Applications of Machine Learning in Hydrodynamics and Collective Flow

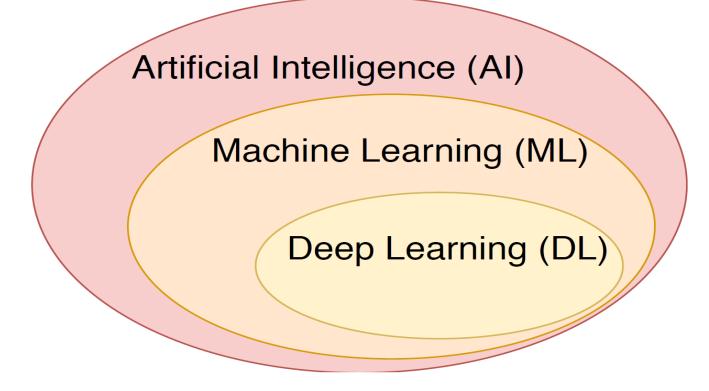
Huichao Song

宋慧超 Peking Universit

The 5th Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions Tsinghua, Beijing, April 8-12 2019

April 11, 2019

What is Machine Learning / Deep Learning?



AI : the broadest term, applying to any technique that enables computers to mimic human intelligence.

ML: A subset of AI aiming at optimizing a performance criterion using example data or past experience, but without explicit instruction.

DL: A subset of ML aiming at understanding high-level representations of data using a deeper structure of multiple processing layers

Broad Applications of Machine Learning

Computer vision

- -Image identification
- -Image style transition
- -Image generation

Language processing

- -Machine translation
- -Speech recognition
- -Chinese poetry generation

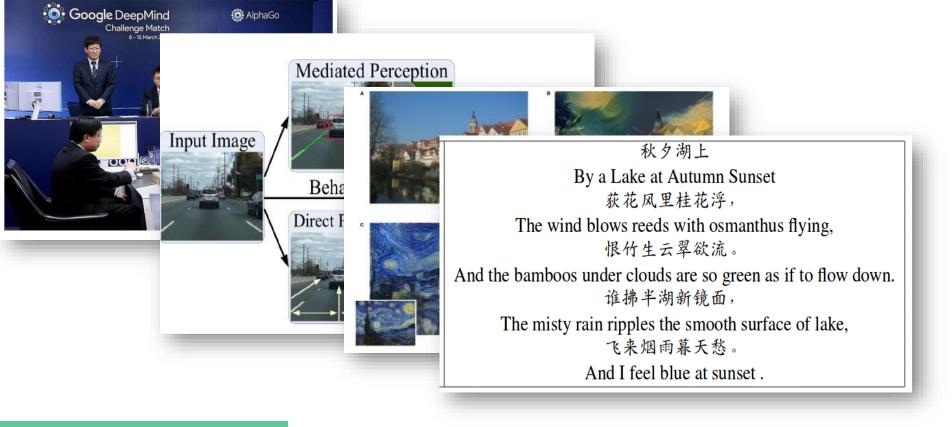
••• •••

Playing Games

-AlphaGo (by Google DeepMind)

Autonomous Driving

秋夕湖上 By a Lake at Autumn Sunset 荻花风里桂花浮, The wind blows reeds with osmanthus flying, 恨竹生云翠欲流。 And the bamboos under clouds are so green as if to flow down. 谁拂半湖新镜面, The misty rain ripples the smooth surface of lake,



Categories:

-Supervised learning -Unsupervised learning -Reinforcement learning

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, <u>http://www.deeplearningbook</u>. org MIT Press, 2016

An example of Supervised Learning

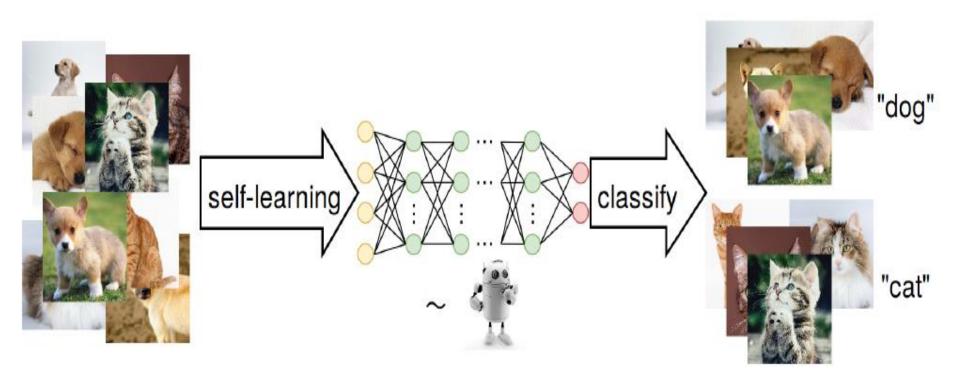
-Identify cats and dogs training testing "dog" "cat" dog or cat? self-learning well-trained

Supervised learning:

Training on a dataset contains many features and associated with a label or target.

An example of Unsupervised Learning

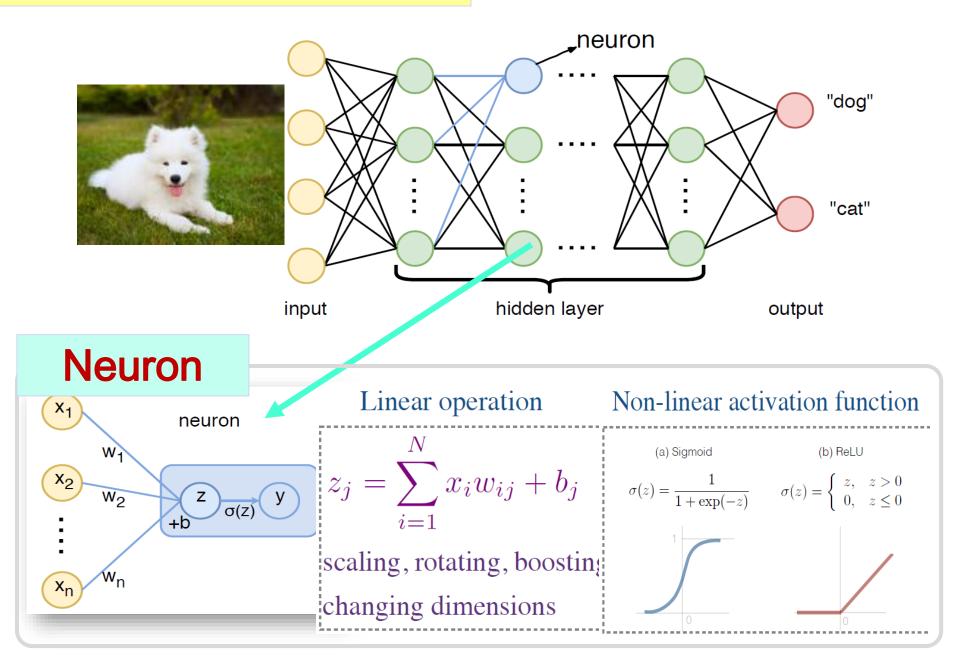
-Classify cats and dogs



Unsupervised learning

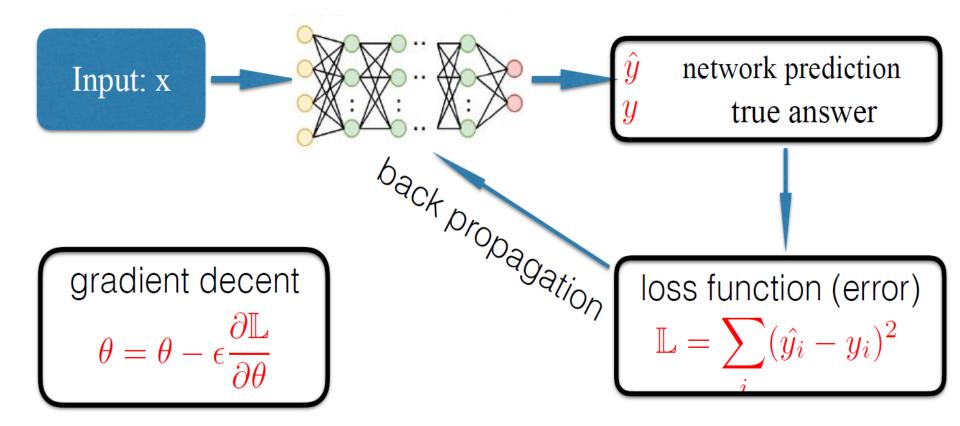
-experience a dataset contains many features but **without labels**, and learn useful properties of the structure of this dataset.

Deep Neural Network



Deep Neural network

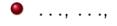
-Loss function, back propagation & gradient decent



-Deep neural network can reduce fitting error by updating model parameters through back propagation and gradient decent.

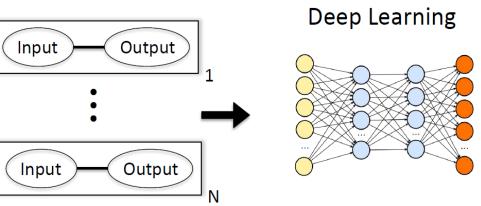
Applications of Machine Learning in Physics

- Y. D. Hezaveh, L. Perreault Levasseur and P. J. Marshall, Nature 548, 555 (2017)
- J. Carrasquilla and G. R. Melko, Nature Phys. 13, 431 (2017)
- Carleo et al., Science 355, 602-606 (2017)
- E. P. L. van Nieuwenburg, Y. H. Liu, S. Huber, Nature Phys. 13, 435 (2017)
- Pierre Baldi, Peter Sadowski, and Daniel Whiteson, Nature Commun. 5 (2014) 4308
- Luke de Oliveira, Michela Paganini, and Benjamin Nachman, Comput Softw Big Sci (2017) 1: 4
- Long-Gang Pang et al., Nature Commun. 9 (2018) no.1, 210



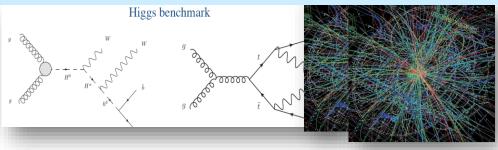
Why Machine Learning in Physics?

"Unlike earlier attempts ... Deep Learning systems can see patterns and spot anomalies in data sets far larger and messier than human beings can cope with."



Can "**Black-box**" models learn patterns and models solely from data without relying on scientific knowledge?

Searching for Exotic Particles in High-Energy Physics



Deep learning can improve the power for the collider search of exotic particles

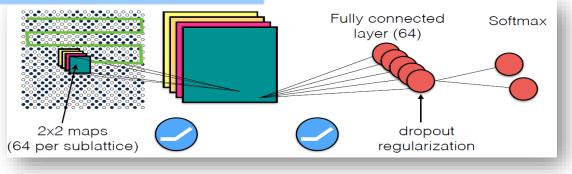
P.Baldi,P.Sadowski,& D.Whiteson Nature Commun.5, 4308 (2014)

Classifying the Phase of Ising Model

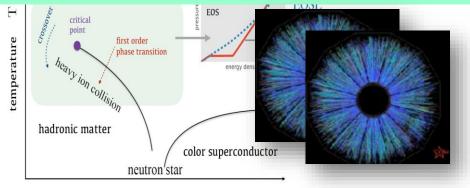
For the case of Ising gauge theory

$$H = -J \sum_{p} \prod_{i \in p} \sigma_i^z$$

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431–434 (2017)



Identify QCD Phase Transition with Deep Learning

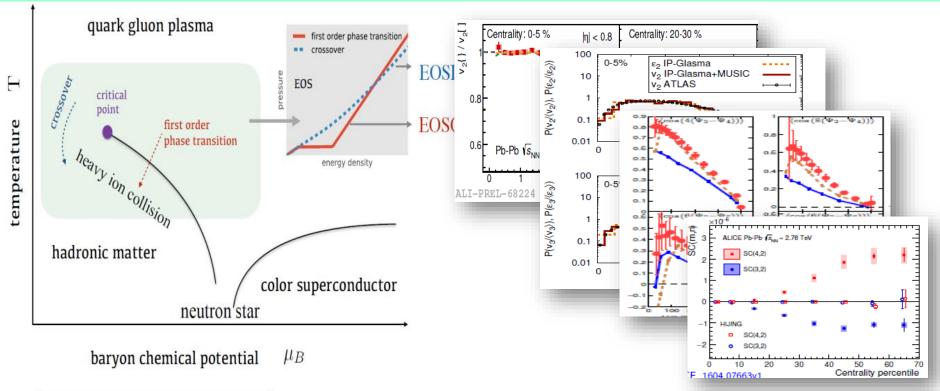


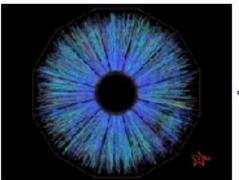
DNN efficiently decode the EOS information from the complex final particle info event by event

LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang. Nature Commun.9 (2018) no.1, 210

baryon chemical potential μ_B

Identify QCD Phase Transition with Deep Learning





Motivation:

-Traditionally, the properties of the QCD matter are extracted from the event averaged observables

-Can deep learning identify different EoS from the raw data of heavy ion collisions?

LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang. Nature Commun.9 (2018) no.1, 210

Identify QCD Phase Transition with Deep Learning

A) Generating training/testing data:

-Run Hydro with EOS L and EOS Q -particle spectra - image (15*48 pixels) $\rho(p_{\rm T}, \phi) \equiv \frac{dN_{\rm i}}{dY p_{\rm T} dp_{\rm T} d\phi} = g_i \int_{\sigma} p^{\mu} d\sigma_{\mu} f_{\rm i},$

B) Training CNN

8×8 conv, 16

dropout(0.2)

bn, PReLu

Table 1 The training data set Hydro CLVis (AMPT)

Training data set		$\eta/s = 0$		$\eta/s = 0.08$	
		EOSL	EOSQ	EOSL	EOSQ
Au-Au √s _{NN}	= 200 GeV	7435	5328	500	500
Pb-Pb $\sqrt{s_{NN}}$ =		4967	2828	500	500
Particle spectra 15×48	16 features 15×48	32 features 8×24	Flattened	fc Output 128 layer	EOS
					→ Crossover

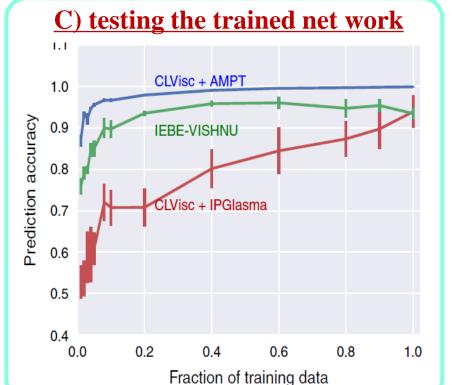
Dropout(0.5)

bn, sigmoid

7×7×16 conv, 32

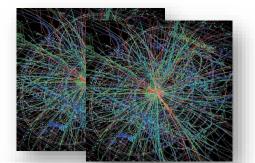
bn, avgpool, PReLu

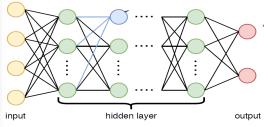
dropout(0.2)



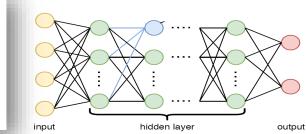
One can efficiently decode the EOS information from the complex final particle info event by event using deep learning

LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang. Nature Commun.9 (2018) no.1, 210





Higgs signal or background? P.Baldi, et al, Nature Commun. (2014)



input hidden layer output

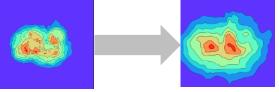
High temperature or low temperature phase?

Carrasquilla & Melko. Nature Physics (2017)

EoS L or EOSQ ? Pang,et al Nature Commun.(2018)

For hydrodynamics can we use deep learning to learn/predict the pattern transformation between initial and final profiles?

Initial energy density profiles -----> final energy density velocity profiles



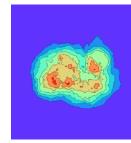
For the non-linear hydro system, can the **black-box** network could learn pattern transformations solely from data without relying on scientific knowledge?

(conservation laws)

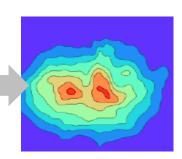
Applications of deep learning to relativistic hydrodynamics

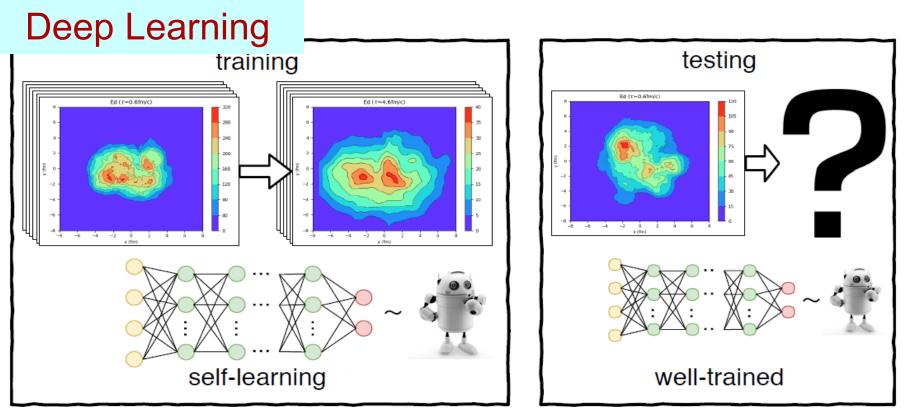
H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song arXiv: 1801.03334; NPA2019

Traditional hydrodynamics



 $\partial_{\mu}T^{\mu\nu}(x)=0$

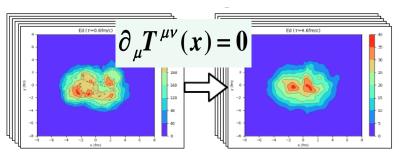




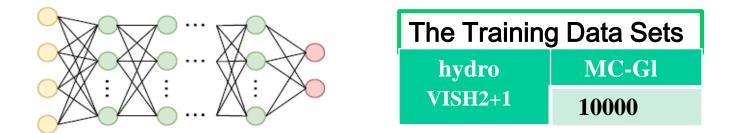
-Such deep learning systems do not need to be programmed with the hydro equation $\partial_{\mu}T^{\mu\nu}(x) = 0$ Instead, they learn on their own

Deep Learning

Step1) Generate the training/testing data sets from hydro



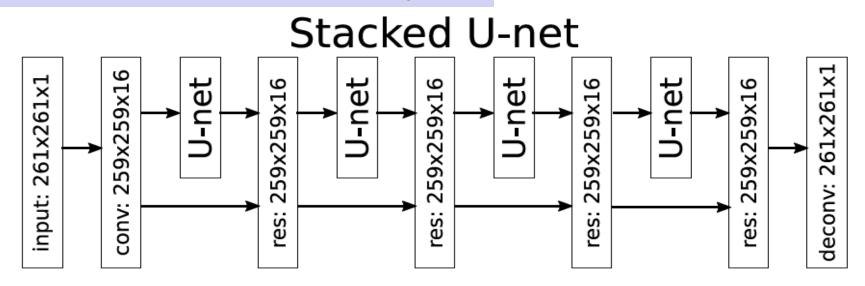
Step2) Design & train the deep neural network

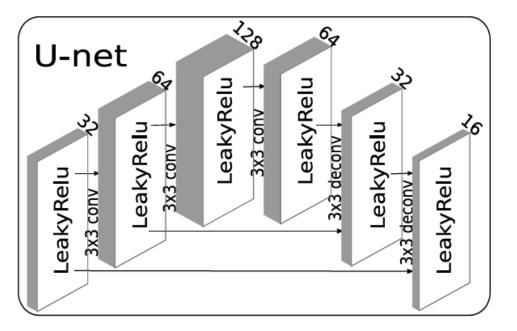


Step3) Test the deep neural network

The Testing Data Sets					
hydro	MC-Gl	MC-KLN	AMPT	Trento	
VISH 2+1	10000	10000	10000	10000	

Stacked U-net for 2+1-d hydro





The activation function:

Leaky ReLU $f(x) = \max\{x, 0.03x\}$

The loss function: normalized MAE loss $Loss = \frac{|y_1 - y_0|}{|y_0|}$

H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song arXiv: 1801.03334, NPA 2018

Training / Testing data sets from 2+1-d hydro

$$T^{\tau\tau}{}_{,\tau} + (\bar{v}_x T^{\tau\tau}){}_{,x} + (\bar{v}_y T^{\tau\tau}) = -\frac{p + T^{\tau\tau}}{\tau} - (p \, \bar{v}_x){}_{,x} - (p \, \bar{v}_y){}_{,y}$$

$$T^{\tau x}{}_{,\tau} + (\bar{v}_x T^{\tau x}){}_{,x} + (\bar{v}_y T^{\tau x}){}_{,y} = -p{}_{,x} - \frac{T^{\tau x}}{\tau}$$

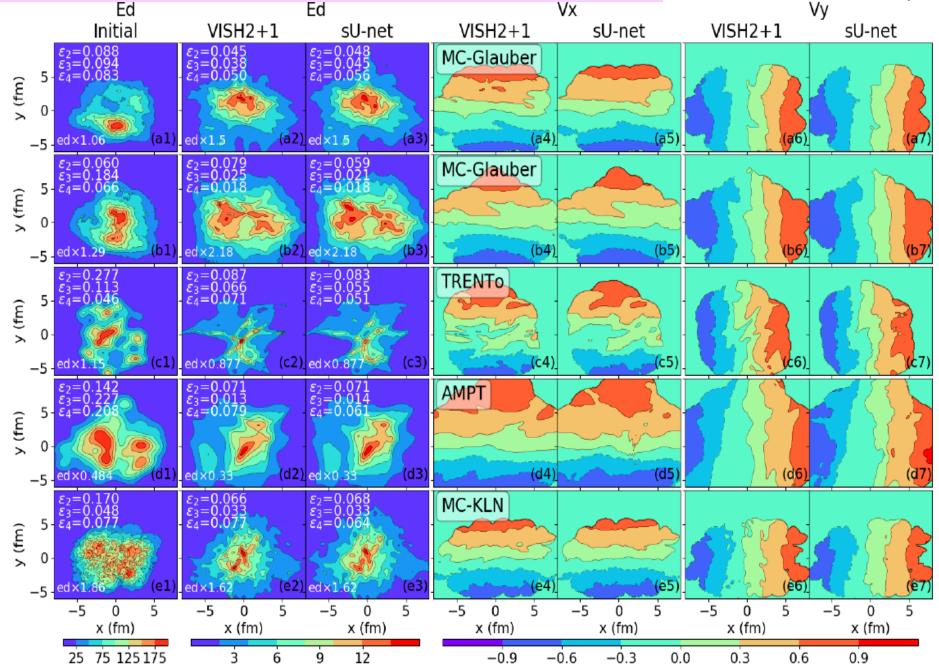
$$T^{\tau y}{}_{,\tau} + (\bar{v}_x T^{\tau y}){}_{,x} + (\bar{v}_y T^{\tau y}){}_{,y} = -p{}_{,y} - \frac{T^{\tau y}}{\tau}$$
Initial conditions: MC-Glauber, MC-KLN, AMPT, Trento EoS: p=e/3, hydro evolution time: $\tau - \tau_0 = 2.0, \ 4.0, \ 6.0 \ \text{fm/c}$

The Trainin	g Data Sets	a.	Ed (T=0.6fm/c)	aEd (r=4.6tm/c)	
2+1-d hydro	MC-Glauber	4- 2- £0-			
VISH2+1	10000 events	-2 -	120		
			40 -4 -2 0 2 4 5 0 x (fm)	-6 - -3 -6 -4 -2 0 2 4 x(fm)	
The Testing	J Data Sets				
2+1-d hydro VISH 2+1	MC-Glauber	MC-KLN	AMPT	Trento	
	10000 events	10000 events	10000 events	10000 events	

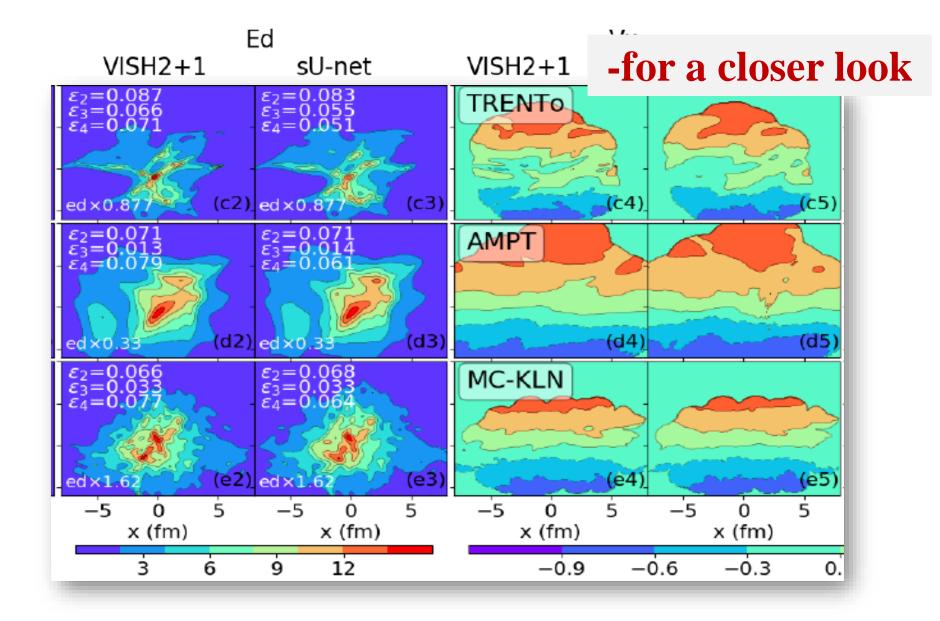
H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song arXiv: 1801.03334 NPA2018

sUnet prediction vs. hydro simulations

 $\tau - \tau_0 = 6.0 \text{fm}/c$

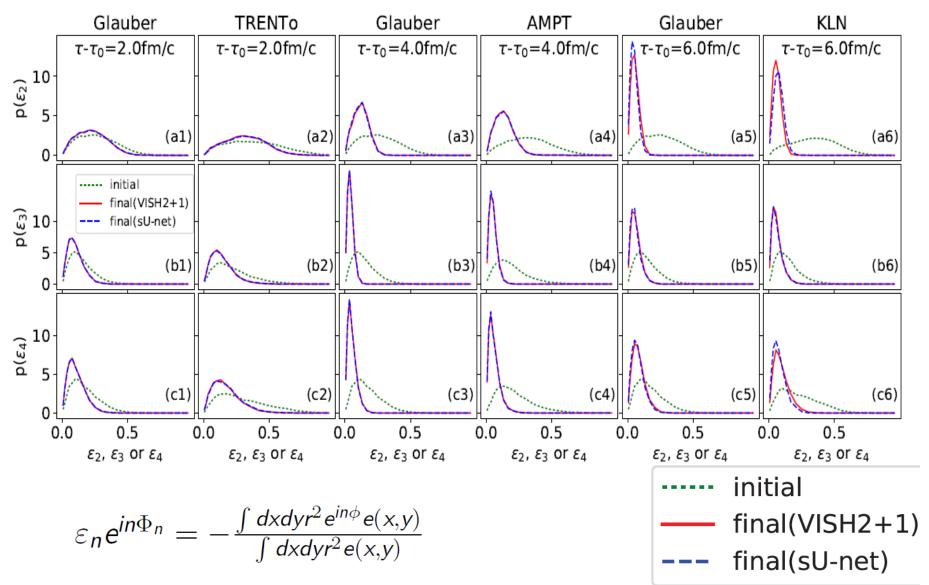


sUnet prediction vs. hydro simulations $\tau - \tau_0 = 6.0 \text{ fm/c}$

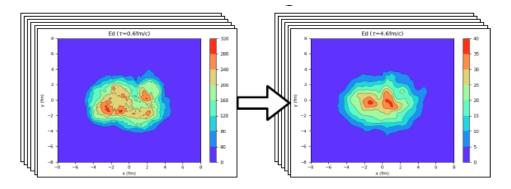


sUnet prediction vs. hydro simulations

Eccentricity distributions:



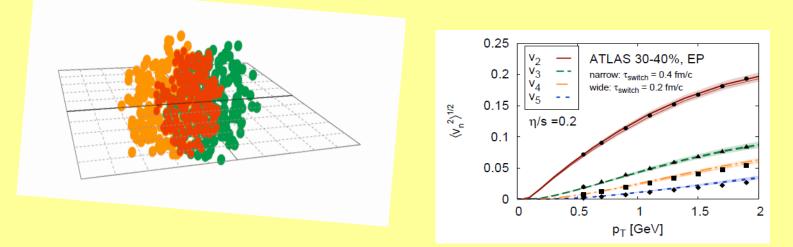
Simulation time: sUnet vs. hydro



With the well trained network, the final state profiles can be quickly generated from the initial profiles. (5-10 times faster for GPU based calculations)

Principal Component Analysis for Flow

Z. Liu, W. Zhao, and H. Song, arXiv: 1903.09833

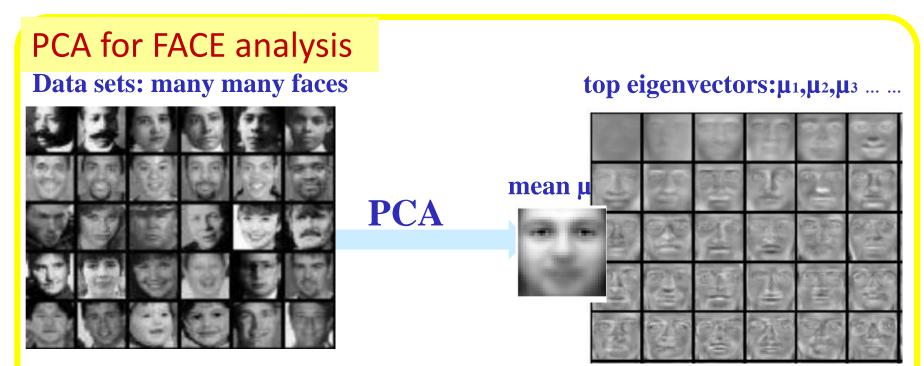


$$E\frac{dN}{d^{3}p} = \frac{1}{2\pi} \frac{dN}{dyp_{T}dp_{T}} [1 + 2v_{1}(p_{T}, b)\cos(\varphi) + 2v_{2}(p_{T}, b)\cos(2\varphi) + 2v_{3}(p_{T}, b)\cos(3\varphi)....] - \text{flow definition from human being}$$

-- Can Machine Learning directly discover flow harmonics from complex data sets?

What is Principal Component Analysis (PCA)

-a statistical procedure that uses an <u>orthogonal transformation</u> to convert a set of observations into a set of values of <u>linearly uncorrelated</u> variables called principal components.



With PCA, each face is decomposed into superposition of eigenfaces.

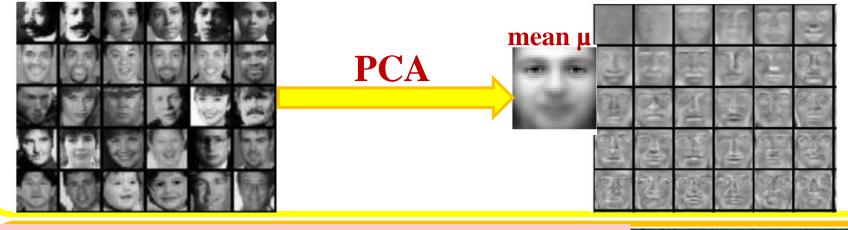
 $x = \mu + w_1u_1 + w_2u_2 + w_3u_3 + w_4u_4 + \dots$

٨

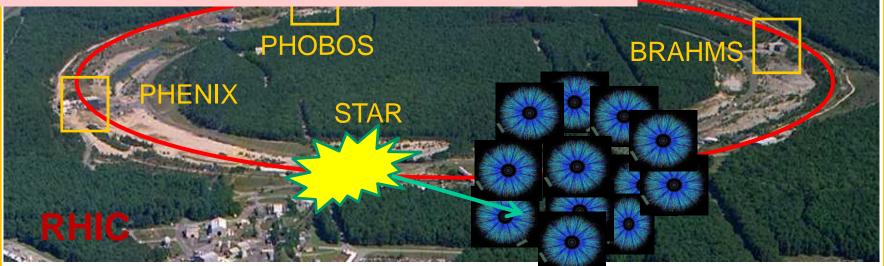
PCA for FACE analysis

Data sets: many many faces

top eigenvectors:µ1,µ2,µ3 ...



PCA for Relativistic Heavy Ion Collisions?

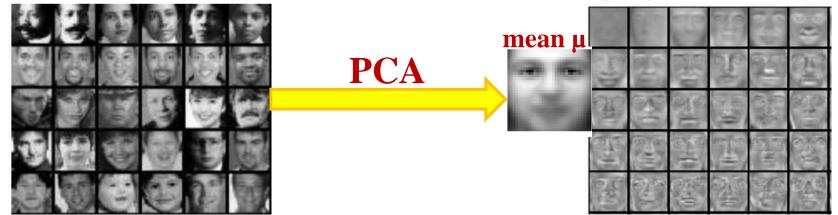


Can PCA (machine) directly identify the different configurations behind the massive heavy ion data?

PCA for FACE analysis

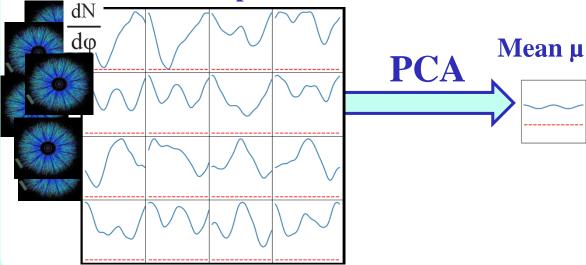
Data sets: manv manv faces

top eigenvectors:µ1,µ2,µ3 ...

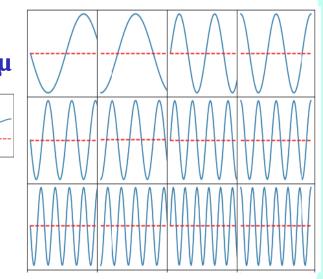


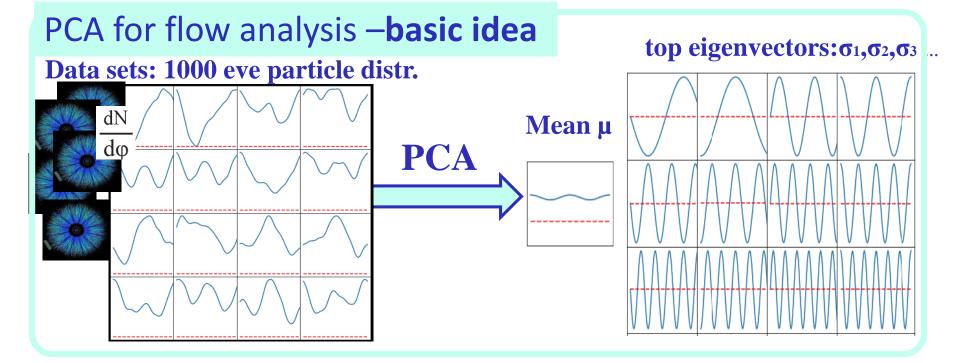
PCA for flow analysis –basic idea

Data sets: 1000 eve particle distr.

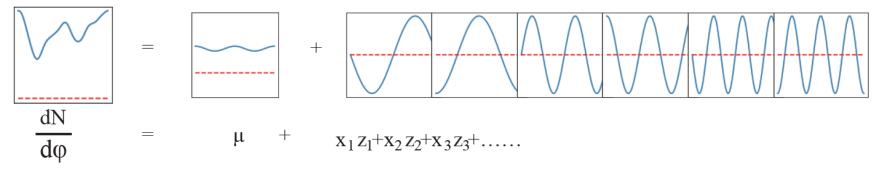


top eigenvectors:σ₁,σ₂,σ₃ ...

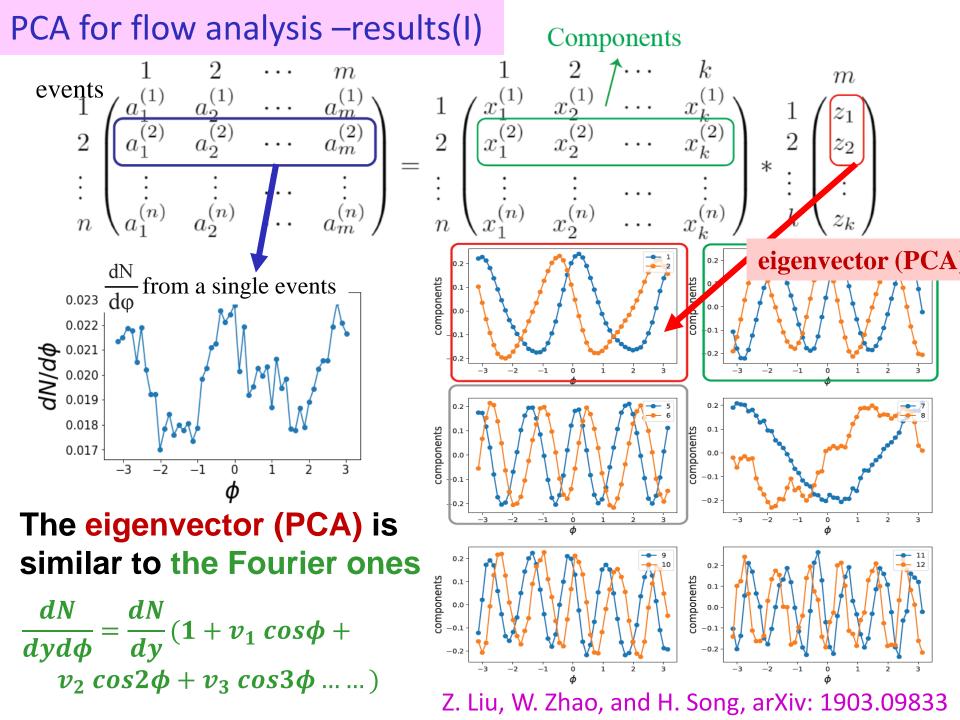


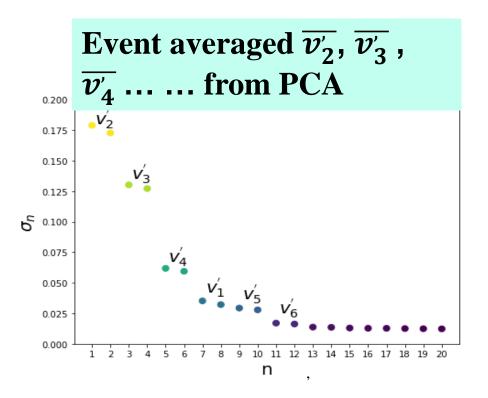


With PCA, particle distributions in each events also decomposed into superpositions of eigenmodes



In the next few slides, I will SHOW -PCA define its own flow harmonics (eigenmodes) -PCA could analyze flow with event average/ event-by-event

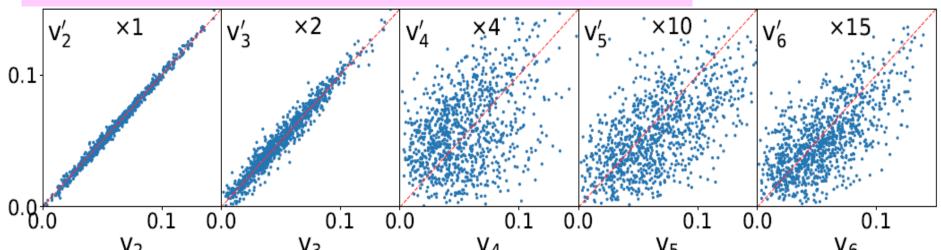




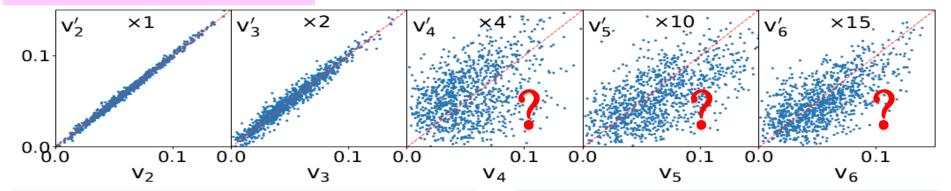
-PCA gives the event averaged flow harmonics $\overline{v'_2}$, $\overline{v'_3}$, $\overline{v'_4}$ and the event-by-event v'_2 , v'_3 , v'_4 Results of elliptic and triangular flow are similar to the ones from traditional Fourier transform, but show deviations for higher order flow harmonics with $n \ge 4$

Z. Liu, W. Zhao, and H. Song, arXiv: 1903.09833

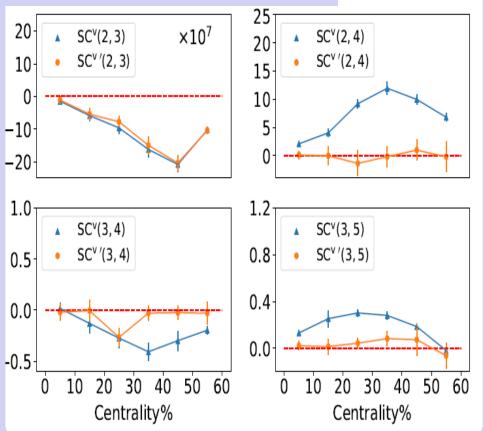
Event-by-event v_n (PCA) vs. v_n (Fourier)



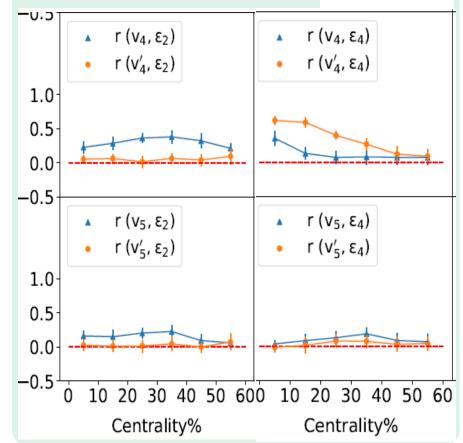
 v_n^{\prime} (PCA) vs. v_n (Fourier)



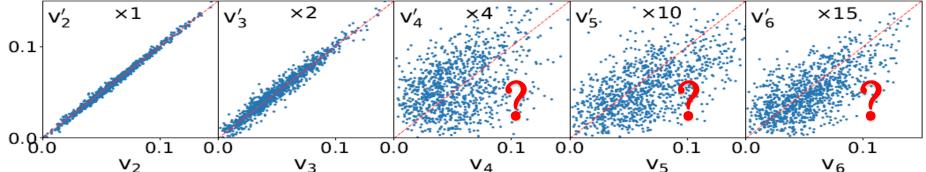
Symmetric Cumulants



Pearson Coefficients



 v_n^{\prime} (PCA) vs. v_n (Fourier)

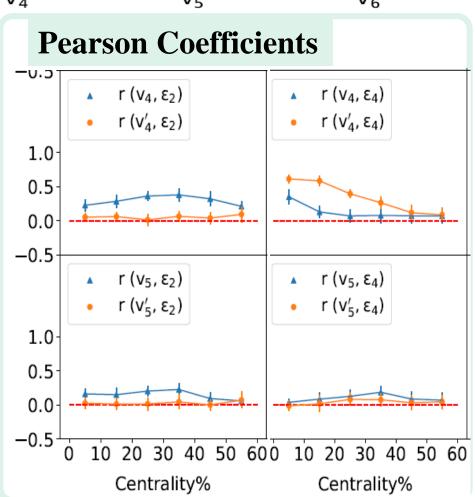


Traditional Fourier Transform -Strong mode couplings between v_4 and v_2 -interoperated as highly nonlinear hydro evolution that mix v_4 and ε_2^2

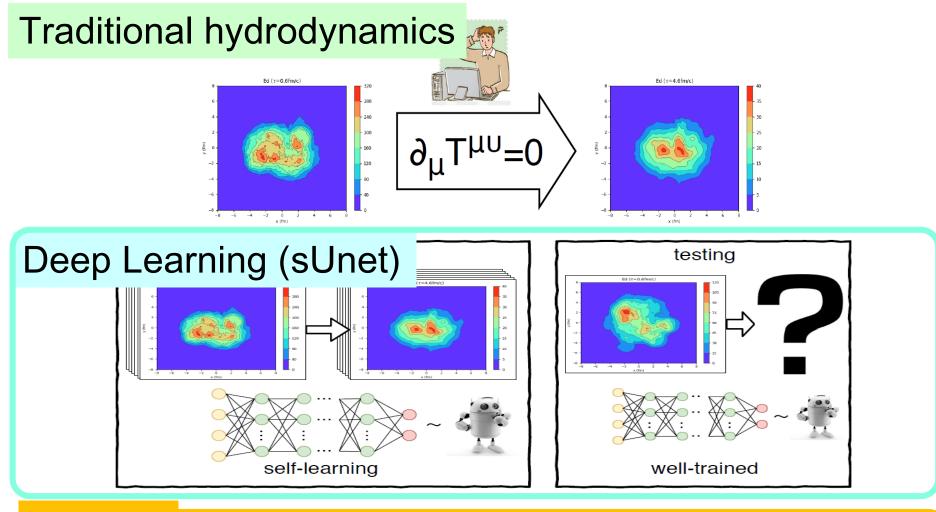
PCA:

-Reduce the correlations between $v_4^{\,\prime}$ and $\varepsilon_2^{\,\prime}$ -increase correlations between $v_4^{\,\prime}$ and $\varepsilon_4^{\,\prime}$

Z. Liu, W. Zhao, and H. Song, arXiv: 1903.09833



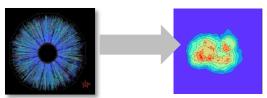
Summary & outlook



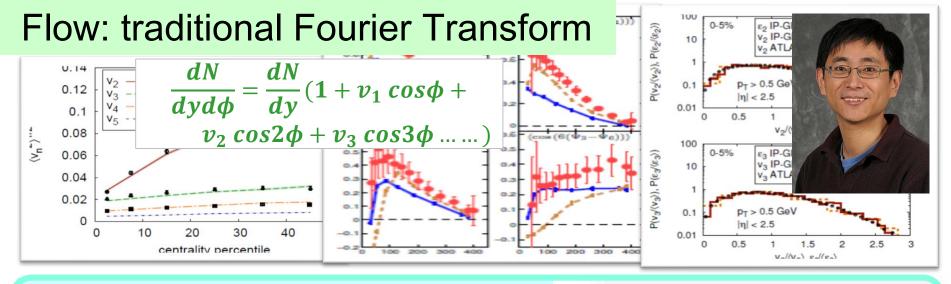
Outlook

Final particle profiles

-----> Initial energy density profiles

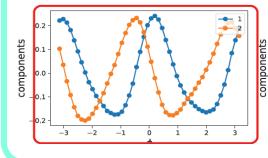


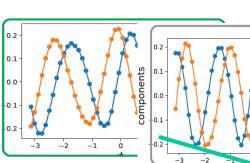
Can deep learning discover knowledge (conservation laws) from the massive data generated from hydrodynamics?

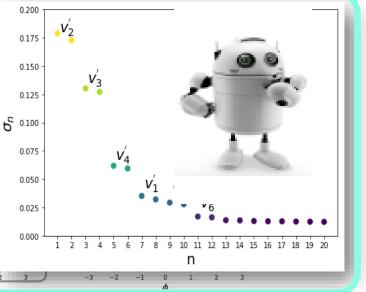


Unsupervised Learning (PCA)

It independently discovered the flow harmonics without explicit instructions from human being!







Outlook

Can PCA detect modes or structures from the massive data that is not realized or easily defined by human being?

