the 5th Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions Tsinghua University, April 8-12th, 2019

Transport simulations of spin and chiral dynamics

Jun Xu (徐骏)

Shanghai Advanced Research Institute, CAS

Collaboration with PhD students: Zhang-Zhu Han, Wen-Hao Zhou Shanghai Institute of Applied Physics, CAS

上善若水 海纳百川 协力创新 同赢

Outline

- Spin and chiral equations of motion
- Spin and chiral dynamics in a box (reminder of Wen-Hao's talk)
 - CME&CSE
 - CMW
- Chiral dynamics in relativistic heavy-ion collisions
 - Space-time evolution of the magnetic field
 - $-v_2(\pi^-)-v_2(\pi^+) \sim A_{ch}$
 - Splitting of spin polarizations between Λ and Λbar

Equations of motion for massless particles

$$h = \pm \vec{\sigma} \cdot (\vec{p} - \vec{A}) = c \, \vec{\sigma} \cdot \vec{k}$$

Spin kinetic equations of motion (SEOM)

$$\frac{d\vec{r}}{dt} = c\vec{\sigma}$$
$$\frac{d\vec{k}}{dt} = c\vec{\sigma} \times \vec{B}$$
$$\frac{d\vec{\sigma}}{dt} = 2c\vec{k} \times \vec{\sigma}$$

dt

 $ec{B} =
abla imes ec{A}$ Under a vector potential using $\vec{\sigma} \approx c\hat{k} - \frac{\hbar}{2k^2}\hat{k} \times \frac{d\hat{k}}{dt}$ approximation $c\vec{\sigma} \cdot \vec{k} = k$ E. van der Bijl and R.A. Duine, PRL (2011) X.G. Huang, Scientific Report (2016) chiral kinetic equations of motion (CEOM) $\sqrt{G} \frac{d\vec{r}}{dt} = \hat{k} + c \frac{\hbar}{2k^2} \vec{B}$ Phase-space volume changed $\sqrt{G} \frac{d\vec{k}}{dt} = \vec{k} \times \vec{B}$ D. Xiao, J. Shi, and Q. Niu, PRL (2005) $d^3r d^3k/(2\pi\hbar)^3 \rightarrow \sqrt{G} d^3r d^3k/(2\pi\hbar)^3$ $\sqrt{G} = 1 + c \frac{\vec{B} \cdot \vec{k}}{2k^3} \qquad \langle A \rangle = \sum_i A_i \sqrt{G_i} / \sum_i \sqrt{G_i}$ M.A. Stephenov and Y. Yin, PRL (2012)

J.W. Chen, S. Pu, Q. Wang, and X.N. Wang, PRL (2013) D.T. Son and N. Tamamoto, PRD (2013)

CME, CSE, and CMW

4 types of particles:
$$q=\pm 1, c=\pm 1$$

 $\mu_{qc} = q\mu + c\mu_5$
Number
density $\rho_{qc} = q N_c \int \frac{d^3k}{(2\pi\hbar)^3} \sqrt{G} f\left(\frac{k-\mu_{qc}}{T}\right), \qquad \vec{J}_L = \vec{J}_{q(+)c(-)} - \vec{J}_{q(-)c(-)}$
 $\vec{J}_L = \vec{J}_{q(+)c(-)} - \vec{J}_{q(-)c(-)}$
 $\vec{J}_L = \vec{J}_{q(+)c(-)} - \vec{J}_{q(-)c(+)}$
Current
 $\vec{J}_{qc} = N_c \int \frac{d^3k}{(2\pi\hbar)^3} \sqrt{G} \vec{r} f\left(\frac{k-\mu_{qc}}{T}\right), \qquad \rho = \rho_R + \rho_L, \quad \rho_5 = \rho_R - \rho_L$
density $\vec{J}_{qc} = N_c \int \frac{d^3k}{(2\pi\hbar)^3} \sqrt{G} \vec{r} f\left(\frac{k-\mu_{qc}}{T}\right), \qquad \rho = \rho_R + \rho_L, \quad \rho_5 = \rho_R - \rho_L$
 $\vec{J} = \vec{J}_R + \vec{J}_L, \quad \vec{J}_5 = \vec{J}_R - \vec{J}_L$
Isotropic Fermi-Dirac $\vec{J} = \frac{N_c}{2\pi^2\hbar^2}\mu_5 e\vec{B}$, Chiral magnetic effect (CME)
distribution f
 $\vec{J}_5 = \frac{N_c}{2\pi^2\hbar^2}\mu_e\vec{B}$. Chiral separation effect (CSE)
 $\mu/T \ll 1$ and $\mu_5/T \ll 1$.
 $\rho \approx \frac{N_c T^2}{3\hbar^3}\mu, \qquad \vec{J}_{R/L} = \pm \frac{3\hbar e\vec{B}}{2\pi^2 T^2}\rho_{R/L} \bigoplus (\hat{O}_t \pm \vec{v}_p \cdot \nabla - D_L \nabla^2)\rho_{R/L} = 0$
 $\nu_p = \frac{3\hbar eB}{2\pi^2 T^2}$

d

Box simulation of CME and CSE

W.H. Zhou and JX, Phys. Rev. C 98, 044904 (2018)

W.H. Zhou and JX, arXiv: 1904.01834 [nucl-th]

Box simulation of CMW with CEOM

Box simulation of CMW with SEOM vs CEOM

An extended AMPT with chiral dynamics

Structure of AMPT model with string melting

To study spin polarization and CMW, so far we only consider B but neglect E.

EOM under effective and real EB field

Lagrangian with vector potential
$$\mathcal{L} = \bar{\psi} \gamma_{\mu} (i\partial^{\mu} - Q A_{ext}^{\mu} - \frac{2}{3} G_{V} \langle \bar{\psi} \gamma^{\mu} \psi \rangle) \psi$$

Vector density/current $\langle \bar{\psi} \gamma^{\mu} \psi \rangle = 2N_{c} \sum_{i=u,d,s} \int \frac{d^{3}k}{(2\pi)^{3}E_{i}} k^{\mu} (f_{i} - \bar{f}_{i})$
Single-particle Hamiltonian $H = c\vec{\sigma} \cdot \vec{k} + A_{0}$
 $\vec{k} = c\vec{\sigma} \times \vec{B} + \vec{E},$
 $\vec{\sigma} = 2c\vec{k} \times \vec{\sigma},$
 $\vec{\phi} = 2c\vec{k} \times \vec{\sigma},$

QGP response to the magnetic field

In vacuum (Liénard-Wiechert potential): $A_1(r,t) = \frac{\gamma e v z}{4\pi} \frac{1}{\sqrt{b^2 + \gamma^2 (vt - z)^2}}$ $i = ev\hat{z}\delta(z - vt)\delta(b)$ With QGP response: $\nabla^2 A_2(\mathbf{r},t) = \partial_t^2 A_2(\mathbf{r},t) + \sigma \partial_t A_2(\mathbf{r},t) - \dot{\mathbf{j}}(\mathbf{r},t),$ $A_2(r,t_0) = A_1(r,t_0)$ \boldsymbol{t}_{o} is the time when QGP is produced Initial condition $\partial_t A_2(\mathbf{r},t_0) = \partial_t A_1(\mathbf{r},t_0)$ Ultrarelativistic limit $A_{2}(\boldsymbol{r},t) = \frac{\hat{z}e}{4\sigma(z/v)} \frac{\exp\left\{-\frac{b^{2}}{4[\lambda(t)-\lambda(z/v)]}\right\}}{4[\lambda(t)-\lambda(z/v)]} \theta(tv-z)\theta(z-vt_{0}) \quad \text{Valence magnetic field} \text{Start from } t=t_{0}$ $+ \frac{\gamma e v \hat{z}}{4\pi} \int_0^\infty dk_\perp J_0(k_\perp b) e^{-k_\perp^2 \lambda(t) - k_\perp \gamma |z - vt_0|} \qquad \text{Initial magnetic field} \\ \text{Start from t=0}$ $\lambda(t) = \int_{t}^{t} \frac{dt'}{\sigma(t')}$ **K. Tuchin, PRC (2016)**

Space-time evolution of the magnetic field

 $\mathbf{v}_2(\mathbf{\bar{u}}) - \mathbf{v}_2(\mathbf{u}) \sim \mathbf{A}_{ch}$

Linear fit around A_{ch}~0

$$A_{ch} = \sum_{n} q_n / \sum_{n} |q_n|$$

Related to charge chemical potential

Negative slope due to the Lorentz force originated from the initial <k_z/k>~x correlation

Slope also affected by σ_{con} and G_V

Z.Z. Han and JX, arXiv: 1904.03544 [nucl-th]

 $v_2(\pi^-) - v_2(\pi^+) \sim A_{ch}$

Slope modified during the hadronization and after the hadronic evolution

We can not obtain a positive slope as large as 3% observed experimentally.

Z.Z. Han and JX, arXiv: 1904.03544 [nucl-th]

Spin polarization in relativistic heavy-ion collisions

perpendicular to the reaction plane Z. T. Liang and X. N. Wang, PRL (2005); PLB (2005)

Λ polarization

$$\frac{dN}{d\cos\theta^{\star}} \propto 1 + \alpha_H p_H \cos\theta^{\star}$$
$$P_H = -\frac{8}{\pi\alpha_H} \langle \sin(\phi_P^* - \Psi_{\rm RP}) \rangle = \frac{\Lambda^{\uparrow} - \Lambda^{\downarrow}}{\Lambda^{\uparrow} + \Lambda^{\downarrow}} \neq 0$$

vorticity lead to same $\Lambda(\overline{\Lambda})$ polarization

Y.F. Sun and C.M. Ko, Phys. Rev. C, 2017

Smaller $\Lambda(s)$ spin polarization than $\overline{\Lambda}(\overline{s})$, consistent with exp data. Their splitting is sensitive not only to eB_y but also to G_V.

The large splitting at 7.7 GeV can not be obtained in the thermal limit under maximum/initial eB_y.

Splitting of quark-antiquark spin polarizations at 200 GeV

favor the space-time evolution of the magnetic field in vacuum.

Z.Z. Han and JX, arXiv: 1904.03544 [nucl-th]

STAR, PRC (2018)

Concluding remarks

- SEOM leads to qualitatively similar but quantitatively weaker chiral effects compared with CEOM.
- Splitting of spin polarizations between Lambda and antiLambda is generated by both the magnetic field and the strong vector interaction.
- The positive slope of $v_2(\pi^-)-v_2(\pi^+) \sim A_{ch}$ observed experimentally is not likely due to CMW.

Thank you! xujun@sinap.ac.cn

Workshop on Partonic and Hadronic Transport Approaches for Relativistic Heavy Ion Collisions

Welcome to take part in the workshop!

May 11-12, 2019

Dalian, China

Website :

https://indico.ihep.ac.cn/ event/9580/

Topics:

- AMPT model, its application in heavy ion collisions and development in the near future.
- QCD phase transitions and search of the QCD critical point.
- Transport theories in heavy ion collisions and other related issues.

Organizers:

Zi-wei Lin(林子威) Guo-liang Ma(马国亮) Jun Xu(徐骏) Wei-ning Zhang(张卫宁) Weijie Fu(付伟杰)

This is the second one of the series of workshops, whose first took place in Chengdu in 2017.

Welcome to register and submit your abstract!