5th Workshop on Chirality, Vorticity and Magnetic Field in Heavy-Ion Collisions

CHIRAL MAGNETIC EFFECT FROM EVENT-BY-EVENT Anomalous-Viscous Fluid Dynamics

Shuzhe Shi, McGill University

In collaboration with:

Yin Jiang, Hui Zhang, Elias Lilleskov, Jinfeng Liao, Yi Yin, Defu Hou,

Chiral Magnetic Effect

Chiral magnetic effect (CME) is the generation of electric current along an external magnetic field induced by chirality imbalance.

For right-handed particles w/ positive charge:

1.
$$\vec{p} / / \vec{S} / / \vec{\mu}$$

2. Energy =
$$-\overrightarrow{\mu} \cdot \overrightarrow{B}$$

⇒ lower energy if moving along B field direction

$$J = \sigma_5 \mu_5 B$$

The Free Encyclopedia

(10¹⁵ T @ 200 GeV Au-Au)

▶ B field $\otimes \mu_5 \Rightarrow$ current \Rightarrow dipole (charge separation)

► B field $\otimes \mu_5 \Rightarrow$ current \Rightarrow dipole (charge separation)

 $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + \dots$

• charge separation \Rightarrow charge dept. two-particle correlation $\gamma = \langle \cos(\Delta \phi_i + \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle - \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$ $\delta = \langle \cos(\Delta \phi_i - \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle + \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$ CME: $H = (a_{1+})^2$

► B field $\otimes \mu_5 \Rightarrow$ current \Rightarrow dipole (charge separation)

 $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + \dots$

• charge separation \Rightarrow charge dept. two-particle correlation

$$\gamma = \langle \cos(\Delta \phi_{i} + \Delta \phi_{j}) \rangle = \langle \cos \Delta \phi_{i} \cos \Delta \phi_{j} \rangle - \langle \sin \Delta \phi_{i} \sin \Delta \phi_{j} \rangle$$

$$\delta = \langle \cos(\Delta \phi_{i} - \Delta \phi_{j}) \rangle = \langle \cos \Delta \phi_{i} \cos \Delta \phi_{j} \rangle + \langle \sin \Delta \phi_{i} \sin \Delta \phi_{j} \rangle$$

$$\gamma_{bkg} = \kappa v_{2} \mathsf{F}$$

$$\delta_{bkg} = \mathsf{F}$$

Bulk Background

► B field $\otimes \mu_5 \Rightarrow$ current \Rightarrow dipole (charge separation)

 $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + \dots$

• charge separation \Rightarrow charge dept. two-particle correlation $\gamma = \langle \cos(\Delta \phi_i + \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle - \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$ $\delta = \langle \cos(\Delta \phi_i - \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle + \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$ $\gamma = \kappa v_2 F - H$ F: Bulk Background

 $\delta = F + H$ H: Possible Pure CME Signal = $(a_{1,CME})^2$

Anomalous-Viscous Fluid Dynamics

$$D_{\mu}J_{R^{\mu}} = + \frac{N_{c}q^{2}}{4\pi^{2}}E_{\mu}B^{\mu} \qquad D_{\mu}J_{L^{\mu}} = -\frac{N_{c}q^{2}}{4\pi^{2}}E_{\mu}B^{\mu}$$

$$J_{R^{\mu}} = n_{R}u^{\mu} + \nu_{R^{\mu}} + \frac{N_{c}q}{4\pi^{2}}\mu_{R}B^{\mu} \qquad \textbf{CME}$$

$$J_{L^{\mu}} = n_{L}u^{\mu} + \nu_{L^{\mu}} - \frac{N_{c}q}{4\pi^{2}}\mu_{L}B^{\mu} \qquad \textbf{Viscous Effect}$$

$$\Delta^{\mu_{\nu}}d\nu_{R,L^{\nu}} = -\frac{1}{\tau_{rlx}}(\nu_{R,L^{\mu}} - \nu_{NS^{\mu}})$$

$$\nu_{NS^{\mu}} = \frac{\sigma}{2}T\Delta^{\mu\nu}\partial_{\nu}\frac{\mu}{T} + \frac{\sigma}{2}qE^{\mu}$$

as the linear perturbation on top of 2+1D VISHNU/MUSIC Hydro background

CME from Smooth AVFD simulation

Y.Jiang, SS, Y.Yin & J.Liao, Chin. Phys. C (2018) SS, Y.Jiang, E.Lilleskov & J.Liao, Annals Phys. (2018)

Influence from Event-by-Event Fluctuation

- Fluctuations !!!
 - Initial Conditions
 - Hadron Scattering & Resonance Decay

Event-by-Event: Correlators

Au-Au @ 200GeV 50-60%

Event-Shape Engineering Method?

$$\gamma = \kappa v_2 F_{BKG} - H_{CME}$$

intercept reflects CME

subtleties due to Event
 Plane de-correlation

Event-Plane De-Correlation?

- $\gamma_{CME} = v_1^2 a_1^2 = (c.s.)^2 \cos(2\Psi_{CS} 2\Psi_2) \approx (c.s.)^2 \cos(2\Psi_B 2\Psi_2)$
- γ_{CME} picks up a factor, related to de-correlation
- different v₂-bins correspond to different de-correlation factors

Decisive Test of CME – Isobaric Collisions

Non-CME Background

Different deformation schemes:

black - no deformation (both are spheric)

red - Ru is more deformed

blue - Zr is more deformed

Joint cut of **Multiplicity**⊗**Eccentricity** ⇒ same background!

 $-1 < \eta < 1$ 64 < N_{ch} < 96 0.05 < v₂^{ref} < 0.25

Statistics: 10⁷ events in AVFD simulation ~ 3×10⁸ events in experiment

in collaboration with H.Zhang, J.Liao & D.Hou, in final preparation

 $-1 < \eta < 1$ 64 < N_{ch} < 96 0.05 < v₂^{ref} < 0.25

Statistics: 10⁷ events in AVFD simulation ~ 3×10⁸ events in experiment

in collaboration with H.Zhang, J.Liao & D.Hou, in final preparation

EBE-AVFD for the Isobars:

- 1) (N_{ch} , v₂) joint-cut eliminates difference in non-CME bkg.
- 2) Absolute differences in correlators are very sensitive to CME!
- 3) Decisive probe of topological charge transition

Further Development of the AVFD framework:

1) Damping of axial charge

2) More realistic background (Local Charge Conservation)

3) 3+1Hydro with non-trivial vorticity and rapidity dependence

in collaboration with A.Huang, S.Lin, J.Liao, X.Zhu & L.He, in progress

Implementing LCC

take neutral systems $(\mu = 0)$ as example

In the current particle sampler, $[\mu = 0]$ as example two ways to sample particles in a single FOHS cell:

(a) grand-canonical ensamble (both N_{net} , E fluctuate) $N_{pos} \sim Poisson Distribution with mean \langle N \rangle = N_{thermal}$ $N_{neg} \sim Poisson Distribution with mean \langle N \rangle = N_{thermal}$ N_{pos} and N_{neg} are not necessarily the same

(b) canonical ensamble (N_{net} conserved, E fluctuates) $N_{pos} \sim Poisson Distribution with mean \langle N \rangle = N_{thermal}$ $N_{neg} = N_{pos}$ B. Schenke, C. Shen, P. Tribedy, arXiv:1901.04378

A hybrid approach?

c) for every cell, randomly choose (a) or (b), according to given acceptance probability P_{LCC} being a parameter $\in [0,1]$.

Correlators with LCC

solid: w/ CME dash: w/o CME

 $\gamma_{112} = \langle \cos(\phi_{i} + \phi_{j} - 2\psi_{EP}) \rangle = \langle \cos_{\Delta}\phi_{i} \cos_{\Delta}\phi_{j} \rangle - \langle \sin_{\Delta}\phi_{i} \sin_{\Delta}\phi_{j} \rangle$

Event-Shape Engineering (with LCC)

 $\gamma = \kappa v_2 F - H$ $\delta = F + H$

filled: w/ CME open: w/o CME

THANK YOU!

BACKUP SLIDES

filled: w/ CME open: w/o CME

filled: w/ CME open: w/o CME

 $\gamma_{123} = \langle \cos(\phi_i + 2\phi_j - 3\psi_{EP,3}) \rangle = \langle \cos_{\Delta}\phi_i \cos_{\Delta}\phi_j \rangle - \langle \sin_{\Delta}\phi_i \sin_{\Delta}\phi_j \rangle$

Event-Shape Engineering (with LCC)

 $\gamma = \kappa v_2 F - H$ $\delta = F + H$

filled: w/ CME open: w/o CME

CME: Event-Averaged v.s. Event-by-Event

dots: E-by-E curves: smooth

Au-Au @ 200GeV

50-60%

IsoBar CME from smooth AVFD simulation

B field projected w.r.t. Participant Plane

IsoBar CME from smooth AVFD simulation

Estimation Of IsoBar Bulk Background

