Quark matter under strong magnetic fields

University of Chinese Academy of Sciences

0 3 3 3 T 6 1

E 10/3 18 × /3

Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions, Tsinghua Uni., Apr.8-12,2019

Quark matter under magnetic fields (2014)

Recently, more interests on fast rotating system, finite size system, neutron star merge, gravitation wave.....

Update information about:

I. Inverse magnetic catalysis

II. Vacuum superconductor

III. Phase structure under B

IV. Summary

I. Inverse magnetic catalysis

Magnetic catalysis at zero temperature

S.P. Klevansky and R. H. Lemmer ('89); H. Suganuma and T. Tatsumi ('91); V. P. Gusynin, V. A. Miransky and I. A. Shovkovy ('94, '95, '96,...)

$$\mathscr{L} = \overline{\Psi} i \gamma^{\mu} D_{\mu} \Psi + \frac{G}{2} \left[(\overline{\Psi} \Psi)^{2} + (\overline{\Psi} i \gamma^{5} \Psi)^{2} \right]$$
$$D_{\mu} = \partial_{\mu} - i e A_{\mu}^{\text{ext}} \qquad \mathbf{A}^{\text{ext}} = (0, B x^{1}, 0)$$
$$m = G \operatorname{tr} \left[S(x, x) \right] \approx \frac{G m}{(2\pi)^{2}} \left(\Lambda^{2} + |eB| \ln \frac{|eB|}{\pi m^{2}} + O(m^{2}) \right)$$
$$m \propto \exp \left(-\frac{2\pi^{2}}{G|eB|} \right)$$

nonzero mass for arbitrary small G

Magnetic catalysis at zero temperature

Bali et al. arXiv:1206.4205 [hep-lat]

Inverse magnetic catalysis at nonzero temperature

Bali et al. arXiv:1206.4205 [hep-lat]

How to understand inverse magnetic catalysis ?

1) Magnetic inhibition K. Fukushima, Y. Hidaka, PRL 110, 031601 (2013) **Contribution from neutral pions** 2) Contribution from sea quarks Bruckmann et.al. arXiv:1303.3972 3) Polyakov holomoly Nowak et.al. arXiv:1304.6020 4) Running coupling M. Ferreira, et.al. arXiv:1404.5577 5) Chirality imbalance Jingyi Chao, Pengcheng Chu, MH, **Sphaleron transition** arXiv:1305.1100, PRD88(2013) Instanton-anti-instanton pairing condensate Lang Yu, Hao Liu, MH, arXiv:1404.6969, 8 **PRD90(2014)**

Theta vacuum, instantons and sphalerons

QCD vacuum has non-trivial topological structure characterized by an integer valued Chern-Simons number

Buividovich et al. arXiv:1111.6733

Induce chirality imbalance:

$$(N_R - N_L)_{t=+\infty} - (N_R - N_L)_{t=-\infty} = -2N_f \Delta N_{\rm cs}$$

Inverse magnetic catalysis induced by chirality imbalance

Debye mass for longitudinal gluons:

 $g(T+c\sqrt{eB})$

Sphaleron transition rate:

Jingyi Chao, P.C. Chu, MH, arXiv:1305.1100, PRD88(2014)

Inverse magnetic catalysis induced by chirality imbalance

Shijun Mao, arXiv:1602.06503,PRD2016

Massless neutral pion in chiral limit!

More understanding is needed on nontrivial gluodynamics under B and T!

More discussion from Hengtong Ding's talk!

II. Is there vacuum superconductor?

Point particles under B

•M. N. Chernodub, Phys. Rev. Lett. 106 (2011) 142003 [arXiv:1101.0117 [hep-ph]] -Energy of relativistic particle in the external magnetic field B:

$$\varepsilon_{n,s_z}^2(p_z) = p_z^2 + (2n - 2\text{sgn}(q)s_z + 1)|qB| + m^2$$

nonnegative integer number
the momentum along the external
magnetic field projection of spin on the
direction of magnetic field

-Masses of ρ mesons and π in magnetic field:

$$\begin{split} m_{\pi^{\pm}}^{2}(B) &= m_{\pi^{\pm}}^{2} + eB & \text{becomes larger} \\ m_{\rho^{\pm}}^{2}(B) &= m_{\rho^{\pm}}^{2} - eB & \text{becomes lighter} \end{split}$$

where $m_{
ho_{\pm}}=768 MeV$, $m_{\pi_{\pm}}=140~MeV$

The charged rho becomes massless and condensate at a critical magnetic fields : $eB_c=m_{\rho^\pm}^2$

M. N. Chernodub, Phys. Rev. Lett. 106 (2011) 142003 [arXiv:1101.0117 [hep-ph]]

The pions become heavier while the charged vector mesons become lighter in the external magnetic field

The
$$ho^{\pm}
ightarrow \pi^{\pm} \pi^{0}$$

decay stops at a critical eB

Charged and neutral vector meson in NJL model

$$\mathcal{L} = \bar{\psi}(i \not\!\!D - \hat{m})\psi + G_S \left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma^5 \vec{\tau}\psi)^2 \right] -G_V \left[(\bar{\psi}\gamma^\mu \tau^a \psi)^2 + (\bar{\psi}\gamma^\mu \gamma^5 \tau^a \psi)^2 \right] -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}.$$

17

Vector meson under B: spin decomposition!

$$\Pi^{\mu\nu}_{\rho^{0}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Pi^{11}_{\rho^{0}} & 0 & 0 \\ 0 & 0 & \Pi^{22}_{\rho^{0}} & 0 \\ 0 & 0 & 0 & \Pi^{33}_{\rho^{0}} \end{pmatrix} \qquad \Pi^{\mu\nu}_{\rho^{\pm}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Pi^{11} & \Pi^{12} & 0 \\ 0 & \Pi^{21} & \Pi^{22} & 0 \\ 0 & 0 & 0 & \Pi^{33} \end{pmatrix}$$

$$-\mathrm{i}\Pi^{\mu\nu,ab}(q)=\underbrace{\gamma^{\mu}\tau^{a}}_{k}\underbrace{p}_{\gamma^{\nu}\tau^{b}}_{k}$$

Charged vector meson in vacuum

Hao Liu, Lang Yu, MH, arXiv:1408.1318, PRD2015

FIG. 4: The mass square of charged ρ^{\pm} with spin component $s_z = \pm 1$ as a function of eB.

$$eB_c \simeq 0.2 \text{GeV}^2$$
 $\approx 1/3$ $eB_c = m_{\rho^{\pm}}^2$

Quark polarization is important!

Charged vector meson at finite temperature

High-T superconductor! A natural source for high conductivity and induces long lifetime for magnetic field!

Hao Liu, Lang Yu, MH, arXiv:1507.05809

Hao Liu, Lang Yu, M.Chernodub, MH, arXiv:1604.06662

Lattice QCD on charged vector meson under B

E.V. Luschevskaya^{*a,b*} O.V. Teryaev^{*c,a*} D.Yu. Golubkov^{*a*} O.V. Solovjeva^{*a*} R.A.Ishkuvatov^{*a,b*} arXiv:1608.03472, 1811.02344 ²¹

Meson mass M(B)→Meson production number N(B) → Measurement of B at freeze-out

Magnetic field influences the ratio of N(charged pion)/N(charged rho) significantly!

Kun Xu, Hui Zhang, Shuzhe Shi, Xinyang Wang, Jinfeng Liao, Defu Hou, MH, to appear!

Meson mass $M(B,T) \rightarrow Meson production number N(B,T) \rightarrow Measurement of B at freeze-out (T)$

Magnetic field influences the ratio of N(charged pion)/N(charged rho) more significantly!

III. Phase structure under B revisited

Strong magnetic field vs small Size

Small size catalysis vs magnetic catalysis

Quantized 1st-order phase transition and two sets of CEP!

Phase transition under B revisited!

IV. Summary

Still lots of open questions remain ! No much conclusive statement we can make!

Thanks for your attention!