

The 5th Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

Polarization transfer in decays and its effect in relativistic nuclear collisions

with Francesco Becattini, Enrico Speranza

Gaoging Ca

2019.4.8-2019.4.12

- Sign puzzle with longitudinal polarization
- Formalism at local thermodynamic equilibrium
 - A. Spin density matrix
 - **B.** Polarization transfer in two-body decays
 - C. Average longitudinal polarization
- Numerical results

Sign puzzle with longitudinal polarization

induces local polarization

Sign puzzle with longitudinal polarization

F. Becattini and I. Karpenko, PRL, 2018

T. Niida, Nucl. Phys. A 982, 511 (2019)

Secondary decay contribution?

See also Hui Li's talk

A. Spin density matrix

Basic definition
$$\Theta(p)_{\sigma\sigma'} = \frac{\operatorname{tr}(\widehat{\rho}a^{\dagger}(p)_{\sigma'}a(p)_{\sigma})}{\sum_{\sigma} \operatorname{tr}(\widehat{\rho}a^{\dagger}(p)_{\sigma}a(p)_{\sigma})}$$
$$\widehat{\rho} = \frac{1}{Z} \exp[-b \cdot \widehat{P} + \frac{1}{2}\varpi : \widehat{J}]$$
In non-interacting approximation (single particle)
$$\Theta(p)_{\sigma\sigma'} = \frac{\langle p, \sigma | \widehat{\rho}_i | p, \sigma' \rangle}{\sum_{\sigma} \langle p, \sigma | \widehat{\rho}_i | p, \sigma \rangle}$$
Hermitian \bigcup Analytic continuation
$$\Theta(p) = \frac{D^S([p]^{-1} \exp[(1/2)\varpi : \Sigma][p]) + D^S([p]^{\dagger} \exp[(1/2)\varpi : \Sigma^{\dagger}][p]^{-1^{\dagger}})}{\operatorname{tr}(\exp[(1/2)\varpi : \Sigma_S]) + \exp[(1/2)\varpi : \Sigma^{\dagger}_S])}$$
Small rotation \bigcup Thermal vorticity tensor $\varpi^{\mu\nu}[p]_{\mu}^{-1\alpha}[p]_{\nu}^{-1\beta} = \varpi^{\alpha\beta}_{*}(p)$
$$\Theta(p)_{\sigma'}^{\sigma} \simeq \frac{\delta_{\sigma'}^{\sigma}}{2S+1} + \frac{1}{2(2S+1)}\varpi_{*}(p)^{\alpha\beta}\epsilon_{\alpha\beta\rho\nu}D^S(\mathsf{J}^{\rho})_{\sigma'}^{\sigma}\hat{t}^{\nu}$$

Mean spin vector with momentum p

$$\begin{split} S^{\mu}(p) &= [p]^{\mu}_{\nu} \mathrm{tr}(D^{S}(\mathsf{J}^{\nu})\Theta(p)) \\ &= [p]^{\mu}_{\kappa} \frac{1}{2(2S+1)} \varpi_{*}(p)^{\alpha\beta} \epsilon_{\alpha\beta\rho\nu} \mathrm{tr}\left(D^{S}(\mathsf{J}^{\rho})D^{S}(\mathsf{J}^{\kappa})\right) \hat{t}^{\nu} \\ &= -\frac{1}{2(2S+1)} \frac{S(S+1)(2S+1)}{3} [p]^{\mu}_{\kappa} \varpi_{*}(p)^{\alpha\beta} \epsilon_{\alpha\beta\rho\nu} g^{\rho\kappa} \hat{t}^{\nu} \\ &= -\frac{1}{2} \frac{S(S+1)}{3} [p]^{\mu}_{\rho} \varpi_{*}(p)_{\alpha\beta} \epsilon^{\alpha\beta\rho\nu} \hat{t}_{\nu} = -\frac{1}{2m} \frac{S(S+1)}{3} \varpi_{\alpha\beta} \epsilon^{\alpha\beta\mu\nu} p_{\nu} \end{split}$$

Lorentz transformation

$$[p] = \mathsf{R}(\varphi, \theta, 0)\mathsf{L}_z(\xi) = \mathsf{R}_z(\varphi)\mathsf{R}_y(\theta)\mathsf{L}_z(\xi)$$

Two-body quantum superposition in helicity basis

$$p_* jm\lambda_1\lambda_2 \rangle \propto T^j(\lambda_1,\lambda_2) \int d\Omega_* D^j(\varphi_*,\theta_*,0)^{m\,*}_{\lambda} |\mathbf{p}_*\lambda_1\lambda_2 \rangle$$

(Dynamic amplitude) (Wigner D matrix) $\lambda = \lambda_1 - \lambda_2$

Density matrix for Daughters

$$\sum_{m,n=-j}^{J} \Theta_n^m |p_* j m \lambda_1 \lambda_2 \rangle \langle p_* j n \lambda_1 \lambda_2 \rangle$$

Differential density matrix

 $\widehat{\rho}(\mathbf{p}_*) \propto \sum_{m,n=-j}^{j} T^j(\lambda_1,\lambda_2) T^j(\lambda_1',\lambda_2')^* D^j(\varphi_*,\theta_*,0)^m_{\lambda} \Theta_n^m D^j(\varphi_*,\theta_*,0)^n_{\lambda'} |\mathbf{p}_*\lambda_1\lambda_2\rangle \langle \mathbf{p}_*\lambda_1'\lambda_2'|$

$$\mathsf{Two-body} \ \Theta_{D \ \lambda_1' \lambda_2'}^{\lambda_1 \lambda_2} = \frac{\sum_{m,n=-j}^{j} T^j(\lambda_1,\lambda_2) T^j(\lambda_1',\lambda_2')^* D^j(\varphi_*,\theta_*,0)_{\lambda}^m * \Theta_n^m D^j(\varphi_*,\theta_*,0)_{\lambda'}^n}{\sum_{\lambda_1,\lambda_2} \sum_{m,n=-j}^{j} |T^j(\lambda_1,\lambda_2)|^2 D^j(\varphi_*,\theta_*,0)_{\lambda}^m * \Theta_n^m D^j(\varphi_*,\theta_*,0)_{\lambda}^n}$$

Reduced spin density matrix

$$\Theta_{D\,\lambda_1'\lambda_2}^{\lambda_1\lambda_2} \simeq \frac{T^j(\lambda_1,\lambda_2)T^j(\lambda_1',\lambda_2)^* \left[\delta_{\lambda'}^{\lambda} + (1/2)\varpi_*(P)^{\alpha\beta}\epsilon_{\alpha\beta\rho\nu}D^j(\mathsf{J}^{\tau})_{\lambda'}^{\lambda}\mathsf{R}(\varphi_*,\theta_*,0)_{\tau}^{\rho}\hat{t}^{\nu}\right]}{\sum_{\lambda_1,\lambda_2} |T^j(\lambda_1,\lambda_2)|^2}$$

Mean spin vector of the Daughter 1

$$\begin{split} S_1^{\mu}(p_*) &= [p_*]_{\nu}^{\mu} \sum_{\lambda_1 \lambda_1'} D^{S1} (\mathsf{J}^{\nu})_{\lambda_1}^{\lambda_1'} \Theta_{D \lambda_1' \lambda_2}^{\lambda_1 \lambda_2} \\ &= \frac{1}{2} \varpi_*(P)^{\alpha \beta} \epsilon_{\alpha \beta \rho \nu} \hat{t}^{\nu} \frac{\sum_{\lambda_1 \lambda_2} T^j(\lambda_1, \lambda_2) T^j(\lambda_1', \lambda_2)^* [p_*]_{\kappa}^{\mu} D^{S1} (\mathsf{J}^{\kappa})_{\lambda_1}^{\lambda_1'} D^j (\mathsf{J}^{\tau})_{\lambda'}^{\lambda} \mathsf{R}(\varphi_*, \theta_*, 0)_{\tau}^{\rho}}{\sum_{\lambda_1, \lambda_2} |T^j(\lambda_1, \lambda_2)|^2} \\ &= -\frac{3}{j(j+1)} S_{*M}(P)_{\rho} \frac{\sum_{\lambda_1 \lambda_2} T^j(\lambda_1, \lambda_2) T^j(\lambda_1', \lambda_2)^* [p_*]_{\kappa}^{\mu} D^{S1} (\mathsf{J}^{\kappa})_{\lambda_1}^{\lambda_1'} D^j (\mathsf{J}^{\tau})_{\lambda'}^{\lambda} \mathsf{R}(\varphi_*, \theta_*, 0)_{\tau}^{\rho}}{\sum_{\lambda_1, \lambda_2} |T^j(\lambda_1, \lambda_2)|^2} \end{split}$$

BI. $\Sigma^* \rightarrow \Lambda + \pi$

Specific conditions $\lambda_2 = 0, j = 3/2$ and $S_1 = 1/2$ T(1/2) = T(-1/2)

BII. $\Sigma^{0} \rightarrow \Lambda + \gamma$

Specific conditions $j = 1/2, S_1 = 1/2 \text{ and } |\lambda_2| = 1$ \bigvee Helicity conservation $\lambda'_1 = \lambda_1, \lambda = \lambda_1 - \lambda_2 = -\lambda_1, \lambda_2 = -2\lambda_1$

The magnitude of momentum for Daughter fixed in Mother frame $p_{*D} = \frac{1}{2m_M} \prod_{s \ t=+} (m_M + s \ m_{D1} + t \ m_{D2})^{1/2}$

Mean spin vector average over Mother distribution

$$\langle \mathbf{S}_{0\Lambda}(\mathbf{p}) \rangle = \frac{\int \mathrm{d}^{3}\mathbf{p}_{*} \, n(\mathbf{P}) \left| \frac{\partial \mathbf{P}}{\partial \mathbf{p}_{*}} \right| \mathbf{S}_{0\Lambda}(p_{*}) \delta(\mathbf{p}_{*} - p_{*D})}{\int \mathrm{d}^{3}\mathbf{p}_{*} \, n(\mathbf{P}) \left| \frac{\partial \mathbf{P}}{\partial \mathbf{p}_{*}} \right| \delta(\mathbf{p}_{*} - p_{*D})} = \frac{\int \mathrm{d}\Omega_{*} \, n(\mathbf{P}) \left| \frac{\partial \mathbf{P}}{\partial \mathbf{p}_{*}} \right| \mathbf{S}_{0\Lambda}(p_{*})}{\int \mathrm{d}\Omega_{*} n(\mathbf{P}) \left| \frac{\partial \mathbf{P}}{\partial \mathbf{p}_{*}} \right|}$$

Momentum of Mother $\mathbf{P} = 2m_M \frac{(\varepsilon_* + \varepsilon)(\mathbf{p} - \mathbf{p}_*)}{(\varepsilon_* + \varepsilon)^2 - (\mathbf{p} - \mathbf{p}_*)^2}$ $\left| \frac{\partial \mathbf{P}}{\partial \mathbf{p}_*} \right| = \frac{\varepsilon_*(\varepsilon_* + \varepsilon)^4 M^3}{(\varepsilon_* \varepsilon + \mathbf{p}_* \cdot \mathbf{p} + m_{D1}^2)^4}$

High energy collision, longitudinal polarization dominates

Numerical results

Good $sin(2\varphi)$ feature with the polarization transfer factor

- Longitudinal polarization is studied within relativistic quantum mechanics by taking into account secondary contributions from decay
- Σ^* contributes to the same polarization heritage, Σ^0 contributes to the opposite one
- The sign puzzle can't be explained by the polarization transfer

backup

$$\mathcal{A}(\theta, \psi) = \frac{p_*^2 \sin^2 \theta_* \cos 2\psi - 2pp_* \sin \theta_* \cos \psi + p^2}{p_*^2 + p^2 - 2pp_* \sin \theta_* \cos \psi},$$
$$\mathcal{B}(\theta, \psi) = \frac{p_*^2 \sin^2 \theta_* \sin 2\psi - 2p_* p \sin \theta_* \sin \psi}{p_*^2 + p^2 - 2pp_* \sin \theta_* \cos \psi}.$$

$$D_{\text{RED}}^{3/2}(\mathsf{J}^1)) = \sigma_1 \qquad D_{\text{RED}}^{3/2}(\mathsf{J}^2)) = \sigma_2 \qquad D_{\text{RED}}^{3/2}(\mathsf{J}^3)) = \frac{\sigma_3}{2}$$

$$\begin{aligned} \mathsf{R}(\varphi_{*},\theta_{*},0)_{\nu}^{\mu}\mathsf{L}_{z}(\xi)_{3}^{\nu}\mathsf{R}(\varphi_{*},\theta_{*},0)^{\rho3} \\ = \mathsf{R}(\varphi_{*},\theta_{*},0)_{3}^{\mu}\mathsf{L}_{z}(\xi)_{3}^{3}\mathsf{R}(\varphi_{*},\theta_{*},0)^{\rho3} + \mathsf{R}(\varphi_{*},\theta_{*},0)_{0}^{\mu}\mathsf{L}_{z}(\xi)_{3}^{0}\mathsf{R}(\varphi_{*},\theta_{*},0)^{\rho3} \\ = -\cosh\xi\,\hat{p}_{*}^{\mu}\hat{p}_{*}^{\rho} - \sinh\xi\,\hat{p}_{*}^{\rho}\delta_{0}^{\mu} = -\frac{\varepsilon_{*}}{m_{\Lambda}}\hat{p}_{*}^{\mu}\hat{p}_{*}^{\rho} - \frac{\mathsf{P}_{*}}{m_{\Lambda}}\hat{p}_{*}^{\rho}\delta_{0}^{\mu} \end{aligned}$$