Hydrodynamization and magnetic field evolution in very early stages of HIC

Li Yan

Institute of Modern Physics, Fudan University

2019. 04. 11, Chirality 2019, Tsinghua

Work with Xu-Guang Huang

Highlights of the talk

- Goal: We solve dynamical evolution of \vec{B} field in the early stages of heavy-ion collisions, by coupling \vec{B} field evolution and the thermalization process of QGP. We consider the weakly coupled QGP scenario, namely, $\alpha_s \ll 1$.
- It is likely that there exists residual \vec{B} field, with around a few % of initial field strength when hydro starts.

Motivation

There are two important questions with respect to the study of high energy heavy-ion collisions, which have been studied so far in parallel in most cases,

• Dynamical evolution of \vec{B} field: How does \vec{B} field evolve in the presence of quark-gluon system, especially, when the quark-gluon system is far from local equilibrium?

• *Hydrodynamization*: How onset of hydro is realized in the quark-gluon system starting from far from local equilibrium?

Let's try to find overlaps in these two questions!

Dynamical evolution of \vec{B} field

- Field strength for $t \leq t_{col}$ is well-determined.
- Life-time is strongly affected by the properties of QGP.

very sensitive to early stages: out-of-equilibrium, σ, \ldots

• Major source of theoretical uncertainties of CME, etc.

Hydrodynamization (weakly-coupled QGP)

- Can be described by kinetic theory, after $\tau \sim 1/Q_s$ 'bottom-up' scenario (Baier, Mueller, Schiff and Son)
- Isotropization $(\mathcal{P}_L/\mathcal{P}_T = 1) \Leftrightarrow$ onset of ideal hydro.
- Anisotropy $(\mathcal{P}_L \ll \mathcal{P}_T)$ is expected at very early times. cf. solution of classical YM fields (Epelbaum, Gelis)

Hydrodynamization (weakly-coupled QGP)

• It takes very long time to reach isotropization, but viscous hydro can start very early with effective transport coefficients, especially, η/s is reduced effectively ("shear thinning fluid"). (Shuryak, Lublinsky, Romatschke, Blaizot, Yan,...)

• EB-field does not affect thermalization process: $\alpha_{\rm EM} \ll \alpha_s$

Coupled equations

$$\begin{cases} \partial_{\mu}A^{\mu\nu} = j^{\nu}, & \text{Maxwell} \\ \frac{1}{p^{0}} \left[p^{\mu}\partial_{\mu} + eQ_{q}p^{\mu}F^{\mu\nu}\partial_{p^{\nu}} \right] f_{q} = -\mathcal{C}[f_{q}], & \text{Boltzmann} \end{cases}$$

* $g^F = \delta f_q^F - \delta f_{\bar{q}}^F$ difference in q and \bar{q} due to coupling to EB. * $\bar{f}_q = \bar{f}_{\bar{q}}$ because of QCD symmetry. Simplification of the coupled equations

$$\frac{1}{p^{0}}p^{\mu}\partial_{\mu}g^{F} + \frac{1}{p^{0}}eQ_{q}p^{\mu}F^{\mu\nu}\partial_{p^{\nu}}[2\bar{f}_{q} + \delta f_{q}^{F} + \delta f_{\bar{q}}^{F}] = -\mathcal{C}[g^{F}]$$

$$\Rightarrow \quad \frac{1}{p^{0}}p^{\mu}\partial_{\mu}g^{F} + \underbrace{\frac{2}{p^{0}}eQ_{q}p^{\mu}F^{\mu\nu}\partial_{p^{\nu}}\bar{f}_{q}}_{\hat{\Gamma}[\bar{f}_{q}]} = \mathcal{O}(\delta f) \qquad (*)$$

- Assumptions and facts about Eq.(*):
 - 1 EB-field has little effect on thermalization process of QGP: $|\delta f| \ll \bar{f}$

2 If \bar{f}_q highly anisotropic, $\hat{\Gamma}[\bar{f}]$ is sizable \leftrightarrow very early stages.

3 Therefore,

$$\frac{1}{p^0}p^{\mu}\partial_{\mu}g^F = -\hat{\Gamma}[\bar{f}] + \underbrace{\mathcal{O}(\delta f)}_{\text{neglected}}$$

Configuration background QGP and EB-field

• Background QGP with respect to Bjorken symmetry,

$$(t, z) \Leftrightarrow (\tau, \xi),$$
 no dep. on \mathbf{x}_{\perp}
hence, $\bar{f}_q(t, z, \mathbf{p}) (= \bar{f}_{\bar{q}}(t, z, \mathbf{p})) \Leftrightarrow \bar{f}_q(\tau, \mathbf{p})$

• EB-field does not obey Bjorken symmetry:

$$A^{\mu}(t,z) = (0, A^{x}(t,z), 0, 0) \quad \Rightarrow \quad \begin{cases} E_{x} = -\partial_{t}A^{x} \\ B_{y} = \partial_{z}A^{x} \end{cases}$$

We are able to study EB-field at $\vec{x}_{\perp} = 0$.

Background QGP: Boltzmann & 2-2 scatterings

$$D_t f^a_{\mathbf{p}} \equiv \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f^a_{\mathbf{p}} = \mathcal{C}[f^a_{\mathbf{p}}]$$

for very early stages, dominated by $2 \leftrightarrow 2$ scatterings in QCD

$$\begin{aligned} \mathcal{C}[f_{\mathbf{p}}^{a}] = & \frac{1}{2E_{p}\nu_{a}} \sum_{b,c,d} \frac{1}{s_{cd}} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}2E_{\mathbf{p}'}} \frac{d^{3}\mathbf{k}}{(2\pi)^{3}2E_{\mathbf{k}}} \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}2E_{\mathbf{k}'}} \\ & \times (2\pi)^{4} \delta^{(4)}(P+P'-K-K') |\mathcal{M}_{cd}^{ab}|^{2} \\ & \times \left[f_{\mathbf{k}}^{c} f_{\mathbf{k}'}^{d} (1+\epsilon_{a}f_{\mathbf{p}}^{a})(1+\epsilon_{b}f_{\mathbf{p}'}^{b}) - f_{\mathbf{p}}^{a} f_{\mathbf{p}'}^{b} (1+\epsilon_{c}f_{\mathbf{k}}^{c})(1+\epsilon_{d}f_{\mathbf{k}'}^{d})) \right] \,, \end{aligned}$$

where $|\mathcal{M}|^2 \ni gg \leftrightarrow q\bar{q}, gq \leftrightarrow gq, g\bar{q} \leftrightarrow g\bar{q}, gg \leftrightarrow gg$

Diffusion approximation

small angle collisions dominate in $|\mathcal{M}|^2$:

Landau, Muller, ...

under which collision term reduces to $C[f] \longrightarrow \nabla \cdot \mathcal{J} + \mathcal{S}$ More details in 1402.5049 (Blaizot, Wu, Yan), also 1703.01372 (Tanji, Venugopalan)

Initial conditions, parameters, etc.

• Background EB-field from two colliding nuclei,

$$A^x \sim \left[\frac{\tilde{z} + \tilde{v}\tilde{t}}{(\tilde{b}^2/4 + \gamma^2(\tilde{z} + \tilde{v}\tilde{t})^2)^{1/2}} + \frac{\tilde{z} - \tilde{v}\tilde{t}}{(\tilde{b}^2/4 + \gamma^2(\tilde{z} - \tilde{v}\tilde{t})^2)^{1/2}}\right]$$

• Background QGP: CGC inspired initial quark distribution, Romatschke, Strickland

$$f_q(t=t_0, z=0, \mathbf{p}) f_0^q \Theta\left(1 - \frac{\sqrt{p_z^2 \xi^2 + p_\perp^2}}{Q_s}\right)$$

- * We have approximately $\alpha_s \sim 0.2$.
- * We take $f_0^q = 1$ as an optimistic initialization. $(f_0^q = 0?)$ cf.1601.03576 (Gelfand, Hebenstreit, Berges)
- * $\xi > 1$ introduces anisotropy.
- * Saturation scale Q_s is the only dimensional scale, e.g., $\tilde{z} = zQ_s$

Backgound QGP evolution

- Gluon population taken: mid-central LHC PbPb 2.76TeV.
- System is away from equilibrium as expected.

B-field evolution (z = 0)

- Ideal Bjorken MHD: $\sigma \to \infty$ and $B(\tau) \sim 1/\tau$ PLB 750(2015)45-52(V.Roy et. al)
- ECHO-QGP: finite σ and 1+2D expansion. EPJC 2016 76:659(G.Inghirami, et.al)

B-field evolution (z = 0)

14/19

Summary and discussions

- We have solved the coupled evolution of QGP and EB-field.
- The early stages of QGP is far from equilibrium with sizable pressure anisotropy, which plays an significant role in the dynamical evolution of EB-field at very early stages. (Implication of out-of-equilibrium effect on σ ?)
- A small fraction (a few %) of initial *B*-field could be left in QGP medium, depending on initial quark population, initial pressure anisotropy.
- Stay tuned for future updates!

Back-up slides

EB-field evolution

B-field distribution

