

A polarization along the beam direction in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Takafumi Niida for the STAR Collaboration

WAYNE STATE UNIVERSITY

The 5th Workshop on Chirality, Vorticity, and Magnetic Field in Heavy Ion Collisions @Tsinghua University, Beijing

T. Niida, Chirality Workshop 2019

Star Important features in non-central heavy-ion collisions

Strong magnetic field

 $B \sim 10^{13} \text{ T}$ $(eB \sim \text{MeV}^2 \ (\tau = 0.2 \text{ fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

T. Niida, Chirality Workshop 2019

Star Important features in non-central heavy-ion collisions

Strong magnetic field

 $B \sim 10^{13} {
m T}$ $(eB \sim \mathrm{MeV}^2 \ (\tau = 0.2 \ \mathrm{fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

T. Niida, Chirality Workshop 2019

Star Important features in non-central heavy-ion collisions

Strong magnetic field

 $B \sim 10^{13} {
m T}$ $(eB \sim \mathrm{MeV}^2 \ (\tau = 0.2 \ \mathrm{fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

 \rightarrow Chiral magnetic effect Chiral magnetic wave particle polarization

T. Niida, Chirality Workshop 2019

Star Important features in non-central heavy-ion collisions

 \rightarrow Chiral vortical effect particle polarization

T. Niida, Chirality Workshop 2019

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)
- ^aNon-zero angular momentum transfers to the spin degrees of freedom (polarization)
 - Particles' and anti-particles' spins are aligned with angular momentum, L
- - ^aMagnetic field align particle's spin • Particles' and antiparticles' spins are aligned oppositely along **B** due to the opposite sign of
 - magnetic moment

Parity-violating decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\rm H} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

 P_{H} : Λ polarization p_p^* : proton momentum in the Λ rest frame $\alpha_{\rm H}$: Λ decay parameter $(\alpha_{\wedge} = -\alpha_{\bar{\wedge}} = 0.642 \pm 0.013)$

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

T. Niida, Chirality Workshop 2019

How to measure the global polarization?

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards) - S. Voloshin and TN, PRC94.021901(R)(2016)

 Ψ_1 : azimuthal angle of b ϕ_{p}^{*} : ϕ of daughter proton in Λ rest frame STAR, PRC76, 024915 (2007)

First observation of fluid vortices in HIC

T. Niida, Chirality Workshop 2019

The Fastest Fluid by Sylvia Morrow

Superhot material spins at an incredible rate.

- Positive polarization signal at lower energies!
- polarization looks to increase in lower energies
- anti- Λ looks larger than Λ , possible effect of B-field?

First observation of fluid vortices in HIC

T. Niida, Chirality Workshop 2019

The Fastest Fluid by Sylvia Morrow

Superhot material spins at an incredible rate.

- Positive polarization signal at lower energies!
- polarization looks to increase in lower energies
- anti- Λ looks larger than Λ , possible effect of B-field?

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

 μ_{Λ} : Λ magnetic moment T: temperature at thermal equilibrium

$$\omega = (P_{\Lambda} + P_{\bar{\Lambda}})k_B T/\hbar$$

~ 0.02-0.09 fm⁻¹
~ 0.6-2.7 × 10²²s⁻¹
(T=160 MeV)

The most vortical fluid ever observed!

Star Positive signal at VSNN = 200 GeV

AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017)

T. Niida, Chirality Workshop 2019

Average P_H for 20-50%:

 $P_H(\Lambda) \ [\%] = 0.277 \pm 0.040 (\text{stat}) \pm {}^{0.039}_{0.049} (\text{sys})$ $P_H(\bar{\Lambda})$ [%] = 0.240 ± 0.045(stat) ±^{0.061}_{0.045} (sys)

- Having new results for 200 GeV, P_H decreases in higher energy - partly due to stronger shear flow structure in lower $\sqrt{s_{NN}}$ because of baryon transparency

Both hydrodynamic and AMPT models describe the data

- 15%-20% smearing effect in the data due to feed-down

F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, PRC95.054902 (2017)

Larger polarization in in-plane than in out-of-plane

T. Niida, Chirality Workshop 2019

Larger polarization in in-plane than in out-of-plane

Opposite to the hydrodynamic expectation (larger in out-of-plane)

T. Niida, Chirality Workshop 2019

0.012 0.009 0.006 0.003 0.000 -0.003 -0.006 -0.009-0.012

7

T. Niida, Chirality Workshop 2019

YT and T. Hirano, Nucl. Phys. A904-905 2013 (2013) 1023c-1026c Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023

T. Niida, Chirality Workshop 2019

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang PRL117, 192301 (2016)

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf. 171, 07002 (2018)

YT and T. Hirano, Nucl. Phys. A904-905 2013 (2013) 1023c-1026c Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023

Vorticity (polarization) along the beam direction due to the elliptic flow

T. Niida, Chirality Workshop 2019

local vorticity induced by collective flow

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang PRL117, 192301 (2016)

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf. 171, 07002 (2018)

- S. Voloshin, SQM2017
- F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

arXiv:1501.04468v3 [nucl-th] 17 Aug 2015

d c C c s H. a

TION

now re

tative stu singene I Stewart f

- S. Voloshin, SQM2017
- F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

arXiv:1501.04468v3 [nucl-th] 17 Aug 2015

d c C c s H a F.

TION

now re

tative stu singene I Stewart f

- S. Voloshin, SQM2017
- F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

- Effect of Ψ_2 resolution is not corrected here

^D Sine structure as expected from the elliptic flow!

11

- Effect of Ψ_2 resolution is not corrected here

^a Sine structure as expected from the elliptic flow!

^D Opposite sign to the hydrodynamic model and transport model (AMPT)

- Hydro model: F. Becattini and I. Karpenko, PRL.120.012302 (2018)

- AMPT model: X. Xia, H. Li, Z. Tang, Q. Wang, arXiv:1803.0086

11

T. Niida, Chirality Workshop 2019

^aStrong centrality dependence as in v₂ ^aSimilar magnitude to the global polarization ^a~5 times smaller magnitude than the hydro and AMPT with the opposite sign!

Opposite sign to hydrodynamic model and AMPT model

- F. Becattini and I. Karpenko, PRL.120.012302 (2018)
 3D viscous hydrodynamic model with UrQMD initial condition assuming a local thermal equilibrium
- AMPT: X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign as chiral kinetic approach

- Y. Sun and C.-M. Ko, PRC99, 011903(R) (2019)
- Assuming non-equilibrium of spin degree of freedom
- Smaller quark scattering cross section changes the sign

Suggest incomplete thermal equilibrium of spin degree of freedom as it may develop later in time unlike the global polarization?

T. Niida, Chirality Workshop 2019

I. Karpenko, QM2018

Longitudinal quadrupole f_2 :

 P_z dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

Can we get such a small kinetic vorticity in the blast-wave

14

Quadrupole or sine structure of ω_z is expected with the factor [b_n-a_n]. The sign could be negative depending on the relation of flow and spatial anisotropy.

blast-wave model

S. Voloshin, SQM2017 EPJ Web Conf.171, 07002 (2018)

 $r_{max} = R[1 - a\cos(2\phi_s)],$ $\rho_t = \rho_{t,max}[r/r_{max}(\phi_s)][1 + b\cos(2\phi_s)] \approx \rho_{t,max}(r/R)[1 + (a+b)\cos(2\phi_s)].$

Approximation of the kinetic vorticity in the blast-wave model:

 $\omega_z = 1/2(\nabla \times \mathbf{v})_z \approx (\rho_{t,nmax}/R) \sin(n\phi_s)[b_n - a_n].$

an: spatial anisotropy R: reference source radius b_n: flow anisotropy ρ_t: transverse flow velocity

- Hydro-inspired model parameterized with freeze-out condition assuming the longitudinal boost invariance
 - Freeze-out temperature T_f
 - Radial flow rapidity ρ_0 and its modulation ρ_2 -
 - Source size R_x and R_y

$$\rho(r,\phi_s) = \tilde{r}[\rho_0 + \rho_2 \cos(2\phi_b)]$$
$$\tilde{r}(r,\phi_s) = \sqrt{(r\cos\phi_s)^2/R_x^2 + (r\sin\phi_s)^2}$$

Calculate vorticity at the freeze-out using the parameters • extracted from spectra, v₂, and HBT fit

$$\begin{split} \langle \omega_z \sin(2\phi) \rangle &= \frac{\int d\phi_s \int r dr \, I_2(\alpha_t) K_1(\beta_t) \omega_z \sin(2\phi_b)}{\int d\phi_s \int r dr \, I_0(\alpha_t) K_1(\beta_t)} \\ \omega_z &= \frac{1}{2} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right), \end{split}$$

u: local flow velocity, In, Kn: modified Bessel functions

T. Niida, Chirality Workshop 2019

 $(s)^2/R_u^2$

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane $(R_v > R_x)$. Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_2 > 0$ [see Eq. (4)].

 ϕ_s : azimuthal angle of the source element ϕ_b : boost angle perpendicular to the elliptical subshell

16

e.g. Blast-wave fit to spectra and v_2

PHENIX, PRC93.051902(R) (2016)

Calculated vorticity ω_z shows the sine modulation. Assuming a local thermal equilibrium, z-component of polarization is estimated as follows: $P_z \approx \omega_z / (2T)$

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)

a AMPT model

• opposite sign and 5 times larger in magnitude X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Blast-wave model

- simple estimate for kinematic vorticity
- similar magnitude to the data
- inclusion of HBT in the fit affects the sign in \bullet peripheral collisions

T. Niida, S. Voloshin, A. Dobrin, and R. Bertens, in preparation

T. Niida, Chirality Workshop 2019

- Observation of Λ global polarization at $\sqrt{s_{NN}} = 7.7-200$ GeV
 - Polarization decreases at higher energies → Quantitatively consistent with hydrodynamic and AMPT models
 - Larger signal in in-plane than in out-of-plane
 - → Disagree with hydrodynamic and AMPT model
 - Charge-asymmetry dependence with different slopes between Λ and anti- Λ (~2 σ level) \rightarrow A possible relation to the axial current induced by B-field?
- \Box First study of Λ polarization along the beam direction at $\sqrt{s_{NN}} = 200$ GeV
 - Quadrupole structure of the polarization relative to the 2nd-order event plane → Qualitatively consistent with a picture of the elliptic flow but agree/disagree among the data and theoretical calculations in the sign
 - Strong centrality dependence as in the elliptic flow
 - Sign problem among different models and data, but the blast-wave model predicts the same sign and similar magnitude to the data

Outlook

Isobar collision data (Ru+Ru, Zr+Zr) already taken in 2018! o Same mass number but different number of protons \rightarrow 10% difference in the magnetic field \rightarrow More P_H splitting between Λ and anti- Λ in Ru?

 \square New 27 GeV data taken in 2018! (x10 events with ~1.5 better EP resolution) o Possible probe of the magnetic field from Λ vs anti- Λ global polarization

Beam Energy Scan II (2019+) with STAR detector upgrade o x10 events for $\sqrt{s_{NN}} = 7.7-19.6$ GeV (collider mode) + $\sqrt{s_{NN}} = 3-7.7$ GeV (Fixed target) o How about at forward/backward rapidity? How about for multi-strangeness?

D.-X. Wei et al., arXiv:1810.00151 Au+Au 20-50% (%) 10 $\sqrt{s_{_{\rm NN}}}$ (GeV)

T. Niida, Chirality Workshop 2019

In non-central collisions,

T. Niida, Chirality Workshop 2019

the initial collective longitudinal flow velocity depends on x.

In non-central collisions, the initial collective longitudinal flow velocity depends on x.

$$\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{\partial v_z}{\partial x}$$

T. Niida, Chirality Workshop 2019

T. Niida, Chirality Workshop 2019

T. Niida, Chirality Workshop 2019

from $\Sigma^* \rightarrow \Lambda \pi$, $\Sigma^0 \rightarrow \Lambda \gamma$, $\Xi \rightarrow \Lambda \pi$

 \Box Polarization of parent particle R is transferred to its daughter Λ

$$\begin{split} \mathbf{S}_{\Lambda}^{*} &= C \mathbf{S}_{R}^{*} \qquad \langle S_{y} \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S} B) \\ \text{hi, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)} \qquad \begin{array}{c} C_{\Lambda R} : \text{coefficient of spin transfer from parent} \\ S_{R} : \text{parent particle's spin} \\ f_{\Lambda R} : \text{fraction of } \Lambda \text{ originating from parent } R \\ \mu_{R} : \text{magnetic moment of particle } R \\ \end{array}$$

Becattir

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} - 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{$$

Decay	С
Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 ightarrow \Lambda + \pi^0$	+0.900
$\Xi^- ightarrow \Lambda + \pi^-$	+0.927
$\frac{\Sigma^0 \to \Lambda + \gamma}{}$	-1/3

T. Niida, Chirality Workshop 2019

$^{\Box}$ Only ~25% of measured Λ and anti- Λ are primary, while ~60% are feed-down

15%-20% dilution of primary Λ polarization (model-dependent)

nt R to Λ

Star Possible probe of magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

 $P_{\overline{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$
 μ_{Λ} : Λ magnetic moment
 $B = (P_{\Lambda} - P_{\overline{\Lambda}}) k_B T / \mu_N$
 $\sim 5.0 \times 10^{13}$ [Tesla]

nuclear magneton $\mu_N = -0.613 \mu_{\Lambda}$

Extracted B-field is close to our expectation. Need more data with better precision →BES-II and Isobaric collisions

In most central collision \rightarrow no initial angular momentum As expected, the polarization decreases in more central collisions

I. Karpenko and F. Becattini, EPJC(2017)77:213 W.-T. Deng and X.-G. Huang, arXiv:1609.01801

^aThe data do not show significant η dependence • Maybe due to baryon transparency at higher energy ^a Also due to event-by-event C.M. fluctuations

T. Niida, Chirality Workshop 2019

- [□]No significant p_T dependence, as expected from the initial angular momentum of the system
- ^aHydrodynamic model underestimates the data. Initial conditions affect the magnitude and dependence on p_T
 - 3D viscous hydrodynamic model with two initial conditions (ICs)
 - UrQMD IC
 - Glauber with source tilt IC
 - F. Becattini and I. Karpenko, PRL120.012302, 2018

Case of 200 GeV as an example

- Event plane determination: ~22%
- Dethods to extract the polarization signal: ~21%
- ^a Possible contribution from the background: ~13%
- ^a Topological cuts: <3%
- \Box Uncertainties of the decay parameter: ~2% for Λ , ~9.6% for anti- Λ \Box Extraction of Λ yield (BG estimate): <1%
- Also, the following studies were done to check if there is no experimental effect: ^a Two different polarities of the magnetic field for TPC
- Acceptance effect
- ^D Different time period during the data taking ^D Efficiency effect

