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Chiral anomalous transports

Chiral fermions + magnetic field ⇒ chiral magnetic effect (CME)
(Kharzeev, McLerran, Warringa, Fukushima 2008; Son, Zhitnitsky 2004; · · · ):

JR =
1

4π2
µRB, JL = − 1

4π2
µLB

Chiral fermions + fluid vorticity ⇒ chiral vortical effect (CVE)
(Erdmenger etal 2008; Barnerjee etal 2008, Son, Surowka 2009; Landsteiner etal 2011):

JR =
1

4π2
µ2
Rω +

T 2

12
ω, JL = − 1

4π2
µ2
Lω −

T 2

12
ω

Chiral fermions + Electric field ⇒ anomalous Hall effect (AHE)
(see e.g.: Nagaosa 2010):

JR =
1

4π2
b×E, JL =

1

4π2
b×E

· · · · · ·
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Chiral anomalous transports

Phenomenology: universal phenomena that may happen across a
very broad hierarchy of scales.

Many talks in the following days.
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Chiral anomalous transports

Chiral anomalous transports are closely related to chiral anomaly.

For example, right-handed Weyl fermion in B: The Landau Levels

LLL ⇒ CME: J =
µ

4π2
B

⇓
µ
dn

dt
= E · J = µ

1

4π2
E ·B

⇓
Chiral anomaly

(Adler 1969, Bell, Jackiw 1969,

Nielsen, Ninomiya 1983)

Symmetry and spontaneous symmetry breaking from UV to IR:
Effective theories

Microscopic:

Quantum field theory

ψ, φ,Aµ, · · ·

Mesoscopic:

Kinetic theory

f(x, p)

Macroscopic:

Hydrodynamics

uµ, T, n, NG modes
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Chiral anomalous transports

Chiral anomalous transports are closely related to chiral anomaly.

For example, right-handed Weyl fermion in B: The Landau Levels

LLL ⇒ CME: J =
µ

4π2
B

⇓
µ
dn

dt
= E · J = µ

1

4π2
E ·B

⇓
Chiral anomaly

(Adler 1969, Bell, Jackiw 1969,

Nielsen, Ninomiya 1983)

Symmetry and anomalous symmetry breaking from UV to IR:
Anomaly matching (‘t Hooft 1980)

Microscopic:

Quantum field theory

Mesoscopic:

Chiral

kinetic theory

Macroscopic:

Anomalous

hydrodynamics
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Chiral Kinetic Theory

We focus on the kinetic theory: The chiral kinetic theory (CKT).

Boltzmann-type equation with chiral anomaly encoded:

∂tf + ẋ ·∇xf + ṗ ·∇pf = C[f ]

Dynamical variable is f(x, p) in phase space.
With background or dynamical electromagnetic (EM) fields and/or
curved spacetime, · · · .
Dilute enough to make a classical trajectory in phase space sensible.
Has to contain ~ correction to encode quantum anomaly.

Theoretically, CKT is very interesting: Berry monopole, side-jump,
· · ·
Phenomenologically, CKT provides an useful out-of-equilibrium
framework: Quark-gluon plasma, Weyl/Dirac semimetals,
electroweak gases, · · ·
Incomplete list of references: Son, Yamamoto 2012; Stephanov, Yin 2012; Gao,

Liang, Pu, Wang, Wang 2012; Chen, Pu, Wang, Wang 2013; XGH 2015; Hidaka, Pu,

Yang 2016; Gorbar, Miransky, Shovkovy, Sukhachov 2016; Muller, Venogopalan 2017;

Huang, Shi, Jiang, Liao, Zhuang 2018; XGH, Sadofyev 2018; Carignano, Manuel,

Torres-Rincon 2018; Liu, Gao, Mameda, XGH 2018; Lin, Shukla 2019; · · · · · ·
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CKT from quantum mechanics
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Semiclassical equations of motion in EM field

To understand the Boltzmann-type equation, we need to first
understand single-particle equations of motion (EOMs).

Consider a Weyl fermion in EM field:

H = (p−A) · σ +A0

with p the canonical momentum, σ the Pauli matrix, and Aµ the
gauge potential.

Solve Heisenberg equations for particle branch at O(~) (XGH 2015):
√
Gẋ = ∇kε+ ~E ×ΩB + ~B(k̂ ·ΩB) +O(~2)
√
Gk̇ = E + ∇kε×B + ~ΩB(E ·B) +O(~2)

k = p−A is the kinetic momentum and k̂ = k/|k|.
ΩB = k̂/(2|k|2) is called Berry curvature,

√
G = 1 + ~B ·ΩB (see

next slide).
ε = |k|(1− ~B ·ΩB) is the single-particle energy.

Similar EOMs was first derived for semiclassical motion of electron
wave packet in solid, by applying adiabatic approximation to
Schrodinger equation (Chang, Niu 1995; Sundaram, Niu 1999).
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Chiral kinetic equation in EM field

Denote (x,k) by za (a=1-6). The EOMs become:

Gabżb = −∂ah, h = ε+A0, Gab =

(
−εijkBk δij
−δij ~εijkΩBk

)
Semiclassical motion of a spinful fermion ≡ classical
motion of a spinless particle with Hamiltonian h in
phase space equipped by symplectic form Gab.
Phase space measure

√
DetGab = 1 + ~B ·ΩB

Dual roles of B and ΩB : x-space magnetic field
B(x) = ∇x ×A(x), k-space magnetic field
ΩB(k) = ∇k × a(k).

“Gauge field” a(k) = −iu†∇ku is the Berry phase
where u is positive-energy eigenfunction of H.

Valid when |k| >
√

~|B|: the adiabatic condition.
We can write down the Boltzmann equation:

∂tf + ẋ ·∇xf + k̇ ·∇kf = C[f ], C[f ] = C0[f ] + ~C1[f ]

The CME:

J =

∫
d3k

(2π)3

√
Gẋf ⇒ JCME = ~B

∫
d3k

(2π)3
(k̂·ΩB)f =

µ

4π2
B
∣∣∣
eq,T=0
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Semiclassical EOMs in rotation
To understand CVE in CKT, consider a Weyl fermion in a rotating
frame:

H = p · σ − ω ·
(
x× p+

~
2
σ

)
Solve Heisenberg equations for particle branch O(~) (XGH and Sadofyev

2018):
ẋ = p̂+ x× ω = ∇pε+ ~p×ΩB

ṗ = p× ω = −∇pε

ε = |p| − ω · (x× p)− ~
2
ω · p̂ is energy in rotating frame, ẋ is

velocity in rotating frame, p is momentum in inertial frame.
The Coriolis force and centrifugal force: ẍ = −2ω× ẋ−ω× (ω×x)
Surprisingly, the EOMs do not have ~ order correction. The phase
space is as usual and

√
G = 1.

This suggests a collisionless kinetic equation up to O(~):

∂tf + ẋ ·∇xf + ṗ ·∇pf = 0

How to get CVE: the magnetization current. At equilibrium, it
reproduces the correct CVE current. (Chen, Son, Stephanov, Yin 2014):

J =

∫
d3p

(2π)3
ẋf + ∇×M , M = ~

∫
d3p

(2π)3
|p|ΩBf
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Semiclassical EOMs in rotation
At equilibrium, at linear order of ω:

JCVE = −~
2
ω

∫
d3p

(2π)3

(1

3
+

2

3

)
f ′(|p|)

The inclusion of magnetization current is also important to make Jµ

a Lorentz vector: The side-jump effect

The angular momentum conservation enforces ~-correction to
Lorentz boost (Chen, Son, Stephanov, Yin 2014):

δβx = βt+ ~|p|β ×ΩB , δβt = β · x , δβp = εβ
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Semiclassical EOMs in rotation
Consider a local Lorentz transformation with β = −ω × x, near the
rotating axis:

x→ y = x+ ~|p|ΩB × (ω × x)− tω × x, p→ k = p+ |p|x× ω
This can be considered as phase space coordinate transformation:
(x,p)→ (y,k). The EOMs is (y,k) (XGH and Sadofyev 2018; Dayi,

Kilincarslan, Yunt 2018):
√
Gẏ = ∇kε+ 2~|k| ω(k̂ ·ΩB) +O(x,ω2)
√
Gk̇ = 2∇kε× |k|ω +O(x,ω2)

Energy ε = |k| − ~ω · k̂/2. Phase space measure√
G = 1 + 2~|k|ω ·ΩB is the transformation Jacobian.

Similarity with EOMs in B: B ↔ 2|k|ω (Lorentz force F = ẋ×B
↔ Coriolis force F = 2|k|ẋ× ω), except for ε where B ↔ |k|ω
because Landre g = 2.

The collisionless kinetic equation up to O(~,ω,x0):

∂tf + ẋ ·∇xf + k̇ ·∇kf = 0

The CVE current which gives the same result at equilibrium:

JCVE = 2~ ω
∫

d3p

(2π)3
|k|(k̂ ·ΩB)f
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CKT from quantum field theory

15/22



Wigner function and ~ expansion

Construction from EOMs has more transparent physical meaning.
Derivation from QFT is more systematic and in a sense powerful.
Consider massless Dirac fermions in curved spacetime and EM field.
The Wigner function is:

Wαβ(x, p) =

∫
d4y[−g(x)]1/2e−ip·y/~〈

[
ψ̄(x)ey·

←−
D/2

]
β

[
e−y·D/2ψ(x)

]
α
〉

The position of the spacetime manifold is xµ, the position in the
tangent space of x is yµ, pµ is in the cotangent space of x. The
whole phase space is the cotangent bundle.
Dµ is the derivative in tangent or cotangent bundle and U(1) bundle
lifted from the usual covariant derivative ∇µ in the spacetime
manifold:

Dµ = ∇µ − Γλµνy
ν ∂

∂yλ
+ iAµ/~ for tangent bundle

Dµ = ∇µ + Γλµνpλ
∂

∂pν
+ iAµ/~ for cotangent bundle

The advantage of using Dµ: yν and pν are parallelly transported:

Dµy
ν = 0 = Dµpν

Flat spacetime version, put gµν to be ηµν (Heiz 1983; Vasak, Gyulassy,

Elze 1987) 16/22



Wigner function and ~ expansion

Dynamics of Wigner function obtained by applying Dirac equations:

i~γ · ∇ψ(x) = i~ψ̄(x)
←−
∇ · γ = 0

Up to ~2 order, it is given by: (See talk by Yu-Chen Liu)

γµ
(
i~
2

∆µ + Πµ

)
W =

i~2

32
γµ
[
Rµνab + i

~
6
∂p · (∇Rµνab)

] ∂

∂pν

[
W,σab

]
In the above:

∆µ = ∇µ +
(
−Fµλ + Γνµλpν

) ∂

∂pλ
− ~2

12
(∇ρRµν)∂ρp∂

ν
p +

~2

8
Rρσµν∂

ν
p∂

σ
pDρ

−~2

24
(∇λRρσµν)∂νp∂

σ
p ∂

λ
p pρ +

~2

24
(∇α∇βFµν + 4RραµνFβρ)∂

ν
p∂

α
p ∂

β
p ,

Πµ = pµ −
~2

12

(
∇ρFµν

) ∂2

∂pν∂pρ
+

~2

24
Rρσµν

∂2

∂pν∂pσ
pρ +

~2

4
Rµν

∂

∂pν
.

In the above:
Electromagnetic tensor: Fµν = 2∂[µAν]
Riemann curvature 1: Rρσµν = 2∂[νΓρµ]σ + 2Γρλ[νΓλµ]σ
Riemann curvature 2: Rµνab = Rρνσλgρµe

σ
ae
λ
b

Vierbein field: eµa
Spacetime index: µ, ν, ρ, · · · . Local Lorentz index: a, b, c, · · · .
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Wigner function and ~ expansion

Dirac decomposition:

W (x, p) =
1

4

[
F + iγ5P + γµVµ + γ5γµAµ +

1

2
σµνSµν

]
Focus on Vµ and Aµ or equivalently Rµ/Lµ = (1/2)(Vµ ±Aµ):

∆µRµ =
~2

24
(∇ρRµν)∂ρp∂

µ
pRν +O(~3)

ΠµRµ =
~2

8
Rµν∂

µ
pRν +O(~3)

~∆[µRν] − εµνρσΠρRσ = −~2

16
εµναβR

αβρσ∂pρRσ +O(~3)

Lµ satisfies similar equations.
The last two equations fix Rµ up to a scalar function (distribution
function) and frame defining conditions.
The first equation then gives kinetic equation for distribution
function.
The dynamic equations for F ,P,Sµν can similarly obtained.
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Covariant chiral kinetic equation

The solutions to the last two equations:

Rµ = 2πδ(p2)

[
pµ − ~

p2
F̃µνpν + ~Σµν∆ν

]
f +O(~2)

∆µ = ∇µ +
(
−Fµλ + Γνµλpν

)
∂
∂pλ

.

f = f0 + f1 +O(~2) is the distribution function.
Spin tensor: Σµν = εµνρσpρnσ/(2p · n).
nµ is a frame choosing vector.
When nµ = g−1

00 δ
µ
0 , rest frame of n: Σij = ε0ijkp

k/(2p0)
Massless particle, spin is slaved to momentum.

The collisionless kinetic equation for f up to O(~):

δ
(
p2 − ~FαβΣαβ

)[
p ·∆ + ~

(
nµF̃

µν

p · n + ∆µΣµν
)

∆ν

+
~
2

Σµν
(
∇ρFµν + pλR

λ
ρµν

)
∂ρp

]
f = 0

This equation is invariant under general coordinate transformation.
This equation is invariant under local Lorentz transformation.
In Minkowski spacetime, Γλµν = 0 = Rν

λαβ , it reduces to the
kinetic equation in pure electromagnetic field. (Hidaka, Pu, Yang 2017;

Huang, Shi, Jiang, Liao, Zhuang 2018)
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Discussions
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Discussions

(1) Integrating out energy
∫
dε, with ε = Kµpµ (Kµ a timelike

Killing vector), one can obtain a 3D Boltzmann equation. The CKT
in EM field in last part corresponds to Kµ = δµ0 in flat spacetime
with nµ = Kµ. The two CKTs for CVE in last part correspond to
Kµ = δµ0 in rotating frame, with one nµ = (1,x× ω) and another
nµ = (g00)−1Kµ and ki = giµpµ.(Liu, Gao, Mameda, Huang 2018)

(2) One can determine the equilibrium distribution by requiring f to
depend on only linear combinations of collisional conserved
quantities, 1, pµ,Σ

µν . For Fermi-Dirac distribution, one can
reproduce the correct CME, CVE currents. One can show that the
physical current is independent of spin-frame vector nµ. (Gao, Wang

2018; Liu, Gao, Mameda, Huang 2018)

(3) A full treatment of the collision term is not done. However,
some interesting features were discussed, e.g., the modification of
side-jump current δRµ = 2π~δ(p2)ΣµνCν [f ] with Cν determined by
collision kernel. (Chen, Stephanov, Son 2015; Hidaka, Pu, Yang 2016)
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Discussions
(4) In the derivation with Wigner function, we were essentially
treating “spin currents”. For massless fermion, spin is slaved with
momentum, two independent CKTs for particle number and helicity.
For massive fermions, spin is independent of pµ, we need 4
equations for particle number and 3 spin degree of freedom. (See talks

by: Jianhua Gao, Ziyue Wang, Xinli Sheng, Lixin Yang, Shu Lin)

(5) CKT from other approaches. The worlkine formalism(Mueller,

Venogopolan 2017), The high-density effective theory(Son, Yamamoto 2012;

Lin, Shukla 2019), The on-shell effective theory(Carignano, Manuel,

Torres-Rincon 2018) (See talks by: Shudla, Mueller)

(6) Applications to real-time anomalous transport phenomena and
spin polarization in quark-gluon plasma, electroweak plasma, · · · .
(See talks by: Cheming Ko, Qun Wang, Wenhao Zhou, Jun Xu, Shi Pu)

(7) Out looks: CKT beyond leading approximation?.
Gravitoelectromagnetism and gravitational effects? CKT in other
spacetime dimensions and for higher spins? Merge CKT with parton
cascade? A full treatment of the collision term? Derivation of
anomalous hydrodynamics from CKT? · · ·

Thank you!
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