the possible CME from Bkg by invariant mass + ESE.
- >  $\Delta \gamma$  with respect to  $\Psi_{PP}$  and  $\Psi_{RP}$ , isolate possible CME from Bkg

| Year  | Minbias events |
|-------|----------------|
| Run11 | ~0.5B          |
| Run14 | ~0.8B          |
| Run16 | ~1.2B          |



These data-driven estimates indicate that:

possible CME signal is small in  $\Delta \gamma$ , within 1-2 $\sigma$  from zero with

the current precision



## Summary

- Identify resonance Bkg by ππ invariant mass.
  Observation of resonance structure in Δγ at m<sub>inv</sub><1.5 GeV/c<sup>2</sup>.
  Isolate the possible CME from Bkg by invariant mass + ESE.
- >  $\Delta \gamma$  with respect to  $\Psi_{PP}$  and  $\Psi_{RP}$ , isolate possible CME from Bkg

| Year  | Minbias events |
|-------|----------------|
| Run11 | ~0.5B          |
| Run14 | ~0.8B          |
| Run16 | ~1.2B          |

- More Au+Au data (+isobar)
- $\succ$  Consider ZDC upgrades for  $\Psi_{RP}$



These data-driven estimates indicate that: possible CME signal is small in Δγ, within 1-2σ from zero with the current precision