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All new works are “new developments” 

but… 
 
simply impossible to cover all of them.
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“Chosen” New Subjects

CME — Dynamical vs. Equilibrated 
□ Effect of the mass term — nontrivial cancellation 
□ Absence of “equilibrium” chiral magnetic effect 

Chiral Barnett Effect 
□ Orbital angular mom. vs. Spin — electron vortex 
□ Longitudinal vs. Transverse 

Axial Casimir Force 
□ No-go theorem and repulsive Casimir force 
□ Comment: Chiral vortical effect as a Casimir force
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Axial Ward Identity (Abelian)
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represents the chirality production rate

@n5
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=
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2⇡2
for parallel E and B and m=0

U(1)A symmetry is broken  
by the chiral anomaly

@µj
µ
5 = � e2
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✏µ⌫↵�Fµ⌫F↵� + 2m ̄i�5 
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Mass Effect
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Pair production induced by E and B

not the chirality itself but when B >> E  (LLL)

B (�N5 = 2)
RL
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Strong B → Dimensional Reduction 
Momentum direction ~ Chirality

Axial Ward identity and the Schwinger mechanism
— Applications to the dynamical chiral magnetic e↵ect and condensates —

Patrick Copinger, Kenji Fukushima, and Shi Pu
Department of Physics, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

We elucidate the mass dependence on chirality production under parity breaking electromagnetic

fields, which resolves some controversies. For strong magnetic field the pair production from the

Schwinger mechanism increments the chirality. The pair production rate is exponentially suppressed

with mass according to the Schwinger formula, while the mass dependence of chirality production

appears in a pesudo-scalar condensate in the axial Ward identity. We point out that in standard

quantum field theoretical calculus the axial anomaly is canceled by the pseudo-scalar condensate for

any mass. In a dynamical formulation with in- and out-states, we show that the axial Ward identity

leads to the chirality production rate consistent with the Schwinger formula. We illuminate that such

a formulation with in- and out-states clarifies the chiral magnetic e↵ect in and out of equilibrium

correctly, and we discuss further applications to dynamical condensates and fluctuations.

Introduction: Chirality is a topical keyword for re-
search on anomalous phenomena in physics and related
subjects. In the high-energy physics context in which the
fermion mass is often neglected, the chirality and the he-
licity are identifiable, which has also motivated a modern
redefinition of chirality in chemistry [1].

The most notable feature of chirality in relativis-
tic fermionic systems is the realization of the quantum
anomaly. Since relativistic fermionic dispersion relations
are realized in not only 2D but 3D materials, as in the
Weyl and Dirac semimetals [2–5], it is of paramount im-
portance to probe the chiral anomaly in laboratory ex-
periments, not only in quantum chromodynamics (QCD)
but also in optical environments. One proposed signa-
ture for the chiral anomaly is the negative magnetoresis-
tance [6], which signals for the chiral anomaly through
the chiral magnetic e↵ect [7]. For the first experimental
detection as well as simplified theoretical arguments, see
Ref. [8], and for the resummed field-theoretical calcula-
tion of the negative magnetoresistance, see Ref. [9].

In all ideas to access the chiral anomaly, the gener-
ation of finite chirality imbalance is indispensable. The
simplest optical setup is, as discussed in Ref. [10], parallel
electric and magnetic fields. Then, the chirality produc-
tion rate is related to the Schwinger mechanism as used
in Refs. [10, 11], and at the same time it is dictated by the
axial Ward identity as argued in Ref. [12]. Such a simple
electromagnetic configuration is also useful to test ideas
in the real-time numerical simulations [13, 14].

Even though the parallel electromagnetic fields are
such simple, there are still some controversies especially
on di↵erent manifestations of the chiral anomaly in and
out of equilibrium. In this Letter we clarify these con-
troversies by addressing the following two closely related
problems, namely:

• The e↵ect of fermion mass m; it is quite often
assumed that the mass dependent term can be
dropped from the axial Ward identity if m = 0,

but this is not always justified.

• Static and dynamical observables; the m depen-
dence is totally di↵erent depending on how to take
the expectation value in the presence of electric
fields.

Answering these questions will naturally lead us to the
correct picture of chiral dynamics. Moreover, we will
notice that our present considerations open a novel class
of future theory problems.

An enigma: We choose constant and parallel elec-
tric E and magnetic B fields in the 3-axis direction.
Then, the celebrated formula for the Schwinger mech-
anism reads,

! =
e
2
EB

4⇡2
coth

✓
B

E
⇡

◆
exp

✓
�
⇡m

2

eE

◆
(1)

for the pair production rate (for a comprehensive review,
see Ref. [15]). In a particular limit of strong B (i.e.,

p
eB

being the largest mass scale in a system), the spin direc-
tion is completely aligned along B, so that particles have
definite chirality in such a reduced (1+1)-dimensional
system. The right-handed (R) particles increase and the
left-handed (L) particles decrease creating L antiparticles
under E, as sketched in Fig. 1.
A pair of R and L̄ production thus changes the chirality

by two, leading to a relation as used in Ref. [10],
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where n5 is the chiral charge density, that is an expecta-
tion value of j05 .
The right-hand side, @tn5, is dictated by the ax-

ial Ward identity, i.e., @µj
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2m ̄i�5 on the operator level, where ✏µ⌫↵�Fµ⌫F↵� =
�8EB for parallel E and B in the present setup. After
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Pair production induced by E (and B)

We already know the answer, but 
how can we get this from the AWI?
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Extremely important question to  
understand the Chiral Magnetic Effect
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FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ ̸= 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation

∂tj = qΓ

(

sinh(2η)
B′

z

Ez
ey + cosh2 η

2E′

z

Ez
ez

)

sgn(qE′

z).

(3)
We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2

z + B′2
z ). Because both F = 1
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z are Lorentz invariant, one finds a ≡ |E′

z | =
(
√
F2 +H2−F)1/2, and b ≡ |B′

z| = (
√
F2 +H2+F)1/2.

Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,

∂tjy =
q2|q|By
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where a and b have dependence on qEz = ± 1

2
gEz and

qBz = ± 1

2
gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy ≫ gEz, gBz, we have

b ≃ |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a ≃ | g
2qEz|

and b ≃ | g
2qBz| so that

∂tjy ≃
q2By

2π2

gEzB2
z

B2
z + E2

z

coth

(

Bz
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π

)

exp

(

−
2m2π

|gEz|

)

. (6)
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FIG. 1: Schematics of the collision geometry and fields.

so-called θ angle vanishes and there is no global violation
of parity) the probability of generating either positive Q
or negative Q is equal. Using the observable proposed in
[14] the STAR collaboration has analyzed charge corre-
lations [15]. The results are qualitatively in agreement
with the predictions of the chiral magnetic effect; the
search for alternative explanations and additional mani-
festations of local parity violation is underway [16].

Several quantitative theoretical studies of the chiral
magnetic effect have appeared in the literature [9–12].
Most of the analytic studies are based on introducing a
chiral asymmetry by hand, after which the equilibrium
response to a magnetic field is studied [9, 11] (see also
[13]). In this Letter we will for the first time investigate
a situation in which the chirality is generated dynami-
cally in real-time in the presence of a magnetic field. For
this we will take the simplest Yang-Mills gauge field con-
figuration carrying topological charge, that is one which
describes a color flux tube having constant Abelian field
strength, i.e. Gµν

a = Gµνna with nana = 1 and Gµν con-
stant and homogeneous. Furthermore, we will take only
the z-components of the color electric (Ez = G0z) and
color magnetic (Bz = − 1

2
ϵzijGij) field nonzero. Perpen-

dicular to this field configuration we will apply an electro-
magnetic field By pointing in the y direction (see Fig. 1).
Note that hereafter we write B to denote a color mag-
netic field and B for an electromagnetic one. Such color
flux tubes, which carry topological charge and are homo-
geneous over a spatial scale ∼ Q−1

s , naturally arise in the
glasma [17], the dense gluonic state just after the colli-
sion, where Ez ∼ Bz ∼ Q2

s/g. The induced current itself
can generate electromagnetic and color fields, which can
alter the dynamics. We will ignore this back-reaction,
which can be justified as long as the induced current is
small compared to the currents that create the external
color and magnetic fields. Furthermore we will also ig-
nore the production of gluons in the color flux-tube.

Calculation. Using a color rotation we can choose
only the third component of na nonvanishing. Since the
generator t3 = diag(1

2
,− 1

2
, 0) of the SU(3) Lie algebra

is diagonal, the different color components decouple. As
a result for each quark flavor separately the problem is
equivalent to a quantum electrodynamics (QED) calcu-
lation, in which the magnetic field B = (0, By, Bz) with
qBz = ± 1

2
gBz and the electric field E = (0, 0, Ez) with

qEz = ± 1

2
gEz. Here ± labels the different color compo-

nents, and q denotes the electric charge of a particular
quark. We will define K to be the coordinate frame in
which the electromagnetic field has this form.
We hence need to compute the induced electromag-

netic current density jµ = q⟨ψ̄γµψ⟩ in K. To do this we
will start in a different coordinate system K ′ in which
E = (0, 0, E′

z) and B = (0, 0, B′

z). In this frame it is
rather straightforward to do calculations. Then by ap-
plying a Lorentz transformation we can obtain the results
in K as is illustrated in Fig. 2. We will switch on the elec-
tric field in K ′ uniformly at a time t′i in the distant past,
i.e. E′

z(t
′) = E′

zθ(t
′ − t′i). In this way the situation in K ′

is completely homogeneous.
In K ′ particle-antiparticle pairs are produced by the

Schwinger process [4]. The rate per unit volume of this
process equals [18], (see also [19] and [20])
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The production of pairs in K ′ gives rise to an homoge-
neous electromagnetic current density j′µ. Because of
symmetry reasons the only nonvanishing component of
this current lies in the z-direction. Furthermore, each
time a pair is created the current will grow. Eventu-
ally when both components of the pair are accelerated
by the electric field to (nearly) the speed of light, the
net effect of the creation of one single pair will be that
the total current has increased by two units of q. There-
fore, sufficiently long after the switch-on, the change in
current density in the z-direction becomes 2q times the
rate per unit volume of pair-production, to be precise
∂t′j

′ = 2qΓsgn(qE′

z)ez. This equation has been verified
explicitly numerically in [21]. We have also found it to
be correct analytically, even for m ≠ 0 [22].
Before we compute the induced currents in K let us

point out that the rate Γ is consistent with the anomaly
equation. In the limit of a very large magnetic field
(B′

z ≫ E′

z) all produced pairs will reside in the lowest
Landau level causing maximal chiral asymmetry. Since
each pair then produces two units of N5, the pair produc-
tion rate should then be equal to half the chirality rate.
Taking the limit B′
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which is indeed in agreement with the anomaly equation
(see Introduction) in the limit of m = 0, since the chi-
ral current j5 vanishes because of homogeneity. It turns
out that Eq. (2) also exactly gives the chirality rate for
nonzero m and any E′

z and B′

z [22].
As is indicated in Fig. 2 we can go from frame K ′

to K ′′ by applying a boost with rapidity η in the x-
direction. In the new coordinate system K ′′ obtained
by this boost, the electric and magnetic field respec-
tively read E′′ = −B′

z sinh η ey +E′

z cosh η ez and B′′ =
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electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.
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for the rate of current over chirality density generation

1

|q|
∂tjy
∂tn5

=
2q2Byb coth (πb/a)

q2(a2 + b2 +B2
y) +

1

4
g2(E2

z + B2
z)
. (5)
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy ≫ gEz, gBz, we have

b ≃ |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a ≃ | g
2qEz|

and b ≃ | g
2qBz| so that

∂tjy ≃
q2By

2π2

gEzB2
z

B2
z + E2

z

coth

(

Bz

Ez
π

)

exp

(

−
2m2π

|gEz|

)

. (6)

Fukushima- 
-Kharzeev-  
-Warringa, PRL (2010)

By

z

y x
Ez
Bz
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B

E
jOhm = �E

jCME = (E ·B)B / B2

j = (�Ohm + �CME)E �CME / B2

Only this is external

Son-Spivak, PRB (2012)

Technology simplified for cond-mat exp.
from the Schwinger process
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FIG. 2: Magnetoresistance in field parallel to current ( ~B k a) in ZrTe5. (a) MR at various

temperatures. For clarity, the resistivity curves were shifted by 1.5 m⌦cm (150 K), 0.9 m⌦cm

(100 K), 0.2 m⌦cm (70 K) and �0.2 m⌦cm (5 K). (b) MR at 20K (red symbols) fitted with the

CME curve (blue line); inset: temperature dependence of the fitting parameter a(T ) in units of

S/(cm T2).

observed resistivity can be fitted with a simple quadratic term (Supplementary materials,

Fig. S1). This term is treated as a background and subtracted from the parallel field

component for all MR curves recorded at T  100 K.

A negative MR is observed for T  100 K, increasing in magnitude as temperature

decreases. We found that the magnetic field dependence of the negative MR can be nicely

fitted with the CME contribution to the electrical conductivity, given by �CME = �0 +

a(T )B2, where �0 represents the zero field conductivity. The fitting is illustrated in Fig.

2(b) for T = 20 K, with an excellent agreement between the data and the CME fitting

curve. At 4 Tesla, the CME conductivity is about the same as the zero-field conductivity.

At 9T, the CME contribution increases by ⇠ 400%, resulting in a negative MR that is

much stronger than any conventional one reported at an equivalent magnetic field in a

non-magnetic material.

At very low field, the data show a small cusp-like feature. The origin of this feature is not

completely understood, but it probably indicates some form of anti-localization coming from

the perpendicular ( ~B k b) component. Inset in Fig. 2(b) shows the temperature dependence

of the fitting parameter a(T ), which decreases with temperature faster than 1/T , again

consistent with the CME.

6

FIG. 1: Magnetoresistance in ZrTe5. (a) Temperature dependence of resistivity in ZrTe5 in mag-

netic field perpendicular to the cleavage plane ( ~B k b). The inset shows the electron di↵raction from

a single crystal looking down the (001) direction. (b) Magnetoresistance at 20 K for several angles

of the applied field with respect to the current as depicted in the inset. (c) The same data as in (b),

plotted on the logarithmic scale, emphasizing the contrast between extremely large positive mag-

netoresistance for magnetic field perpendicular to current ( ~B k b) and negative magnetoresistance

for the field parallel to current ( ~B k a).

higher temperatures and we observe a very large classical positive magnetoresistance in the

whole temperature range, consistent with previous studies.20

Panels (b-c) in Fig. 1 show the MR measured at 20 K for several angles of the applied

magnetic field with respect to the current along the chain direction. The angle rotates from

b- to a-axis, so that at � = 90�, the field is parallel to the current ( ~B k a) - the so-called

Lorentz force free configuration. When magnetic field is aligned along the b-axis (� = 0), the

MR is positive and quadratic in low fields, and tends to saturate in high fields, consistent

with a classical behavior.26 When magnetic field is rotated away from the b-axis, the positive

MR drops with cos�, as expected for the Lorentz force component. However, in the Lorentz

force free configuration ( ~B k a), we see a large negative MR, a clear indication of CME in

this material.

Fig. 2 shows the MR at various temperatures in a magnetic field parallel to the current.

At elevated temperatures, T � 110 K, the ⇢ vs B curves show a small upward curvature, a

contribution from inevitable perpendicular field component due to an imperfect alignment

between current and magnetic field. In fact, the small perpendicular field contribution to the

5

Lorentz force = “Classical” MR 
Perpendicular E and B are Lorentz force free

Negative “magnetoresistance”Li et al.  
Nature Physics (2016)
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FIG. 2. Diagrams of the synchrotron radiation process with a quark (a1), with an anti-quark (b1), and the pair annihilation
(c1). Their inverse processes are (a2), (b2), and (c2), respectively.

we find

X(n,n
′
, ⇠) = g

2
NcCF

�qfB�
2⇡

e
−⇠ n!

n′! ⇠
n
′−n��4m

2
f

− 4�qfB�(n + n
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⇠
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′)�F (n,n
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′)1

⇠
L
(n′−n)
n

(⇠)L(n′−n)
n−1 (⇠)� , (17)

F (n,n
′
, ⇠) ∶=
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1 (n = 0)
�L(n′−n)

n
(⇠)�2 + n

′
n
�L(n′−n)

n−1 (⇠)�2 (n > 0) .
(18)

Recovery of the lowest Landau level approximation: It
would be an instructive check to see that the LLLA
result is correctly recovered in the limit of eB � T

2

(at µ = 0). Since the synchrotron radiation changes
the Landau level, we can safely discard it. For the
pair annihilation process, X(n = 0, n

′ = 0, ⇠) given in

Eq. (17) simplifies as X(0,0, ⇠
f+) = 4m

2
f
g
2
NcCF

�qfB�
2⇡

e
−⇠0+

with ⇠
0+ = [(�p2

z
+m2

f
+�p′2

z
+m2

f
)2−(pz+p′z)2]�(2�qfB�)

which is nothing but ⇠+ in Eq. (16) with n = n
′ = 0.

When �qfB� is much larger than any other scales, we can

approximate e
−⇠0+ ≈ 1. Then, the linearized kinetic equa-

tions reduce to a simple form as

qfNc
�qfB�
2⇡

�feq(p)[1 − feq(p)] pz

"f0
= 4m

2
f
g
2
NcCF

× �
�qfB�
2⇡
⋅ 1

4"f0
� dp

′
z

2⇡

1

2"′
f0

feq(p)f̄eq(p′)[1+geq(k)]�p ,

(19)

where "f0 = �p2
z
+m2

f
and "

′
f0 = �p′2

z
+m2

f
. Here we

do not have to consider mixing terms with �̄p′ . In this
special limit, L is not really a matrix and we do not
need to take its matrix inversion. Actually, we can easily
solve the above kinetic equation to obtain �p. Thanks to
the charge conjugation symmetry, the solution for anti-
quarks is �̄p = −�p. Summarizing them, we finally arrive
at the LLLA result from Eq. (12) as

�∥ =�
f

Nc�

g2CF m2
f

q
2
f

�qfB�
2⇡
� dpz

2⇡

p
2
z

"f0

× feq(p)[1 − feq(p)]2
� dp

′
z

2⇡

1

"′
f0

f̄eq(p′)[1 + geq(k)]
,

(20)

FIG. 3. Mass dependence of �∥ for single flavor at T =
200MeV, µ = 0, eB = 10m2

⇡, and g2�(4⇡) = 0.3. The shaded
region is the lattice-QCD estimate from Ref. [11].

which is consistent with Ref. [7].

Numerical results and discussions: Now we have all
necessary ingredients to write down the matrix elements
of L as a phase space convolution of X(n,n

′
, ⇠

f±) and
the distribution functions, feq, f̄eq, and geq. Besides the
flavor f and the Landau level n, we should choose the
complete set basis for functions of pz, kz and k⊥, which
we will take the simplest polynomial form as p̂z �pz �m for
(anti-)quarks and k

m⊥ for gluons with integral m.

Figure 3 shows our numerical results for the quark
mass dependence of �∥�T for a fictitious single flavor with
q = e at finite T and B but at zero µ. We choose that the
QCD charge as g

2�(4⇡) = 0.3. We clearly see that the
LLLA has artificial enhancement as mq approaches zero.
For the numerical calculation we truncate the Landau
level at nmax. In the eB = 10m

2
⇡

case, the convergence of
the Landau level sum is very fast and nmax = 1 already
gives a good approximation, even though the LLLA badly
breaks down in the small mq region. It is interesting that
our result is quantitatively consistent with the lattice-
QCD estimate, 0.3 ≤ ��T ≤ 1.0 (for the quark charge
squared sum Cem = 1) [11], which is indicated by the
shaded region in Fig. 3.

The B dependence of �∥�T has a nonmonotonic struc-
ture as shown in Fig. 4, for which we adopted a physical
parameter set with u and d quarks. For small nmax or
strong B, the LLL contribution is dominant, and then
�∥ is linearly proportional to B (reflecting the fact that

Good agreement with  
the cond-mat exp. 
Consistent with  
lattice-QCD at B=0

4 / Nuclear Physics A 00 (2018) 1–4

Fig. 3. Magnetic dependence of the electric conductivity (left) and the negative magnetoresistance (right).

our results at nmax = 1, 2 are found within this range. I would add one comment here; since the magnetic
dependence is mild as confirmed in the left of Fig. 2, it makes sense to compare our results (with B) to the
lattice-QCD ones (without B). It is unfortunately impossible to extrapolate our results to the B = 0 limit; all
the calculations are based on the hierarchy, T

2 & eB � g
2
T

2, under which the thermal screening mass is
neglected.

It is an interesting question when the LLLA starts working. To this end the large B behavior of the
conductivity at the LLLA and nmax = 5 is plotted in the left of Fig. 3. The LLLA badly overestimates even
around eB/T 2 ⇠ 100, but the full answer gradually approaches the LLLA for eB/T 2 & 200. I shall point
out that the asymptotic form is found to be �k / B, not quadratic as suggested in the literature [1, 2]. This
could be naturally understood from the general structure of the LLLA; usually in the LLLA the magnetic
dependence appears only linearly in the Landau degeneracy, so that �k obtained from the Kubo formula
should be also proportional to B. In other words, in Eq. (2), the relaxation time ⌧ should scale as ⌧ / B

�1.
Finally, let us consider the negative magnetoresistance, which is shown in the right panel of Fig. 3.

This shape of ⇢k is surprisingly similar to what has been experimentally observed in the Weyl semimetal.
Even though the asymptotic behavior should be linear in B, in the intermediate region of B the quadratic
dependence on B approximately emerges and this gives an account for the experimental data. Moreover, a
dip is found at small B; since a dip spreads over eB/T 2 & 1, this structure should be regarded as physical
not merely caused by break-down of our assumed hierarchy. Of course I should not take the comparison too
seriously and should not overlay the experimental data on top of our theory curve. We are doing QCD, and
they are measuring the Weyl semimetals, and nevertheless, the qualitative consistency is remarkable. Then,
in view of such good or even too good results, we are tempted to perform the same type of the calculation
with interactions relevant for the Weyl semimetals. For this purpose we should replace gluons with phonons,
and also some model for the impurity must be adopted. We are making progresses in this direction.

Before closing this contribution, let me emphasize one very important point. I sometimes hear that our
success in getting ⇢k as in the right of Fig. 3 would falsify an interpretation of the negative magnetoresistance
as a realization of the axial anomaly (especially of the chiral magnetic e↵ect). This statement is completely
wrong! Probably some confusions came from the fact that our perturbative processes in Fig. 1 do not contain
any anomaly type (i.e., triangle, square, pentagon) diagrams. However, the axial anomaly is contained in
the Dirac equation and it is still contained in our kinetic equation with the Dirac gamma matrices retained.
In short, we discussed the collision integral in the right-hand side of the kinetic equation, while the anomaly
is from the left-hand side. So, the negative magnetoresistance is surely a signature for the axial anomaly!
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FIG. 2. Diagrams of the synchrotron radiation process with a quark (a1), with an anti-quark (b1), and the pair annihilation
(c1). Their inverse processes are (a2), (b2), and (c2), respectively.
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Recovery of the lowest Landau level approximation: It
would be an instructive check to see that the LLLA
result is correctly recovered in the limit of eB � T
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(at µ = 0). Since the synchrotron radiation changes
the Landau level, we can safely discard it. For the
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solve the above kinetic equation to obtain �p. Thanks to
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FIG. 3. Mass dependence of �∥ for single flavor at T =
200MeV, µ = 0, eB = 10m2

⇡, and g2�(4⇡) = 0.3. The shaded
region is the lattice-QCD estimate from Ref. [11].

which is consistent with Ref. [7].

Numerical results and discussions: Now we have all
necessary ingredients to write down the matrix elements
of L as a phase space convolution of X(n,n

′
, ⇠

f±) and
the distribution functions, feq, f̄eq, and geq. Besides the
flavor f and the Landau level n, we should choose the
complete set basis for functions of pz, kz and k⊥, which
we will take the simplest polynomial form as p̂z �pz �m for
(anti-)quarks and k

m⊥ for gluons with integral m.

Figure 3 shows our numerical results for the quark
mass dependence of �∥�T for a fictitious single flavor with
q = e at finite T and B but at zero µ. We choose that the
QCD charge as g

2�(4⇡) = 0.3. We clearly see that the
LLLA has artificial enhancement as mq approaches zero.
For the numerical calculation we truncate the Landau
level at nmax. In the eB = 10m

2
⇡

case, the convergence of
the Landau level sum is very fast and nmax = 1 already
gives a good approximation, even though the LLLA badly
breaks down in the small mq region. It is interesting that
our result is quantitatively consistent with the lattice-
QCD estimate, 0.3 ≤ ��T ≤ 1.0 (for the quark charge
squared sum Cem = 1) [11], which is indicated by the
shaded region in Fig. 3.

The B dependence of �∥�T has a nonmonotonic struc-
ture as shown in Fig. 4, for which we adopted a physical
parameter set with u and d quarks. For small nmax or
strong B, the LLL contribution is dominant, and then
�∥ is linearly proportional to B (reflecting the fact that

Good agreement with  
the cond-mat exp. 
Consistent with  
lattice-QCD at B=0
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Dynamical Chiral Magnetic Effect

j3 = hin| ̄�3 |ini = 2! · t
<latexit sha1_base64="af2bUrW0execZS2BNxgEgzTHfq4="></latexit><latexit sha1_base64="af2bUrW0execZS2BNxgEgzTHfq4="></latexit><latexit sha1_base64="af2bUrW0execZS2BNxgEgzTHfq4="></latexit><latexit sha1_base64="af2bUrW0execZS2BNxgEgzTHfq4="></latexit>

This can be directly derived, and moreover, we find:

j̄3 = hout| ̄�3 |ini = 0
<latexit sha1_base64="Cft/yaPHByJOYaA058BmbrrhyfM="></latexit><latexit sha1_base64="Cft/yaPHByJOYaA058BmbrrhyfM="></latexit><latexit sha1_base64="Cft/yaPHByJOYaA058BmbrrhyfM="></latexit><latexit sha1_base64="Cft/yaPHByJOYaA058BmbrrhyfM="></latexit>

In-Out amplitude can be interpreted as a static 
expectation value in Wick-rotated theory (T→0 theory)

No Chiral Magnetic Effect in equilibrium!
Yamamoto, PRB (2015)  /  Copinger-KF-Pu, PRL (2018)
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 µ5 is a convenient but 
   controversial bookkeeping device 
CME current is nonzero wrongly even in  
equilibrium lattice-QCD if µ5 is coupled.

CME current must be zero in equilibrium  
lattice-QCD if Euclid electromagnetic fields  
are applied (testable prediction).
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Part I. Gyromagnetic EBects'

INTRODUCTION

T HIS paper has to do with two closely related
classes of phenomenon: (1) Gross magnetic

or dynamical phenomena which are due to the
behavior of the elementary magnet as the rotor
of a gyroscope and which are known as gyro-
magnetic or magnetomechanical phenomena; and
(2) Gross mechanical or electrical phenomena
which must be attributed to the inertia of the
free electrons in conductors or bound electrons
in insulators. Gyromagnetic phenomena will be
treated in Part I of this article, the others in
Part II.

momentum, or a definite angular momentum
might be accompanied by no magnetic moment.
Otherwise the magnetic element must behave
both as a magnet and as the rotor of a gyroscope.
$2. A simple gyroscopic model
It will aid in the discussion of all the gyro-

magnetic phenomena hitherto looked for, of
which there are four, if we consider at this
point the behavior of the gyroscopic model
illustrated in Fig. 2—l and first used some years

A. INTRODUCTORY, HISTORICAL AND GENERAI.

$1. The fundamental basis of the effects
Everyone who has predicted the possible dis-

covery of any gyromagnetic effect has based the
prediction on the assumption of the validity of
the celebrated hypothesis of Ampere and Weber, '
according to which the magnetic element in a
magnetic substance consists of a permanent
molecular or intramolecular whirl of electricity
endowed with mass or inertia. On this hypothesis
the magnetic element must have both angular
momentum and magnetic moment, unless it is
constituted of both positive and negative elec-
tricities rotating in opposite directions. In this
case it is obvious that a definite magnetic
moment might be accompanied by no angular

~ Earlier and less complete reviews of work on gyro-
magnetic phenomena have been given by the author in the
Bull. Nat. Research Coun. 3, 235, August (1922). (Trans-
lation by J. Wiirschmidt, after revision by the author, in
Die Wissenschaft '74, 270 (1925));in Physica 13, 241 (1933);
and in the Physik. Zeits. 35, 203 (1934). The last paper
goes fully into the matter of priority, about which very
numerous errors have been made in the literature ever
since 1915.
'For Weber's ultimate ideas, which greatly resemble

those in vogue in recent years, see Abhandlungen d. K.
Sachs. Ges. d. Wiss. 10, 1871, f17; or W. Weber's I4'erke
(Berlin, J. Springer} 4, p. 281.

FIG. 2-1.

ago. ' It differs from a common type of gyroscope
only in the addition of two springs SS, con-
veniently in the form of rubber bands, and the
arrangement for their attachment. The wheel,
pivoted in a ring, can be rotated rapidly about
its axis A. Except for the action of the springs,
the ring and the axis A are free to move in
altitude about a horizontal axis B, the axis A
making an angle 0 with the vertical C; while
the axis 8, together with the wheel and the
framework supporting it and the springs, can be
rotated about the vertical axis C. If the wheel
is spun rapidly about the axis A, and the instru-
ment then rotated about the vertical C slowly,
' See S.J. Barnett, Science 48, 303 (1918).

Barnett (1935)
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First we shall confirm the physical interpretation of the
first term denoted above by hLimech. For simplicity let us
consider a cylindrically symmetric system rotating rigidly
around the z-axis, i.e., ! = !ẑ. Then, the volume inte-
gral of the first term yields,

Z

V
hLimech = !ẑ

Z

V
r
2 4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
. (25)

If the distribution functions are Fermi degenerated to a
chemical potential µ, we can show that the energy den-
sity, E , is given by E = 3

4µn where n is the number
density. Therefore, the integrand after r

2 in the above
expression corresponds to µn, and this is nothing but a
relativistic counterpart of the mass density. So, the vol-
ume integral amounts to the moment of inertia. From
this argument it is clear that hLimech corresponds to the
mechanically induced orbital angular momentum.

Next we pay attention to the second term, �hSi?.
This is a very interesting term given an interpretation
as a chiral Einstein–de Haas effect. If the chiral fermions
are rotated from the initial condition, hLi = hSi = 0,
then the total angular momentum carried by the rotat-
ing fermions should be hJi = hLimech. We, however,
saw that the transverse motion with the spin-momentum
locking results in a finite hSi?. This must be canceled by
a change in hLi. In this way, �hSi? is transferred from
the spin so that the system can satisfy the total angular
momentum conservation, and this physical mechanism is
nothing but the realization of the Einstein–de Haas ef-
fect. One might have thought that the second term in
Eq. (21) would violate the angular momentum conserva-
tion. However, in a finite size cylinder, there appears a
surface state that exactly cancels this second term [31].

We can say that, the rotation causes a finite hSi, which
may well be called the chiral Barnett effect (for more
precise characterization, see discussions below). Then,
this induced hSi causes a finite shift in hLi, which may
be referred to as the chiral Einstein–de Haas effect.

Now, let us consider more about the chiral Barnett ef-
fect for the rest of this section. As discussed in the origi-
nal paper by Barnett [1], the Barnett effect is one realiza-
tion of the gyromagnetic effects and is the phenomenon
of generating a finite magnetization by rotation. The key
equation for underlying physics is obtained from balance
between the rotational and the magnetic energy shifts,
i.e.,

! · J = µ ·B , (26)

where B is an effective magnetic field and we take the
permeability to be the unity in our unit. The magnetic
field B is related to the magnetization M through the
magnetic susceptibility �B as M = �BB (provided that
M k B). Also, usually, µ k J (not on the operator level
but after taking the expectation value according to the
Wigner-Eckardt theorem), and the proportionality coef-
ficient � is called the gyromagnetic ratio, i.e., µ = �J .
With these definitions we can find the standard formula

for the Barnett effect, that is,

M =
�B

�
! (27)

This is a well-known formula, but as seen from Eq. (26),
one can get information only about projected compo-
nents along ! and B. Therefore, here, let us consider
a slightly different problem; we try to compute not M
but µ below.

The gyromagnetic ration for nonrelativistic fermionic
particles follows from the Dirac equation as

µ = µL + µS = gL
qe

2m
L+ gS

qe

2m
S , (28)

where qe and m are the electric charge and the mass of
considered particles, respectively. The g-factors are gL =
1 and gS = 2 for noninteracting Dirac fermions. Because
gL 6= gS , the right-hand side of Eq. (28) is not parallel to
J = L + S. If one takes the expectation value with the
eigenstates of the total angular momentum, however, one
can show that the right-hand side is directed to J and
the effective g-factor for J is given by the Lindé g-factor.

In our case of massless chiral fermions we cannot use
Eq. (28). We should then go back to the single particle
energy obtained from the Dirac equation with magnetic
field and rotation, and it is straightforward to confirm
that Eq. (28) is replaced with [32]

µ = µL + µS = gL
qe

2p
L+ gS

qe

2p
S . (29)

From now on we plug gL = 1 and gS = 2 into µL and
µS . We note that Eq. (29) is an operator relation, so we
should compute the expectation value as we did for the
spin and the orbital angular momentum in the previous
section.

Since the CVE term of ~2 order is not our main em-
phasis in the following discussion, we will work only up
to the ~ order terms. The orbital part reads,

hµLi = �qe

6
x⇥(!⇥x)

Z

p
p f

0(p)+~�qe
6
(!⇥x)

Z

p
f
0(p) .

(30)
Here, the first term is to be identified with the mechanical
contribution. Indeed, the integration by part makes the
first term look like,

hµLimech =
1

2
x⇥ (! ⇥ x)ne , (31)

where ne is the electric charge density. Since !⇥x is a ve-
locity vector associated with rotation motion, the above
expression is exactly the one known in classical electro-
magnetism for the magnetic dipole from the Amperian
loop.

The spin part similarly reads,

hµSi = �~�qe
3
(! ⇥ x)

Z

p
f
0(p) , (32)
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First we shall confirm the physical interpretation of the
first term denoted above by hLimech. For simplicity let us
consider a cylindrically symmetric system rotating rigidly
around the z-axis, i.e., ! = !ẑ. Then, the volume inte-
gral of the first term yields,

Z

V
hLimech = !ẑ

Z

V
r
2 4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
. (25)

If the distribution functions are Fermi degenerated to a
chemical potential µ, we can show that the energy den-
sity, E , is given by E = 3

4µn where n is the number
density. Therefore, the integrand after r

2 in the above
expression corresponds to µn, and this is nothing but a
relativistic counterpart of the mass density. So, the vol-
ume integral amounts to the moment of inertia. From
this argument it is clear that hLimech corresponds to the
mechanically induced orbital angular momentum.

Next we pay attention to the second term, �hSi?.
This is a very interesting term given an interpretation
as a chiral Einstein–de Haas effect. If the chiral fermions
are rotated from the initial condition, hLi = hSi = 0,
then the total angular momentum carried by the rotat-
ing fermions should be hJi = hLimech. We, however,
saw that the transverse motion with the spin-momentum
locking results in a finite hSi?. This must be canceled by
a change in hLi. In this way, �hSi? is transferred from
the spin so that the system can satisfy the total angular
momentum conservation, and this physical mechanism is
nothing but the realization of the Einstein–de Haas ef-
fect. One might have thought that the second term in
Eq. (21) would violate the angular momentum conserva-
tion. However, in a finite size cylinder, there appears a
surface state that exactly cancels this second term [31].

We can say that, the rotation causes a finite hSi, which
may well be called the chiral Barnett effect (for more
precise characterization, see discussions below). Then,
this induced hSi causes a finite shift in hLi, which may
be referred to as the chiral Einstein–de Haas effect.

Now, let us consider more about the chiral Barnett ef-
fect for the rest of this section. As discussed in the origi-
nal paper by Barnett [1], the Barnett effect is one realiza-
tion of the gyromagnetic effects and is the phenomenon
of generating a finite magnetization by rotation. The key
equation for underlying physics is obtained from balance
between the rotational and the magnetic energy shifts,
i.e.,

! · J = µ ·B , (26)

where B is an effective magnetic field and we take the
permeability to be the unity in our unit. The magnetic
field B is related to the magnetization M through the
magnetic susceptibility �B as M = �BB (provided that
M k B). Also, usually, µ k J (not on the operator level
but after taking the expectation value according to the
Wigner-Eckardt theorem), and the proportionality coef-
ficient � is called the gyromagnetic ratio, i.e., µ = �J .
With these definitions we can find the standard formula

for the Barnett effect, that is,

M =
�B

�
! (27)

This is a well-known formula, but as seen from Eq. (26),
one can get information only about projected compo-
nents along ! and B. Therefore, here, let us consider
a slightly different problem; we try to compute not M
but µ below.

The gyromagnetic ration for nonrelativistic fermionic
particles follows from the Dirac equation as

µ = µL + µS = gL
qe

2m
L+ gS

qe

2m
S , (28)

where qe and m are the electric charge and the mass of
considered particles, respectively. The g-factors are gL =
1 and gS = 2 for noninteracting Dirac fermions. Because
gL 6= gS , the right-hand side of Eq. (28) is not parallel to
J = L + S. If one takes the expectation value with the
eigenstates of the total angular momentum, however, one
can show that the right-hand side is directed to J and
the effective g-factor for J is given by the Lindé g-factor.

In our case of massless chiral fermions we cannot use
Eq. (28). We should then go back to the single particle
energy obtained from the Dirac equation with magnetic
field and rotation, and it is straightforward to confirm
that Eq. (28) is replaced with [32]

µ = µL + µS = gL
qe

2p
L+ gS

qe

2p
S . (29)

From now on we plug gL = 1 and gS = 2 into µL and
µS . We note that Eq. (29) is an operator relation, so we
should compute the expectation value as we did for the
spin and the orbital angular momentum in the previous
section.

Since the CVE term of ~2 order is not our main em-
phasis in the following discussion, we will work only up
to the ~ order terms. The orbital part reads,

hµLi = �qe

6
x⇥(!⇥x)

Z

p
p f

0(p)+~�qe
6
(!⇥x)

Z

p
f
0(p) .

(30)
Here, the first term is to be identified with the mechanical
contribution. Indeed, the integration by part makes the
first term look like,

hµLimech =
1

2
x⇥ (! ⇥ x)ne , (31)

where ne is the electric charge density. Since !⇥x is a ve-
locity vector associated with rotation motion, the above
expression is exactly the one known in classical electro-
magnetism for the magnetic dipole from the Amperian
loop.

The spin part similarly reads,

hµSi = �~�qe
3
(! ⇥ x)

Z

p
f
0(p) , (32)
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First we shall confirm the physical interpretation of the
first term denoted above by hLimech. For simplicity let us
consider a cylindrically symmetric system rotating rigidly
around the z-axis, i.e., ! = !ẑ. Then, the volume inte-
gral of the first term yields,

Z

V
hLimech = !ẑ

Z

V
r
2 4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
. (25)

If the distribution functions are Fermi degenerated to a
chemical potential µ, we can show that the energy den-
sity, E , is given by E = 3

4µn where n is the number
density. Therefore, the integrand after r

2 in the above
expression corresponds to µn, and this is nothing but a
relativistic counterpart of the mass density. So, the vol-
ume integral amounts to the moment of inertia. From
this argument it is clear that hLimech corresponds to the
mechanically induced orbital angular momentum.

Next we pay attention to the second term, �hSi?.
This is a very interesting term given an interpretation
as a chiral Einstein–de Haas effect. If the chiral fermions
are rotated from the initial condition, hLi = hSi = 0,
then the total angular momentum carried by the rotat-
ing fermions should be hJi = hLimech. We, however,
saw that the transverse motion with the spin-momentum
locking results in a finite hSi?. This must be canceled by
a change in hLi. In this way, �hSi? is transferred from
the spin so that the system can satisfy the total angular
momentum conservation, and this physical mechanism is
nothing but the realization of the Einstein–de Haas ef-
fect. One might have thought that the second term in
Eq. (21) would violate the angular momentum conserva-
tion. However, in a finite size cylinder, there appears a
surface state that exactly cancels this second term [31].

We can say that, the rotation causes a finite hSi, which
may well be called the chiral Barnett effect (for more
precise characterization, see discussions below). Then,
this induced hSi causes a finite shift in hLi, which may
be referred to as the chiral Einstein–de Haas effect.

Now, let us consider more about the chiral Barnett ef-
fect for the rest of this section. As discussed in the origi-
nal paper by Barnett [1], the Barnett effect is one realiza-
tion of the gyromagnetic effects and is the phenomenon
of generating a finite magnetization by rotation. The key
equation for underlying physics is obtained from balance
between the rotational and the magnetic energy shifts,
i.e.,

! · J = µ ·B , (26)

where B is an effective magnetic field and we take the
permeability to be the unity in our unit. The magnetic
field B is related to the magnetization M through the
magnetic susceptibility �B as M = �BB (provided that
M k B). Also, usually, µ k J (not on the operator level
but after taking the expectation value according to the
Wigner-Eckardt theorem), and the proportionality coef-
ficient � is called the gyromagnetic ratio, i.e., µ = �J .
With these definitions we can find the standard formula

for the Barnett effect, that is,

M =
�B

�
! (27)

This is a well-known formula, but as seen from Eq. (26),
one can get information only about projected compo-
nents along ! and B. Therefore, here, let us consider
a slightly different problem; we try to compute not M
but µ below.

The gyromagnetic ration for nonrelativistic fermionic
particles follows from the Dirac equation as

µ = µL + µS = gL
qe

2m
L+ gS

qe

2m
S , (28)

where qe and m are the electric charge and the mass of
considered particles, respectively. The g-factors are gL =
1 and gS = 2 for noninteracting Dirac fermions. Because
gL 6= gS , the right-hand side of Eq. (28) is not parallel to
J = L + S. If one takes the expectation value with the
eigenstates of the total angular momentum, however, one
can show that the right-hand side is directed to J and
the effective g-factor for J is given by the Lindé g-factor.

In our case of massless chiral fermions we cannot use
Eq. (28). We should then go back to the single particle
energy obtained from the Dirac equation with magnetic
field and rotation, and it is straightforward to confirm
that Eq. (28) is replaced with [32]

µ = µL + µS = gL
qe

2p
L+ gS

qe

2p
S . (29)

From now on we plug gL = 1 and gS = 2 into µL and
µS . We note that Eq. (29) is an operator relation, so we
should compute the expectation value as we did for the
spin and the orbital angular momentum in the previous
section.

Since the CVE term of ~2 order is not our main em-
phasis in the following discussion, we will work only up
to the ~ order terms. The orbital part reads,

hµLi = �qe

6
x⇥(!⇥x)

Z

p
p f

0(p)+~�qe
6
(!⇥x)

Z

p
f
0(p) .
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Here, the first term is to be identified with the mechanical
contribution. Indeed, the integration by part makes the
first term look like,

hµLimech =
1

2
x⇥ (! ⇥ x)ne , (31)

where ne is the electric charge density. Since !⇥x is a ve-
locity vector associated with rotation motion, the above
expression is exactly the one known in classical electro-
magnetism for the magnetic dipole from the Amperian
loop.

The spin part similarly reads,

hµSi = �~�qe
3
(! ⇥ x)

Z

p
f
0(p) , (32)
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First we shall confirm the physical interpretation of the
first term denoted above by hLimech. For simplicity let us
consider a cylindrically symmetric system rotating rigidly
around the z-axis, i.e., ! = !ẑ. Then, the volume inte-
gral of the first term yields,
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r
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p
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fR(p) + fL(p)

⇤
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If the distribution functions are Fermi degenerated to a
chemical potential µ, we can show that the energy den-
sity, E , is given by E = 3

4µn where n is the number
density. Therefore, the integrand after r

2 in the above
expression corresponds to µn, and this is nothing but a
relativistic counterpart of the mass density. So, the vol-
ume integral amounts to the moment of inertia. From
this argument it is clear that hLimech corresponds to the
mechanically induced orbital angular momentum.

Next we pay attention to the second term, �hSi?.
This is a very interesting term given an interpretation
as a chiral Einstein–de Haas effect. If the chiral fermions
are rotated from the initial condition, hLi = hSi = 0,
then the total angular momentum carried by the rotat-
ing fermions should be hJi = hLimech. We, however,
saw that the transverse motion with the spin-momentum
locking results in a finite hSi?. This must be canceled by
a change in hLi. In this way, �hSi? is transferred from
the spin so that the system can satisfy the total angular
momentum conservation, and this physical mechanism is
nothing but the realization of the Einstein–de Haas ef-
fect. One might have thought that the second term in
Eq. (21) would violate the angular momentum conserva-
tion. However, in a finite size cylinder, there appears a
surface state that exactly cancels this second term [31].

We can say that, the rotation causes a finite hSi, which
may well be called the chiral Barnett effect (for more
precise characterization, see discussions below). Then,
this induced hSi causes a finite shift in hLi, which may
be referred to as the chiral Einstein–de Haas effect.

Now, let us consider more about the chiral Barnett ef-
fect for the rest of this section. As discussed in the origi-
nal paper by Barnett [1], the Barnett effect is one realiza-
tion of the gyromagnetic effects and is the phenomenon
of generating a finite magnetization by rotation. The key
equation for underlying physics is obtained from balance
between the rotational and the magnetic energy shifts,
i.e.,

! · J = µ ·B , (26)

where B is an effective magnetic field and we take the
permeability to be the unity in our unit. The magnetic
field B is related to the magnetization M through the
magnetic susceptibility �B as M = �BB (provided that
M k B). Also, usually, µ k J (not on the operator level
but after taking the expectation value according to the
Wigner-Eckardt theorem), and the proportionality coef-
ficient � is called the gyromagnetic ratio, i.e., µ = �J .
With these definitions we can find the standard formula

for the Barnett effect, that is,

M =
�B

�
! (27)

This is a well-known formula, but as seen from Eq. (26),
one can get information only about projected compo-
nents along ! and B. Therefore, here, let us consider
a slightly different problem; we try to compute not M
but µ below.

The gyromagnetic ration for nonrelativistic fermionic
particles follows from the Dirac equation as

µ = µL + µS = gL
qe

2m
L+ gS

qe

2m
S , (28)

where qe and m are the electric charge and the mass of
considered particles, respectively. The g-factors are gL =
1 and gS = 2 for noninteracting Dirac fermions. Because
gL 6= gS , the right-hand side of Eq. (28) is not parallel to
J = L + S. If one takes the expectation value with the
eigenstates of the total angular momentum, however, one
can show that the right-hand side is directed to J and
the effective g-factor for J is given by the Lindé g-factor.

In our case of massless chiral fermions we cannot use
Eq. (28). We should then go back to the single particle
energy obtained from the Dirac equation with magnetic
field and rotation, and it is straightforward to confirm
that Eq. (28) is replaced with [32]

µ = µL + µS = gL
qe

2p
L+ gS

qe

2p
S . (29)

From now on we plug gL = 1 and gS = 2 into µL and
µS . We note that Eq. (29) is an operator relation, so we
should compute the expectation value as we did for the
spin and the orbital angular momentum in the previous
section.

Since the CVE term of ~2 order is not our main em-
phasis in the following discussion, we will work only up
to the ~ order terms. The orbital part reads,

hµLi = �qe

6
x⇥(!⇥x)

Z

p
p f

0(p)+~�qe
6
(!⇥x)

Z
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Here, the first term is to be identified with the mechanical
contribution. Indeed, the integration by part makes the
first term look like,

hµLimech =
1

2
x⇥ (! ⇥ x)ne , (31)

where ne is the electric charge density. Since !⇥x is a ve-
locity vector associated with rotation motion, the above
expression is exactly the one known in classical electro-
magnetism for the magnetic dipole from the Amperian
loop.

The spin part similarly reads,

hµSi = �~�qe
3
(! ⇥ x)

Z
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First we shall confirm the physical interpretation of the
first term denoted above by hLimech. For simplicity let us
consider a cylindrically symmetric system rotating rigidly
around the z-axis, i.e., ! = !ẑ. Then, the volume inte-
gral of the first term yields,
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If the distribution functions are Fermi degenerated to a
chemical potential µ, we can show that the energy den-
sity, E , is given by E = 3

4µn where n is the number
density. Therefore, the integrand after r

2 in the above
expression corresponds to µn, and this is nothing but a
relativistic counterpart of the mass density. So, the vol-
ume integral amounts to the moment of inertia. From
this argument it is clear that hLimech corresponds to the
mechanically induced orbital angular momentum.

Next we pay attention to the second term, �hSi?.
This is a very interesting term given an interpretation
as a chiral Einstein–de Haas effect. If the chiral fermions
are rotated from the initial condition, hLi = hSi = 0,
then the total angular momentum carried by the rotat-
ing fermions should be hJi = hLimech. We, however,
saw that the transverse motion with the spin-momentum
locking results in a finite hSi?. This must be canceled by
a change in hLi. In this way, �hSi? is transferred from
the spin so that the system can satisfy the total angular
momentum conservation, and this physical mechanism is
nothing but the realization of the Einstein–de Haas ef-
fect. One might have thought that the second term in
Eq. (21) would violate the angular momentum conserva-
tion. However, in a finite size cylinder, there appears a
surface state that exactly cancels this second term [31].

We can say that, the rotation causes a finite hSi, which
may well be called the chiral Barnett effect (for more
precise characterization, see discussions below). Then,
this induced hSi causes a finite shift in hLi, which may
be referred to as the chiral Einstein–de Haas effect.

Now, let us consider more about the chiral Barnett ef-
fect for the rest of this section. As discussed in the origi-
nal paper by Barnett [1], the Barnett effect is one realiza-
tion of the gyromagnetic effects and is the phenomenon
of generating a finite magnetization by rotation. The key
equation for underlying physics is obtained from balance
between the rotational and the magnetic energy shifts,
i.e.,

! · J = µ ·B , (26)

where B is an effective magnetic field and we take the
permeability to be the unity in our unit. The magnetic
field B is related to the magnetization M through the
magnetic susceptibility �B as M = �BB (provided that
M k B). Also, usually, µ k J (not on the operator level
but after taking the expectation value according to the
Wigner-Eckardt theorem), and the proportionality coef-
ficient � is called the gyromagnetic ratio, i.e., µ = �J .
With these definitions we can find the standard formula

for the Barnett effect, that is,

M =
�B

�
! (27)

This is a well-known formula, but as seen from Eq. (26),
one can get information only about projected compo-
nents along ! and B. Therefore, here, let us consider
a slightly different problem; we try to compute not M
but µ below.

The gyromagnetic ration for nonrelativistic fermionic
particles follows from the Dirac equation as

µ = µL + µS = gL
qe

2m
L+ gS

qe

2m
S , (28)

where qe and m are the electric charge and the mass of
considered particles, respectively. The g-factors are gL =
1 and gS = 2 for noninteracting Dirac fermions. Because
gL 6= gS , the right-hand side of Eq. (28) is not parallel to
J = L + S. If one takes the expectation value with the
eigenstates of the total angular momentum, however, one
can show that the right-hand side is directed to J and
the effective g-factor for J is given by the Lindé g-factor.

In our case of massless chiral fermions we cannot use
Eq. (28). We should then go back to the single particle
energy obtained from the Dirac equation with magnetic
field and rotation, and it is straightforward to confirm
that Eq. (28) is replaced with [32]

µ = µL + µS = gL
qe

2p
L+ gS

qe

2p
S . (29)

From now on we plug gL = 1 and gS = 2 into µL and
µS . We note that Eq. (29) is an operator relation, so we
should compute the expectation value as we did for the
spin and the orbital angular momentum in the previous
section.

Since the CVE term of ~2 order is not our main em-
phasis in the following discussion, we will work only up
to the ~ order terms. The orbital part reads,

hµLi = �qe

6
x⇥(!⇥x)

Z

p
p f

0(p)+~�qe
6
(!⇥x)

Z
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(30)
Here, the first term is to be identified with the mechanical
contribution. Indeed, the integration by part makes the
first term look like,

hµLimech =
1

2
x⇥ (! ⇥ x)ne , (31)

where ne is the electric charge density. Since !⇥x is a ve-
locity vector associated with rotation motion, the above
expression is exactly the one known in classical electro-
magnetism for the magnetic dipole from the Amperian
loop.

The spin part similarly reads,

hµSi = �~�qe
3
(! ⇥ x)

Z

p
f
0(p) , (32)
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Angular Momentum 
= Noether Current from Rotational Symmetry

Magnetization, spin, and angular momentum of rotating chiral fermions

Kenji Fukushima, Shi Pu, and Zebin Qiu
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7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Using the chiral kinetic theory we discuss the magnetization, the spin, and the angular momentum
of rotating chiral fermions.

I. INTRODUCTION

Discovered a century ago, Barnett effect [1] is the mag-
netization induced by mechanical rotation of a rigid body.
Together with its inverse effect (Einstein-de Haas effect
[2]), it’s attributed to the conservation of angular momen-
tum and is essentially nothing but the transfer between
spin and orbital angular momentum. In a historical view,
experiments on these two effects were originally set up in
ferromagnetic materials and later regarded as an impor-
tant method to measure g-factor, or gyromagnetic ratio.

More recently, the idea of searching the counterpart of
Einstein-de Haas effect in chiral systems (constituted by
massless chiral fermions and featuring parity violation),
e.g. quark-gluon plasma (QGP) and Weyl semimetal, has
been proposed in [3]. Based on hydrodynamic conserva-
tion law for the total helicity, the transfer between its
two subdivisions, i.e. fluid helicity and particle chirality,
is suggested to be the analog to Barnett / Einstein-de
Haas effect, since fluid helicity characterizes macroscopic
helical motion while chirality is related to spin.

As an indispensable ingredient among above discus-
sions, chirality imbalance is revealed to be induced
through chiral anomaly [4, 5] in chiral media. Its fur-
ther interplay with electromagnetic fields or vorticity
produces chiral magentic effect (CME) [6–8] or chiral
vortical effect (CVE) [9–11] respectively. These anom-
lous transport phenomena attracted sustained attention
(for relevant reviews, see e.g. [12–14]), partially be-
cause their topological nature detemines they are non-
dissipative and thus survive hydrodynamic limit, which
means they may serve as macroscopic manifestations of
quantum anomaly. In parallel, our study of “chiral Bar-
nett effect”, boils down to drawing the connection be-
tween anomaly-induced spin and rigid rotation. Natu-
rally, we expect this novel effect to build another bridge
between microscopic/quantum and macroscopic/classical
physics.

Despite aforementioned sprout of the general idea un-
der hydrodynamic framework, the paucity of quantita-
tive study motivates us to resort to, by contrast, chiral
kinetic theory [15–19], which can go beyond the regime
of thermodynamic equilibrium. Kinetic theory is a semi-
classical approach under the assumption of weak external
fields and rare collisions. In such formalism, anomaly is
encoded in the Berry curvature, which modifies the clas-
sical kinetic equations (for the velocity and force of a sin-
gle particle). Chiral kinetic theory has well-established
derivation via different methods, e.g. path integral [15],

Hamiltonian formalism [16, 20], effective field theories
[21, 22], Wigner function [17, 23], worldline construction
[24], and turns out successful in describing the collective
dynamics of chiral anomalous transport. In this paper,
we employ such kinetic methodology.

It’s worth mentioning that, on the experimental side,
the most pertinent effort is the measurement on global
polarization of ⇤-hyperons [25–27], which signifies the
spin alignment along total angular momentum in heavy
ion collisions (HIC). Nevertheless, this effect itself is just
the consequence of spin-orbit coupling, rather than any
anomaly. What we are now exploring is the underlying
problem how angular momentum (including both spin
and orbital parts) is driven by rotation or vorticity in
chiral systems, which saliently involves chiral anomaly.

The structure of our paper is organized as follows (to
be determined afterwards)

Throughout this paper we use the natural unit for the
speed of light, c = 1, while we retain ~.

II. ANGULAR MOMENTUM

The angular momentum is a conserved quantity, but
the decomposition into the spin and the orbital compo-
nents is not unique in relativistic theories. We explain
our convention and physical interpretations. Let us start
with a free Dirac field (where the generalization to in-
clude interaction is not difficult by @µ ! Dµ), whose
Lagrangian density is,

L =  ̄
�
i~�µ@µ �m

�
 . (1)

Since this Lagrangian is invariant under an infinitesimal
rotation,

x
µ ! x

0µ = x
µ + ✏

µ
⌫x

⌫
, (2)

where ✏µ⌫ is an infinitesimal antisymmetric tensor. The
angular momentum tensor is the Nöther current asso-
ciated with symmetry under Eq. (2). We note that
the spinor transforms as  (x) !  

0(x0) =  (x) +
✏µ⌫� 

µ⌫(x) where � µ⌫(x) = �(i/2)⌃µ⌫
 (x) with ⌃µ⌫ =

(i/4)[�µ, �⌫ ]. Correspondingly, for symmetry transfor-
mation with ✏µ⌫ the Nöther current with a current index
� has two contributions; one from a coordinate part by
Eq. (2) and the other from the spinor part as

J
�µ⌫ = L

�µ⌫ + S
�µ⌫

. (3)

2

From the similarity between the rotation in Eq. (2) and
the translational shift, we can rewrite the first term,
L
�µ⌫ , using the canonical energy-momentum tensor,

T
µ⌫ =

@L
@(@µ )

@ 

@x⌫
=  ̄ i~�µ@⌫ , (4)

into the following form,

L
�µ⌫ =  ̄ i~

�
�
�
x
µ
@
⌫ � �

�
x
⌫
@
µ
�
 

= x
µ
T

�⌫ � x
⌫
T

�µ
. (5)

Turning to the second term, its explicit form reads,

S
�µ⌫ =

@L
@(@� )

� 
µ⌫ =

1

2
 ̄ i~���µ�⌫ . (6)

Therefore, the total angular momentum density is,

J
�µ⌫ =  ̄ i~

⇣
�
�
x
µ
@
⌫ � �

�
x
⌫
@
µ +

1

2
�
�
�
µ
�
⌫
⌘
 , (7)

whose zeroth component is the conserved charge, i.e.,
the conserved total angular momentum. Using the Dirac
equation, we can easily check that

@�L
�µ⌫ = �@�S�µ⌫ =  ̄ i~(�µ@⌫ � �

⌫
@
µ) . (8)

From the above @�J�µ⌫ = 0 immediately follows. If the
surface term is irrelevant, we can then arrive at the an-
gular momentum conservation law as

d

dt

Z
d
3
xJ

0µ⌫ = 0 . (9)

One might have thought that the identification of L0µ⌫

and S
0µ⌫ as the orbital and the spin components would

be natural. Indeed, in the nonrelativistic limit, L0µ⌫ and
S
0µ⌫ go to the orbital and the spin components, respec-

tively. Nevertheless, this does not guarantee the unique
definition.

Actually, the energy-momentum tensor always has am-
biguity by

⇥µ⌫ = T
µ⌫ + @�⌃

µ⌫� (10)

with arbitrary antisymmetric tensor ⌃µ⌫�. It is obvious
that ⇥µ⌫ also satisfies the conservation law, and so it
is equally qualified as the energy-momentum tensor. In
particular, with an appropriate choice of ⌃µ⌫�, one can
make ⇥µ⌫ symmetric as

⇥µ⌫ =
1

2
 ̄ i~(�µ@⌫ + �

⌫
@
µ) . (11)

The corresponding “orbital” component of the angular
momentum, deduced from Eq. (5) with T

µ⌫ replaced by
⇥µ⌫ , is

L̃
�µ⌫ =

1

2
L
�µ⌫ +

1

2
 ̄ i~

⇥
(xµ

�
⌫ � x

⌫
�
µ)@�

⇤
 , (12)

and the “spin” component inferred from S̃
�µ⌫ = J

�µ⌫ �
L̃
�µ⌫ . Interestingly, using the Dirac equation again, we

can prove,

@�L̃
�µ⌫ = @�S̃

�µ⌫ = 0 . (13)

The above indicates that in this construction the orbital
and the spin components of the angular momentum are
separately conserved (see Ref. [28] for a related discus-
sion on electron vortices), while the canonical ones, L�µ⌫

and S
�µ⌫ are not. However, this fact does not mean any

superiority of L̃
�µ⌫ and S̃

�µ⌫ because neither of them
is a true symmetry generator alone. The situation is
quite similar to the decomposition of the optical spin and
the optical orbital angular momentum. For free electro-
magnetic fields one can generally define individually con-
served spin and orbital angular momentum operator, but
due to the transversality constraint, only their combina-
tion, i.e., the total angular momentum is the physically
meaningful quantity [29, 30].

Throughout this work we adopt the canonical spin
S
�µ⌫ and the canonical orbital angular momentumly

L
�µ⌫ , which is because these are the definitions mostly

naturally connected to the nonrelativistic counterparts.
Another advantage to use S

�µ⌫ is that S
0µ⌫ is nothing

but the axial current and thus is given an interpretation
in connection to the chiral anomaly. That is,

S
0ij = ✏

ijk ~
2
 ̄�

k
�5 = ✏

ijk j
k
5

2
. (14)

This relation also implies that, if the axial current is a
measurable physical observable, S

0ij and thus L
0ij are

too.

III. INCARNATION IN KINETIC THEORY

Since we will consider the problem in terms of kinetic
theory, we should find corresponding expressions for L�µ⌫

and S
�µ⌫ using the distribution function, f(p,x, t). To

this end we should consider the one-particle angular mo-
mentum tensor as considered in Ref. [19], i.e.,

J
0µ⌫ = L

µ⌫ + S
µ⌫ = x

µ
p
⌫ � x

⌫
p
µ + S

µ⌫ (15)

with p
µ = (p = |p|, p), which should be compared to

Eq. (7). From the correspondence of i~@µ ! p
µ, it is

clear that the first two terms represent our L
0µ⌫ part.

Thus, the last term represents the spin tensor, whose
concrete shape is fixed up to a frame vector, n� , as [19]

S
µ⌫ = ~� ✏µ⌫↵� p↵ n�

p · n . (16)

Here, � represents the helicity. We choose n� = (1, 0) in
this work, and then we find S

ij = ~� ✏ijkp̂k and S
0⌫ = 0.

Summarizing the above, we now identify,

L
ij = x

i
p
j � x

j
p
i �! L = x⇥ p , (17)

S
ij = ~� ✏ijkp̂k �! S = ~� p̂ . (18)

Neither L nor S conserved separately
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From the similarity between the rotation in Eq. (2) and
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Turning to the second term, its explicit form reads,
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Therefore, the total angular momentum density is,
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�
x
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µ +

1

2
�
�
�
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�
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⌘
 , (7)

whose zeroth component is the conserved charge, i.e.,
the conserved total angular momentum. Using the Dirac
equation, we can easily check that

@�L
�µ⌫ = �@�S�µ⌫ =  ̄ i~(�µ@⌫ � �

⌫
@
µ) . (8)

From the above @�J�µ⌫ = 0 immediately follows. If the
surface term is irrelevant, we can then arrive at the an-
gular momentum conservation law as

d

dt

Z
d
3
xJ

0µ⌫ = 0 . (9)

One might have thought that the identification of L0µ⌫

and S
0µ⌫ as the orbital and the spin components would

be natural. Indeed, in the nonrelativistic limit, L0µ⌫ and
S
0µ⌫ go to the orbital and the spin components, respec-

tively. Nevertheless, this does not guarantee the unique
definition.

Actually, the energy-momentum tensor always has am-
biguity by

⇥µ⌫ = T
µ⌫ + @�⌃

µ⌫� (10)

with arbitrary antisymmetric tensor ⌃µ⌫�. It is obvious
that ⇥µ⌫ also satisfies the conservation law, and so it
is equally qualified as the energy-momentum tensor. In
particular, with an appropriate choice of ⌃µ⌫�, one can
make ⇥µ⌫ symmetric as

⇥µ⌫ =
1

2
 ̄ i~(�µ@⌫ + �

⌫
@
µ) . (11)

The corresponding “orbital” component of the angular
momentum, deduced from Eq. (5) with T

µ⌫ replaced by
⇥µ⌫ , is

L̃
�µ⌫ =

1

2
L
�µ⌫ +

1

2
 ̄ i~

⇥
(xµ

�
⌫ � x

⌫
�
µ)@�

⇤
 , (12)

and the “spin” component inferred from S̃
�µ⌫ = J

�µ⌫ �
L̃
�µ⌫ . Interestingly, using the Dirac equation again, we

can prove,

@�L̃
�µ⌫ = @�S̃

�µ⌫ = 0 . (13)

The above indicates that in this construction the orbital
and the spin components of the angular momentum are
separately conserved (see Ref. [28] for a related discus-
sion on electron vortices), while the canonical ones, L�µ⌫

and S
�µ⌫ are not. However, this fact does not mean any

superiority of L̃
�µ⌫ and S̃

�µ⌫ because neither of them
is a true symmetry generator alone. The situation is
quite similar to the decomposition of the optical spin and
the optical orbital angular momentum. For free electro-
magnetic fields one can generally define individually con-
served spin and orbital angular momentum operator, but
due to the transversality constraint, only their combina-
tion, i.e., the total angular momentum is the physically
meaningful quantity [29, 30].

Throughout this work we adopt the canonical spin
S
�µ⌫ and the canonical orbital angular momentumly

L
�µ⌫ , which is because these are the definitions mostly

naturally connected to the nonrelativistic counterparts.
Another advantage to use S

�µ⌫ is that S
0µ⌫ is nothing

but the axial current and thus is given an interpretation
in connection to the chiral anomaly. That is,

S
0ij = ✏

ijk ~
2
 ̄�

k
�5 = ✏

ijk j
k
5

2
. (14)

This relation also implies that, if the axial current is a
measurable physical observable, S

0ij and thus L
0ij are

too.

III. INCARNATION IN KINETIC THEORY

Since we will consider the problem in terms of kinetic
theory, we should find corresponding expressions for L�µ⌫

and S
�µ⌫ using the distribution function, f(p,x, t). To

this end we should consider the one-particle angular mo-
mentum tensor as considered in Ref. [19], i.e.,

J
0µ⌫ = L

µ⌫ + S
µ⌫ = x

µ
p
⌫ � x

⌫
p
µ + S

µ⌫ (15)

with p
µ = (p = |p|, p), which should be compared to

Eq. (7). From the correspondence of i~@µ ! p
µ, it is

clear that the first two terms represent our L
0µ⌫ part.

Thus, the last term represents the spin tensor, whose
concrete shape is fixed up to a frame vector, n� , as [19]

S
µ⌫ = ~� ✏µ⌫↵� p↵ n�

p · n . (16)

Here, � represents the helicity. We choose n� = (1, 0) in
this work, and then we find S

ij = ~� ✏ijkp̂k and S
0⌫ = 0.

Summarizing the above, we now identify,

L
ij = x

i
p
j � x

j
p
i �! L = x⇥ p , (17)

S
ij = ~� ✏ijkp̂k �! S = ~� p̂ . (18)

1

4
 ̄i~��[�µ, �⌫ ] 
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From the similarity between the rotation in Eq. (2) and
the translational shift, we can rewrite the first term,
L
�µ⌫ , using the canonical energy-momentum tensor,

T
µ⌫ =

@L
@(@µ )

@ 

@x⌫
=  ̄ i~�µ@⌫ , (4)

into the following form,

L
�µ⌫ =  ̄ i~

�
�
�
x
µ
@
⌫ � �

�
x
⌫
@
µ
�
 

= x
µ
T

�⌫ � x
⌫
T

�µ
. (5)

Turning to the second term, its explicit form reads,

S
�µ⌫ =

@L
@(@� )

� 
µ⌫ =

1

2
 ̄ i~���µ�⌫ . (6)

Therefore, the total angular momentum density is,

J
�µ⌫ =  ̄ i~

⇣
�
�
x
µ
@
⌫ � �

�
x
⌫
@
µ +

1

2
�
�
�
µ
�
⌫
⌘
 , (7)

whose zeroth component is the conserved charge, i.e.,
the conserved total angular momentum. Using the Dirac
equation, we can easily check that

@�L
�µ⌫ = �@�S�µ⌫ =  ̄ i~(�µ@⌫ � �

⌫
@
µ) . (8)

From the above @�J�µ⌫ = 0 immediately follows. If the
surface term is irrelevant, we can then arrive at the an-
gular momentum conservation law as

d

dt

Z
d
3
xJ

0µ⌫ = 0 . (9)

One might have thought that the identification of L0µ⌫

and S
0µ⌫ as the orbital and the spin components would

be natural. Indeed, in the nonrelativistic limit, L0µ⌫ and
S
0µ⌫ go to the orbital and the spin components, respec-

tively. Nevertheless, this does not guarantee the unique
definition.

Actually, the energy-momentum tensor always has am-
biguity by

⇥µ⌫ = T
µ⌫ + @�⌃

µ⌫� (10)

with arbitrary antisymmetric tensor ⌃µ⌫�. It is obvious
that ⇥µ⌫ also satisfies the conservation law, and so it
is equally qualified as the energy-momentum tensor. In
particular, with an appropriate choice of ⌃µ⌫�, one can
make ⇥µ⌫ symmetric as

⇥µ⌫ =
1

2
 ̄ i~(�µ@⌫ + �

⌫
@
µ) . (11)

The corresponding “orbital” component of the angular
momentum, deduced from Eq. (5) with T

µ⌫ replaced by
⇥µ⌫ , is

L̃
�µ⌫ =

1

2
L
�µ⌫ +

1

2
 ̄ i~

⇥
(xµ

�
⌫ � x

⌫
�
µ)@�

⇤
 , (12)

and the “spin” component inferred from S̃
�µ⌫ = J

�µ⌫ �
L̃
�µ⌫ . Interestingly, using the Dirac equation again, we

can prove,

@�L̃
�µ⌫ = @�S̃

�µ⌫ = 0 . (13)

The above indicates that in this construction the orbital
and the spin components of the angular momentum are
separately conserved (see Ref. [28] for a related discus-
sion on electron vortices), while the canonical ones, L�µ⌫

and S
�µ⌫ are not. However, this fact does not mean any

superiority of L̃
�µ⌫ and S̃

�µ⌫ because neither of them
is a true symmetry generator alone. The situation is
quite similar to the decomposition of the optical spin and
the optical orbital angular momentum. For free electro-
magnetic fields one can generally define individually con-
served spin and orbital angular momentum operator, but
due to the transversality constraint, only their combina-
tion, i.e., the total angular momentum is the physically
meaningful quantity [29, 30].

Throughout this work we adopt the canonical spin
S
�µ⌫ and the canonical orbital angular momentumly

L
�µ⌫ , which is because these are the definitions mostly

naturally connected to the nonrelativistic counterparts.
Another advantage to use S

�µ⌫ is that S
0µ⌫ is nothing

but the axial current and thus is given an interpretation
in connection to the chiral anomaly. That is,

S
0ij = ✏

ijk ~
2
 ̄�

k
�5 = ✏

ijk j
k
5

2
. (14)

This relation also implies that, if the axial current is a
measurable physical observable, S

0ij and thus L
0ij are

too.

III. INCARNATION IN KINETIC THEORY

Since we will consider the problem in terms of kinetic
theory, we should find corresponding expressions for L�µ⌫

and S
�µ⌫ using the distribution function, f(p,x, t). To

this end we should consider the one-particle angular mo-
mentum tensor as considered in Ref. [19], i.e.,

J
0µ⌫ = L

µ⌫ + S
µ⌫ = x

µ
p
⌫ � x

⌫
p
µ + S

µ⌫ (15)

with p
µ = (p = |p|, p), which should be compared to

Eq. (7). From the correspondence of i~@µ ! p
µ, it is

clear that the first two terms represent our L
0µ⌫ part.

Thus, the last term represents the spin tensor, whose
concrete shape is fixed up to a frame vector, n� , as [19]

S
µ⌫ = ~� ✏µ⌫↵� p↵ n�

p · n . (16)

Here, � represents the helicity. We choose n� = (1, 0) in
this work, and then we find S

ij = ~� ✏ijkp̂k and S
0⌫ = 0.

Summarizing the above, we now identify,

L
ij = x

i
p
j � x

j
p
i �! L = x⇥ p , (17)

S
ij = ~� ✏ijkp̂k �! S = ~� p̂ . (18)

S̃�µ⌫ = J�µ⌫ � L̃�µ⌫
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can prove,

@�L̃
�µ⌫ = @�S̃

�µ⌫ = 0 . (13)

The above indicates that in this construction the orbital
and the spin components of the angular momentum are
separately conserved (see Ref. [28] for a related discus-
sion on electron vortices), while the canonical ones, L�µ⌫

and S
�µ⌫ are not. However, this fact does not mean any

superiority of L̃
�µ⌫ and S̃

�µ⌫ because neither of them
is a true symmetry generator alone. The situation is
quite similar to the decomposition of the optical spin and
the optical orbital angular momentum. For free electro-
magnetic fields one can generally define individually con-
served spin and orbital angular momentum operator, but
due to the transversality constraint, only their combina-
tion, i.e., the total angular momentum is the physically
meaningful quantity [29, 30].

Throughout this work we adopt the canonical spin
S
�µ⌫ and the canonical orbital angular momentumly

L
�µ⌫ , which is because these are the definitions mostly

naturally connected to the nonrelativistic counterparts.
Another advantage to use S

�µ⌫ is that S
0µ⌫ is nothing

but the axial current and thus is given an interpretation
in connection to the chiral anomaly. That is,

S
0ij = ✏

ijk ~
2
 ̄�

k
�5 = ✏

ijk j
k
5

2
. (14)

This relation also implies that, if the axial current is a
measurable physical observable, S

0ij and thus L
0ij are

too.

III. INCARNATION IN KINETIC THEORY

Since we will consider the problem in terms of kinetic
theory, we should find corresponding expressions for L�µ⌫

and S
�µ⌫ using the distribution function, f(p,x, t). To

this end we should consider the one-particle angular mo-
mentum tensor as considered in Ref. [19], i.e.,

J
0µ⌫ = L

µ⌫ + S
µ⌫ = x

µ
p
⌫ � x

⌫
p
µ + S

µ⌫ (15)

with p
µ = (p = |p|, p), which should be compared to

Eq. (7). From the correspondence of i~@µ ! p
µ, it is

clear that the first two terms represent our L
0µ⌫ part.

Thus, the last term represents the spin tensor, whose
concrete shape is fixed up to a frame vector, n� , as [19]

S
µ⌫ = ~� ✏µ⌫↵� p↵ n�

p · n . (16)

Here, � represents the helicity. We choose n� = (1, 0) in
this work, and then we find S

ij = ~� ✏ijkp̂k and S
0⌫ = 0.

Summarizing the above, we now identify,

L
ij = x

i
p
j � x

j
p
i �! L = x⇥ p , (17)

S
ij = ~� ✏ijkp̂k �! S = ~� p̂ . (18)

Separately  
conserved?

We will see a similar situation in the optical sector  
Separately conserving optical L and S definable!?
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The desire to push recent experiments on electron vortices to higher energies leads to some theoretical
difficulties. In particular the simple and very successful picture of phase vortices of vortex charge l
associated with lℏ units of orbital angular momentum per electron is challenged by the facts that (i) the
spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that
the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is
not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron
vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron
vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related
to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the
orbital angular momentum of a photon.

DOI: 10.1103/PhysRevLett.118.114802

Vortices are ubiquitous wherever we have a fluid in
motion. They have been observed and studied in many
settings including in classical [1,2] and quantum fluids
[3–5], in nonlinear fields [6], and also in optics [7], where
their presence is associated with an orbital angular momen-
tum [8,9]. Recent developments have demonstrated, beyond
reasonable doubt, the existence of propagating electrons with
an on-axis vortex, corresponding to a phase singularity in the
wave function of the form eilϕ, where ϕ is the azimuthal
coordinate [10–19]. Comparison with paraxial optics [20,21]
or direct appeal to quantum theory [22,23] leads us to
associate these with lℏ units of orbital angular about the
direction of propagation. The experimental studies of
electron vortices are backed by an impressive array of
theoretical developments [24–32] and it may be said
justifiably that the phenomena of electron vortices and the
associated electron orbital angular momentum are now well
understood.
Theoretical investigations at higher energies, based on

the Dirac equation, have given cause to question the above
simple statements. As is well known, the spin and orbital
parts of the electron angular momentum are not separately
conserved [33] and this suggests the existence of a spin-
orbit coupling rather than a simple orbital angular momen-
tum associated with a vortex beam [34]. The velocity of a
Dirac electron, moreover, is not proportional to the
momentum operator [35] and hence the local velocity is
not the gradient of a phase [36]. These two features give
cause to question the validity of our simple nonrelativistic

analysis, with its phase vortices associated with an orbital
angular momentum. Even the existence of the vortices
seems to be in doubt [36].
There are three reasons why this problem is important:

one practical and two fundamental. The first derives from
the requirement to be able to describe, as simply as possible,
experiments with shaped electron beams as they move
towards higher energies. The second is the question of
whether electron vortices are real and if they are, as
experiments suggest, what happens to these topological
features in the relativistic limit? Finally, we have long
associated phase vortices with a well-defined orbital angu-
lar momentum, but Dirac theory tells us that the orbital and
spin parts of the angular momentum are not separately
conserved. Is this at odds, however, with the existence of
electron vortices? We are encouraged by the fact that
analogous issues arose and were resolved for light, which
is the quintessential relativistic field. To address these points
we ask if there is any sense in which the simplicity of the
nonrelativistic description of electron vortices persists in the
relativistic domain. We find that there is.
We work in the natural system of units in which

ℏ ¼ 1 ¼ c and write our Dirac equation in the form

i
∂ψ
∂t ¼ ðα · p þ βmÞψ ; ð1Þ

where ψ is the usual four-component spinor and α and β are
the matrices [35]

α ¼
!
0 σ

σ 0

"
; β¼

!
I 0

0 −I

"
: ð2Þ

The orbital and spin angular momentum operators take the
expected forms
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Foldy-Wouthuysen transformation

L ¼ x × p; S ¼ 1

2

!
σ 0

0 σ

"
; ð3Þ

but note that neither L nor S alone commutes with the
Dirac Hamiltonian H ¼ α · p þ βm. Only the total angular
momentum J ¼ L þ S commutes with H and is conserved
[33]. This situation contrasts strongly with the nonrelativ-
istic Hamiltonian for the free electron

Hnonrel ¼
p2

2m
; ð4Þ

which manifestly commutes with bothL and S so that each
of these is separately conserved. It is straightforward,
moreover, to find propagating-electron solutions of the
Schrödinger equation with azimuthal dependence eilϕ,
which are eigenstates of Lz with eigenvalue l [26].
In seeking to link the relativistic and nonrelativistic

treatments it is natural to employ the Foldy-Wouthuysen
transformation as it is the low energy limit of this form that
leads to the Schrödinger equation [35,37]. To this end we
introduce the unitary operator

eiS ¼ eβα·pθ=p; tanð2θÞ ¼ p
m

ð5Þ

to transform our spinor to ψ 0 ¼ eiSψ . This transformation
diagonalizes the Dirac Hamiltonian

H0 ¼ eiSHe−iS ¼ βðp2 þ m2Þ1=2; ð6Þ

so that our transformed Dirac equation is

i
∂ψ 0

∂t ¼ βðp2 þ m2Þ1=2ψ 0: ð7Þ

It should be emphasized that this is an exact form of the
Dirac equation for the free electron and that no approxi-
mation has been made in order to obtain it.
The transformed Dirac Hamiltonian H0 commutes with

bothL and S and it follows that, in the transformed picture,
these quantities are separately conserved. The unitary
operator eiS commutes with J, moreover, and the above
observation provides the basis for extracting two separately
conserved parts of the angular momentum.
We can write exact solutions of our transformed

Dirac equation (7) with an aximuthal dependence eilϕ

and these will have a phase vortex along the z axis. These
solutions will be eigenstates, moreover, of the operator
Lz ¼ −i∂=∂ϕ. Rather than work with the exact Dirac
equation, it is helpful to introduce an approximation at
this stage, so as to make a natural link with previous studies
and with experiments. To this end let us assume that
the electron motion is principally in the z direction, by
which we mean that pz ≫ px; py. We further specialize,
for simplicity, to a monoenergetic state with energy

ðm2 þ p2
0Þ1=2. This restricts us, naturally, to the two-

component upper part of our spinor ψ 0. Finally, let us
write

ψ 0
upper ¼ e−i

ffiffiffiffiffiffiffiffiffiffiffi
m2þ p2

0

p
teip0zuðrÞ

!
a

b

"
; ð8Þ

where a and b determine the orientation of the electron
spin and jaj2 þ jbj2 ¼ 1. If we expand the Hamiltonian
operator

ðm2 þ p2Þ1=2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

q
þ

p2
x þ p2

y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p þ p0ðpz − p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p

ð9Þ

then we are led to

i
∂u
∂z ¼ −

1

2p0

! ∂2

∂x2 þ
∂2

∂y2
"
u; ð10Þ

which is the paraxial wave equation familiar from optics
[38]. This is entirely natural as we can write Maxwell’s
equations for the free electromagnetic field in Dirac form
and applying to these the appropriate Foldy-Wouthuysen
transformation and making the paraxial approximation
leads to the same equation [39]. Note that in deriving this
equation we have placed no restriction on the value of p0

and that, despite its similarity to the Schrödinger equation,
it is a fully relativistic expression. Solutions to this equation
include the Laguerre-Gaussian modes, familiar from optics
[20,21], with the desired azimuthal dependence eilϕ.
We have solutions for ψ 0 that are eigenstates of the z

component of the orbital angular momentum operator,
Lz ¼ xpy − ypx, with integer eigenvalue l. We can also
select eigenstates of the z component of the spin, Sz, with
eigenvalue % 1=2 by choosing a¼ 1 or b¼ 1 in our
solution (8). It remains to determine the forms of these
observables for the original Dirac equation. Clearly, they
will not simply be Lz and Sz as these operators do not
commute with the unitary operator eiS. We find in this way
two separately conserved parts of the total angular momen-
tum for a free Dirac electron:

~L ¼ e−iSx × peiS ¼ x × p þ i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

þ
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
;

~S ¼ e−iSSeiS ¼ S − i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

−
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
: ð11Þ
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2

!
σ 0

0 σ

"
; ð3Þ

but note that neither L nor S alone commutes with the
Dirac Hamiltonian H ¼ α · p þ βm. Only the total angular
momentum J ¼ L þ S commutes with H and is conserved
[33]. This situation contrasts strongly with the nonrelativ-
istic Hamiltonian for the free electron

Hnonrel ¼
p2

2m
; ð4Þ

which manifestly commutes with bothL and S so that each
of these is separately conserved. It is straightforward,
moreover, to find propagating-electron solutions of the
Schrödinger equation with azimuthal dependence eilϕ,
which are eigenstates of Lz with eigenvalue l [26].
In seeking to link the relativistic and nonrelativistic

treatments it is natural to employ the Foldy-Wouthuysen
transformation as it is the low energy limit of this form that
leads to the Schrödinger equation [35,37]. To this end we
introduce the unitary operator

eiS ¼ eβα·pθ=p; tanð2θÞ ¼ p
m

ð5Þ

to transform our spinor to ψ 0 ¼ eiSψ . This transformation
diagonalizes the Dirac Hamiltonian

H0 ¼ eiSHe−iS ¼ βðp2 þ m2Þ1=2; ð6Þ

so that our transformed Dirac equation is

i
∂ψ 0

∂t ¼ βðp2 þ m2Þ1=2ψ 0: ð7Þ

It should be emphasized that this is an exact form of the
Dirac equation for the free electron and that no approxi-
mation has been made in order to obtain it.
The transformed Dirac Hamiltonian H0 commutes with

bothL and S and it follows that, in the transformed picture,
these quantities are separately conserved. The unitary
operator eiS commutes with J, moreover, and the above
observation provides the basis for extracting two separately
conserved parts of the angular momentum.
We can write exact solutions of our transformed

Dirac equation (7) with an aximuthal dependence eilϕ

and these will have a phase vortex along the z axis. These
solutions will be eigenstates, moreover, of the operator
Lz ¼ −i∂=∂ϕ. Rather than work with the exact Dirac
equation, it is helpful to introduce an approximation at
this stage, so as to make a natural link with previous studies
and with experiments. To this end let us assume that
the electron motion is principally in the z direction, by
which we mean that pz ≫ px; py. We further specialize,
for simplicity, to a monoenergetic state with energy

ðm2 þ p2
0Þ1=2. This restricts us, naturally, to the two-

component upper part of our spinor ψ 0. Finally, let us
write

ψ 0
upper ¼ e−i

ffiffiffiffiffiffiffiffiffiffiffi
m2þ p2

0

p
teip0zuðrÞ

!
a

b

"
; ð8Þ

where a and b determine the orientation of the electron
spin and jaj2 þ jbj2 ¼ 1. If we expand the Hamiltonian
operator

ðm2 þ p2Þ1=2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

q
þ

p2
x þ p2

y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p þ p0ðpz − p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p

ð9Þ

then we are led to

i
∂u
∂z ¼ −

1

2p0

! ∂2

∂x2 þ
∂2

∂y2
"
u; ð10Þ

which is the paraxial wave equation familiar from optics
[38]. This is entirely natural as we can write Maxwell’s
equations for the free electromagnetic field in Dirac form
and applying to these the appropriate Foldy-Wouthuysen
transformation and making the paraxial approximation
leads to the same equation [39]. Note that in deriving this
equation we have placed no restriction on the value of p0

and that, despite its similarity to the Schrödinger equation,
it is a fully relativistic expression. Solutions to this equation
include the Laguerre-Gaussian modes, familiar from optics
[20,21], with the desired azimuthal dependence eilϕ.
We have solutions for ψ 0 that are eigenstates of the z

component of the orbital angular momentum operator,
Lz ¼ xpy − ypx, with integer eigenvalue l. We can also
select eigenstates of the z component of the spin, Sz, with
eigenvalue % 1=2 by choosing a¼ 1 or b¼ 1 in our
solution (8). It remains to determine the forms of these
observables for the original Dirac equation. Clearly, they
will not simply be Lz and Sz as these operators do not
commute with the unitary operator eiS. We find in this way
two separately conserved parts of the total angular momen-
tum for a free Dirac electron:

~L ¼ e−iSx × peiS ¼ x × p þ i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

þ
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
;

~S ¼ e−iSSeiS ¼ S − i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

−
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
: ð11Þ
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Commute with a free Dirac Hamiltonian

L ¼ x × p; S ¼ 1

2

!
σ 0

0 σ

"
; ð3Þ

but note that neither L nor S alone commutes with the
Dirac Hamiltonian H ¼ α · p þ βm. Only the total angular
momentum J ¼ L þ S commutes with H and is conserved
[33]. This situation contrasts strongly with the nonrelativ-
istic Hamiltonian for the free electron

Hnonrel ¼
p2

2m
; ð4Þ

which manifestly commutes with bothL and S so that each
of these is separately conserved. It is straightforward,
moreover, to find propagating-electron solutions of the
Schrödinger equation with azimuthal dependence eilϕ,
which are eigenstates of Lz with eigenvalue l [26].
In seeking to link the relativistic and nonrelativistic

treatments it is natural to employ the Foldy-Wouthuysen
transformation as it is the low energy limit of this form that
leads to the Schrödinger equation [35,37]. To this end we
introduce the unitary operator

eiS ¼ eβα·pθ=p; tanð2θÞ ¼ p
m

ð5Þ

to transform our spinor to ψ 0 ¼ eiSψ . This transformation
diagonalizes the Dirac Hamiltonian

H0 ¼ eiSHe−iS ¼ βðp2 þ m2Þ1=2; ð6Þ

so that our transformed Dirac equation is

i
∂ψ 0

∂t ¼ βðp2 þ m2Þ1=2ψ 0: ð7Þ

It should be emphasized that this is an exact form of the
Dirac equation for the free electron and that no approxi-
mation has been made in order to obtain it.
The transformed Dirac Hamiltonian H0 commutes with

bothL and S and it follows that, in the transformed picture,
these quantities are separately conserved. The unitary
operator eiS commutes with J, moreover, and the above
observation provides the basis for extracting two separately
conserved parts of the angular momentum.
We can write exact solutions of our transformed

Dirac equation (7) with an aximuthal dependence eilϕ

and these will have a phase vortex along the z axis. These
solutions will be eigenstates, moreover, of the operator
Lz ¼ −i∂=∂ϕ. Rather than work with the exact Dirac
equation, it is helpful to introduce an approximation at
this stage, so as to make a natural link with previous studies
and with experiments. To this end let us assume that
the electron motion is principally in the z direction, by
which we mean that pz ≫ px; py. We further specialize,
for simplicity, to a monoenergetic state with energy

ðm2 þ p2
0Þ1=2. This restricts us, naturally, to the two-

component upper part of our spinor ψ 0. Finally, let us
write

ψ 0
upper ¼ e−i

ffiffiffiffiffiffiffiffiffiffiffi
m2þ p2

0

p
teip0zuðrÞ

!
a

b

"
; ð8Þ

where a and b determine the orientation of the electron
spin and jaj2 þ jbj2 ¼ 1. If we expand the Hamiltonian
operator

ðm2 þ p2Þ1=2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

q
þ

p2
x þ p2

y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p þ p0ðpz − p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p

ð9Þ

then we are led to

i
∂u
∂z ¼ −

1

2p0

! ∂2

∂x2 þ
∂2

∂y2
"
u; ð10Þ

which is the paraxial wave equation familiar from optics
[38]. This is entirely natural as we can write Maxwell’s
equations for the free electromagnetic field in Dirac form
and applying to these the appropriate Foldy-Wouthuysen
transformation and making the paraxial approximation
leads to the same equation [39]. Note that in deriving this
equation we have placed no restriction on the value of p0

and that, despite its similarity to the Schrödinger equation,
it is a fully relativistic expression. Solutions to this equation
include the Laguerre-Gaussian modes, familiar from optics
[20,21], with the desired azimuthal dependence eilϕ.
We have solutions for ψ 0 that are eigenstates of the z

component of the orbital angular momentum operator,
Lz ¼ xpy − ypx, with integer eigenvalue l. We can also
select eigenstates of the z component of the spin, Sz, with
eigenvalue % 1=2 by choosing a¼ 1 or b¼ 1 in our
solution (8). It remains to determine the forms of these
observables for the original Dirac equation. Clearly, they
will not simply be Lz and Sz as these operators do not
commute with the unitary operator eiS. We find in this way
two separately conserved parts of the total angular momen-
tum for a free Dirac electron:

~L ¼ e−iSx × peiS ¼ x × p þ i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

þ
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
;

~S ¼ e−iSSeiS ¼ S − i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

−
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
: ð11Þ
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L ¼ x × p; S ¼ 1

2

!
σ 0

0 σ

"
; ð3Þ

but note that neither L nor S alone commutes with the
Dirac Hamiltonian H ¼ α · p þ βm. Only the total angular
momentum J ¼ L þ S commutes with H and is conserved
[33]. This situation contrasts strongly with the nonrelativ-
istic Hamiltonian for the free electron

Hnonrel ¼
p2

2m
; ð4Þ

which manifestly commutes with bothL and S so that each
of these is separately conserved. It is straightforward,
moreover, to find propagating-electron solutions of the
Schrödinger equation with azimuthal dependence eilϕ,
which are eigenstates of Lz with eigenvalue l [26].
In seeking to link the relativistic and nonrelativistic

treatments it is natural to employ the Foldy-Wouthuysen
transformation as it is the low energy limit of this form that
leads to the Schrödinger equation [35,37]. To this end we
introduce the unitary operator

eiS ¼ eβα·pθ=p; tanð2θÞ ¼ p
m

ð5Þ

to transform our spinor to ψ 0 ¼ eiSψ . This transformation
diagonalizes the Dirac Hamiltonian

H0 ¼ eiSHe−iS ¼ βðp2 þ m2Þ1=2; ð6Þ

so that our transformed Dirac equation is

i
∂ψ 0

∂t ¼ βðp2 þ m2Þ1=2ψ 0: ð7Þ

It should be emphasized that this is an exact form of the
Dirac equation for the free electron and that no approxi-
mation has been made in order to obtain it.
The transformed Dirac Hamiltonian H0 commutes with

bothL and S and it follows that, in the transformed picture,
these quantities are separately conserved. The unitary
operator eiS commutes with J, moreover, and the above
observation provides the basis for extracting two separately
conserved parts of the angular momentum.
We can write exact solutions of our transformed

Dirac equation (7) with an aximuthal dependence eilϕ

and these will have a phase vortex along the z axis. These
solutions will be eigenstates, moreover, of the operator
Lz ¼ −i∂=∂ϕ. Rather than work with the exact Dirac
equation, it is helpful to introduce an approximation at
this stage, so as to make a natural link with previous studies
and with experiments. To this end let us assume that
the electron motion is principally in the z direction, by
which we mean that pz ≫ px; py. We further specialize,
for simplicity, to a monoenergetic state with energy

ðm2 þ p2
0Þ1=2. This restricts us, naturally, to the two-

component upper part of our spinor ψ 0. Finally, let us
write

ψ 0
upper ¼ e−i

ffiffiffiffiffiffiffiffiffiffiffi
m2þ p2

0

p
teip0zuðrÞ

!
a

b

"
; ð8Þ

where a and b determine the orientation of the electron
spin and jaj2 þ jbj2 ¼ 1. If we expand the Hamiltonian
operator

ðm2 þ p2Þ1=2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

q
þ

p2
x þ p2

y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p þ p0ðpz − p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

p

ð9Þ

then we are led to

i
∂u
∂z ¼ −

1

2p0

! ∂2

∂x2 þ
∂2

∂y2
"
u; ð10Þ

which is the paraxial wave equation familiar from optics
[38]. This is entirely natural as we can write Maxwell’s
equations for the free electromagnetic field in Dirac form
and applying to these the appropriate Foldy-Wouthuysen
transformation and making the paraxial approximation
leads to the same equation [39]. Note that in deriving this
equation we have placed no restriction on the value of p0

and that, despite its similarity to the Schrödinger equation,
it is a fully relativistic expression. Solutions to this equation
include the Laguerre-Gaussian modes, familiar from optics
[20,21], with the desired azimuthal dependence eilϕ.
We have solutions for ψ 0 that are eigenstates of the z

component of the orbital angular momentum operator,
Lz ¼ xpy − ypx, with integer eigenvalue l. We can also
select eigenstates of the z component of the spin, Sz, with
eigenvalue % 1=2 by choosing a¼ 1 or b¼ 1 in our
solution (8). It remains to determine the forms of these
observables for the original Dirac equation. Clearly, they
will not simply be Lz and Sz as these operators do not
commute with the unitary operator eiS. We find in this way
two separately conserved parts of the total angular momen-
tum for a free Dirac electron:

~L ¼ e−iSx × peiS ¼ x × p þ i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

þ
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
;

~S ¼ e−iSSeiS ¼ S − i
βα × pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p

−
!
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
"!

S −
ðp · SÞp

p2

"
: ð11Þ
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We prefer the former decomposition because:
1) Reduced to ordinary L and S in non-rela. limit
2) S is related to the axial current

2

From the similarity between the rotation in Eq. (2) and
the translational shift, we can rewrite the first term,
L
�µ⌫ , using the canonical energy-momentum tensor,

T
µ⌫ =

@L
@(@µ )

@ 

@x⌫
=  ̄ i~�µ@⌫ , (4)

into the following form,

L
�µ⌫ =  ̄ i~

�
�
�
x
µ
@
⌫ � �

�
x
⌫
@
µ
�
 

= x
µ
T

�⌫ � x
⌫
T

�µ
. (5)

Turning to the second term, its explicit form reads,

S
�µ⌫ =

@L
@(@� )

� 
µ⌫ =

1

2
 ̄ i~���µ�⌫ . (6)

Therefore, the total angular momentum density is,

J
�µ⌫ =  ̄ i~

⇣
�
�
x
µ
@
⌫ � �

�
x
⌫
@
µ +

1

2
�
�
�
µ
�
⌫
⌘
 , (7)

whose zeroth component is the conserved charge, i.e.,
the conserved total angular momentum. Using the Dirac
equation, we can easily check that

@�L
�µ⌫ = �@�S�µ⌫ =  ̄ i~(�µ@⌫ � �

⌫
@
µ) . (8)

From the above @�J�µ⌫ = 0 immediately follows. If the
surface term is irrelevant, we can then arrive at the an-
gular momentum conservation law as

d

dt

Z
d
3
xJ

0µ⌫ = 0 . (9)

One might have thought that the identification of L0µ⌫

and S
0µ⌫ as the orbital and the spin components would

be natural. Indeed, in the nonrelativistic limit, L0µ⌫ and
S
0µ⌫ go to the orbital and the spin components, respec-

tively. Nevertheless, this does not guarantee the unique
definition.

Actually, the energy-momentum tensor always has am-
biguity by

⇥µ⌫ = T
µ⌫ + @�⌃

µ⌫� (10)

with arbitrary antisymmetric tensor ⌃µ⌫�. It is obvious
that ⇥µ⌫ also satisfies the conservation law, and so it
is equally qualified as the energy-momentum tensor. In
particular, with an appropriate choice of ⌃µ⌫�, one can
make ⇥µ⌫ symmetric as

⇥µ⌫ =
1

2
 ̄ i~(�µ@⌫ + �

⌫
@
µ) . (11)

The corresponding “orbital” component of the angular
momentum, deduced from Eq. (5) with T

µ⌫ replaced by
⇥µ⌫ , is

L̃
�µ⌫ =

1

2
L
�µ⌫ +

1

2
 ̄ i~

⇥
(xµ

�
⌫ � x

⌫
�
µ)@�

⇤
 , (12)

and the “spin” component inferred from S̃
�µ⌫ = J

�µ⌫ �
L̃
�µ⌫ . Interestingly, using the Dirac equation again, we

can prove,

@�L̃
�µ⌫ = @�S̃

�µ⌫ = 0 . (13)

The above indicates that in this construction the orbital
and the spin components of the angular momentum are
separately conserved (see Ref. [28] for a related discus-
sion on electron vortices), while the canonical ones, L�µ⌫

and S
�µ⌫ are not. However, this fact does not mean any

superiority of L̃
�µ⌫ and S̃

�µ⌫ because neither of them
is a true symmetry generator alone. The situation is
quite similar to the decomposition of the optical spin and
the optical orbital angular momentum. For free electro-
magnetic fields one can generally define individually con-
served spin and orbital angular momentum operator, but
due to the transversality constraint, only their combina-
tion, i.e., the total angular momentum is the physically
meaningful quantity [29, 30].

Throughout this work we adopt the canonical spin
S
�µ⌫ and the canonical orbital angular momentumly

L
�µ⌫ , which is because these are the definitions mostly

naturally connected to the nonrelativistic counterparts.
Another advantage to use S

�µ⌫ is that S
0µ⌫ is nothing

but the axial current and thus is given an interpretation
in connection to the chiral anomaly. That is,

S
0ij = ✏

ijk ~
2
 ̄�

k
�5 = ✏

ijk j
k
5

2
. (14)

This relation also implies that, if the axial current is a
measurable physical observable, S

0ij and thus L
0ij are

too.

III. INCARNATION IN KINETIC THEORY

Since we will consider the problem in terms of kinetic
theory, we should find corresponding expressions for L�µ⌫

and S
�µ⌫ using the distribution function, f(p,x, t). To

this end we should consider the one-particle angular mo-
mentum tensor as considered in Ref. [19], i.e.,

J
0µ⌫ = L

µ⌫ + S
µ⌫ = x

µ
p
⌫ � x

⌫
p
µ + S

µ⌫ (15)

with p
µ = (p = |p|, p), which should be compared to

Eq. (7). From the correspondence of i~@µ ! p
µ, it is

clear that the first two terms represent our L
0µ⌫ part.

Thus, the last term represents the spin tensor, whose
concrete shape is fixed up to a frame vector, n� , as [19]

S
µ⌫ = ~� ✏µ⌫↵� p↵ n�

p · n . (16)

Here, � represents the helicity. We choose n� = (1, 0) in
this work, and then we find S

ij = ~� ✏ijkp̂k and S
0⌫ = 0.

Summarizing the above, we now identify,

L
ij = x

i
p
j � x

j
p
i �! L = x⇥ p , (17)

S
ij = ~� ✏ijkp̂k �! S = ~� p̂ . (18)

Corresponding Spin Operator: Spin

Momentum

Torque from gyromagnetic effect

S ! ~�
✓
p̂� ~� p̂

p
⇥r

◆
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Spin Expectation Value

3

It should be noted that Lij and S
ij have the same physi-

cal unit but ~ in L
ij is hidden in the momentum p which

is of order O(~0) in a quasi-particle picutre based on
which the kinetic description is. In this way, in a semi-
classical treatment, the spin is a quantum effect, while
the orbital angular momentum is not, as is consistent
with our intuition.

Unfortunately, this is not yet the end of the setup.
As we mentioned in Eq. (14) the spin is related to the
current on the operator level. The current expectation
value would pick up a contribution from the energy shift
by the magnetic moment coupling. With this taken into
account, the spin is

S ! ~�
✓
p̂� ~� p̂

2p
⇥r

◆
, (19)

where the second term would be vanishing for spatially
homogeneous distributions. As we see soon below, the
rotation induces inhomogeneity, and there will be a finite
contribution.

IV. ROTATING CHIRAL FERMIONS

In this work we shall treat the effect of rotation us-
ing bulk matter rotating at constant angular velocity !
instead of local fluid vorticity, and we turn off electro-
magnetic fields. In equilibrium without rotation the dis-
tribution function f is homogeneous in coordinate space
and isotropic in momentum space, and is a function of
single particle energy ", i.e., f = f("). Let us consider
what happens if we apply rotation at finite !. In a frame
co-moving with rotating matter, it is a natural assump-
tion that f = f("rot) is reached eventually in local equi-
librium, where "rot is a single particle energy in the co-
moving frame. Solving the Dirac equation in a rotating
frame, we can easily find,

"rot = p� ! ·
�
x⇥ p+ ~�p̂

�
, (20)

represented in terms of the original (non-rotating) coor-
dinates. It is worth mentioning that the second term is
nothing but a cranking term, �! · J . Now, f("rot) is
neither homogeneous in coordinate space nor isotropic
in momentum space due to the rotation effect, the spin
and the orbital angular momentum deduced from f("rot)
become nonvanishing. Let us first consider the spin ex-
pectation value;

hSi =
Z

p
�~

✓
p̂� �~ p̂

2p
⇥r

◆
f("rot)

= �~�(! ⇥ x)

Z

p

p

3
f
0(p)� ~2!

Z

p
f
0(p) (21)

up to the linear order of ! expansion, where f
0(p) repre-

sent a momentum derivative of f(p). The phase space
integral is performed only for momentum with

R
p =R

d
3
p/(2⇡~)3. Here, below, we make a remark about the

~ order. The kinetic theory implicitly assumed the ~ ex-
pansion, so there may be unknown terms of ~2 order.
Therefore, in the above expression, the first term involv-
ing x⇥! may receive higher order corrections of ~2 order.
The second term, however, does not have coordinate de-
pendence and, because the coordinate independent term
in Eq. (20) is already of order ~1, unknown corrections
for this term would start from ~3 order. In fact, this in-
trinsic term not referring to x correctly reproduces the
chiral vortical effect, as is expected from Eq. (14).

We next turn to the orbital angular momentum. In
the same way we can expand the distribution function in
terms of ! to get,

hLi =
Z

p
(x⇥ p) f 0(p)(�!) · (x⇥ p+ ~�p̂)

= �x⇥ (! ⇥ x)

Z

p

p
2

3
f
0(p) + ~�(! ⇥ x)

Z

p

p

3
f
0(p) .

(22)

These are our central results in this paper. In what fol-
lows below, we give physical interpretations for these re-
sults.

V. CHIRAL EINSTEIN–DE HAAS AND
BARNETT EFFECT

The physical meaning of Eq. (21) becomes evident once
we add both left-handed and right-handed contributions
up. Then, after the integration by parts, for the first
term, we find,

hSi? = �~
X

R,L

�(! ⇥ x)

Z

p

p

3
f
0
�(p)

=
~
2
(! ⇥ x)

Z

p

⇥
fR(p)� fL(p)

⇤
=

~
2
(! ⇥ x)n5 .

(23)

where fR and fL represent the distribution functions of
right-handed and left-handed particles, respectively, and
n5 = nR � nL represents the chirality. This rotation-
induced spin alignment is intuitively understood in the
following way. For massless fermions the spin and the
momentum directions are locked up, so that, if we macro-
scopically move chiral matter with a velocity, u = !⇥x,
the spin should be tilted along u. In this sense the first
term of Eq. (21) or equivalently hSi? in Eq. (23) is a
unique result inherent in chiral fermions. Interestingly,
this transverse or troidal spin alignment requires a finite
chiral imbalance.

With simple algebra for the orbital angular momen-
tum, we can rewrite Eq. (22) into the following form,

hLi = x⇥ (! ⇥ x)
4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
� hSi?

= hLimech � hSi? . (24)

Energy in a rotating fluid

= ! · J
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     ~ Barnett Effect

“Transverse” Barnett Effect

3

It should be noted that Lij and S
ij have the same physi-

cal unit but ~ in L
ij is hidden in the momentum p which

is of order O(~0) in a quasi-particle picutre based on
which the kinetic description is. In this way, in a semi-
classical treatment, the spin is a quantum effect, while
the orbital angular momentum is not, as is consistent
with our intuition.

Unfortunately, this is not yet the end of the setup.
As we mentioned in Eq. (14) the spin is related to the
current on the operator level. The current expectation
value would pick up a contribution from the energy shift
by the magnetic moment coupling. With this taken into
account, the spin is

S ! ~�
✓
p̂� ~� p̂

2p
⇥r

◆
, (19)

where the second term would be vanishing for spatially
homogeneous distributions. As we see soon below, the
rotation induces inhomogeneity, and there will be a finite
contribution.

IV. ROTATING CHIRAL FERMIONS

In this work we shall treat the effect of rotation us-
ing bulk matter rotating at constant angular velocity !
instead of local fluid vorticity, and we turn off electro-
magnetic fields. In equilibrium without rotation the dis-
tribution function f is homogeneous in coordinate space
and isotropic in momentum space, and is a function of
single particle energy ", i.e., f = f("). Let us consider
what happens if we apply rotation at finite !. In a frame
co-moving with rotating matter, it is a natural assump-
tion that f = f("rot) is reached eventually in local equi-
librium, where "rot is a single particle energy in the co-
moving frame. Solving the Dirac equation in a rotating
frame, we can easily find,

"rot = p� ! ·
�
x⇥ p+ ~�p̂

�
, (20)

represented in terms of the original (non-rotating) coor-
dinates. It is worth mentioning that the second term is
nothing but a cranking term, �! · J . Now, f("rot) is
neither homogeneous in coordinate space nor isotropic
in momentum space due to the rotation effect, the spin
and the orbital angular momentum deduced from f("rot)
become nonvanishing. Let us first consider the spin ex-
pectation value;

hSi =
Z

p
�~

✓
p̂� �~ p̂

2p
⇥r

◆
f("rot)

= �~�(! ⇥ x)

Z

p

p

3
f
0(p)� ~2!

Z

p
f
0(p) (21)

up to the linear order of ! expansion, where f
0(p) repre-

sent a momentum derivative of f(p). The phase space
integral is performed only for momentum with

R
p =R

d
3
p/(2⇡~)3. Here, below, we make a remark about the

~ order. The kinetic theory implicitly assumed the ~ ex-
pansion, so there may be unknown terms of ~2 order.
Therefore, in the above expression, the first term involv-
ing x⇥! may receive higher order corrections of ~2 order.
The second term, however, does not have coordinate de-
pendence and, because the coordinate independent term
in Eq. (20) is already of order ~1, unknown corrections
for this term would start from ~3 order. In fact, this in-
trinsic term not referring to x correctly reproduces the
chiral vortical effect, as is expected from Eq. (14).

We next turn to the orbital angular momentum. In
the same way we can expand the distribution function in
terms of ! to get,

hLi =
Z

p
(x⇥ p) f 0(p)(�!) · (x⇥ p+ ~�p̂)

= �x⇥ (! ⇥ x)

Z

p

p
2

3
f
0(p) + ~�(! ⇥ x)

Z

p

p

3
f
0(p) .

(22)

These are our central results in this paper. In what fol-
lows below, we give physical interpretations for these re-
sults.

V. CHIRAL EINSTEIN–DE HAAS AND
BARNETT EFFECT

The physical meaning of Eq. (21) becomes evident once
we add both left-handed and right-handed contributions
up. Then, after the integration by parts, for the first
term, we find,

hSi? = �~
X

R,L

�(! ⇥ x)

Z

p

p

3
f
0
�(p)

=
~
2
(! ⇥ x)

Z

p

⇥
fR(p)� fL(p)

⇤
=

~
2
(! ⇥ x)n5 .

(23)

where fR and fL represent the distribution functions of
right-handed and left-handed particles, respectively, and
n5 = nR � nL represents the chirality. This rotation-
induced spin alignment is intuitively understood in the
following way. For massless fermions the spin and the
momentum directions are locked up, so that, if we macro-
scopically move chiral matter with a velocity, u = !⇥x,
the spin should be tilted along u. In this sense the first
term of Eq. (21) or equivalently hSi? in Eq. (23) is a
unique result inherent in chiral fermions. Interestingly,
this transverse or troidal spin alignment requires a finite
chiral imbalance.

With simple algebra for the orbital angular momen-
tum, we can rewrite Eq. (22) into the following form,

hLi = x⇥ (! ⇥ x)
4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
� hSi?

= hLimech � hSi? . (24)

Vilenkin (1978)

4

Here � is the helicity, i.e., � = ±1/2 and p̂ = p/|p| is the
unit momentum vector.

We emphasize the importance of the second term in S

to make the computation consistent with the CVE and
the relation (15). This additional term originates from a
gyromagnetic effect and is nothing but a familiar Rashba
spin-orbit coupling. Another way to think of the field-
theoretical origin of this term is the current expectation
value as a derivative with respect to the vector potential.
Then, as discussed in Ref. [61, 63, 64], the current reads:

j =

Z

p

✓
p̂� h̄�

p̂

p
⇥r

◆
f , (20)

where the second term in the parentheses appears from
a magnetic dependent term, ��p̂ · B/|p|, in the energy
dispersion relation, which is eventually transcribed into
the additional term in S as seen above. An interesting
point worth mentioning is that r is the spatial derivative
and a finite rotation would indeed induce spatial inhomo-
geneity.

We note that one can understand Eqs. (19) and (20)
easily from the well-known Gordon decomposition on the
vector current with Dirac spinors at momentum p, i.e.,

ĵ = h̄ ̄� =
h̄

2ip

⇥
 
†r � (r 

†) 
⇤
+

h̄

2p
r⇥ ( †⌃ ) ,

(21)
where ⌃k = ✏

ijk⌃ij . This is the mathematical back-
ground for Eq. (20). Because extra �5 is irrelevant for a
system with either left or right handed particles only, the
argument on the vector current can be straightforwardly
translated to the axial current in Eq. (19).

It should be noted that L and S have the same physical
unit but h̄ in L is hidden in the momentum p which looks
O(h̄0) in a semiclassical treatment. Such h̄ counting is
consistent with our intuition that the spin is a quantum
effect but the orbital angular momentum is a macroscopic
observable, while the full consistent treatment would re-
quire the derivative expansion.

IV. ROTATING CHIRAL FERMIONS

In this work we study the effect of bulk rotation of chi-
ral matter at constant angular velocity ! rather than a
fluid with local vorticity. We turn electromagnetic fields
off for simplicity, and if necessary, the generalization in-
cluding electromagnetic fields is straightforward.

For an equilibrium state in the absence of rotation,
the distribution function f is homogeneous in coordinate
space and isotropic in momentum space, which means
that f should be a function of single particle energy ",
i.e., f = f(") 1. Let us consider what would change if
we introduce ! 6= 0 into the system. For this purpose

1 According to some references [61, 63, 64] our assumption corre-

we put ourselves into a comoving frame that rotates to-
gether with matter. We can thereby postulate that the
local thermal equilibrium is reached after a sufficiently
long time, so that f = f("rot) with "rot defined in the co-
moving frame (which is implicitly assumed in the imple-
mentation of finite-temperature field theory in Ref. [48]).
We can solve a free Weyl equation in the rotating frame
to find "rot as

"rot = p� ! ·
�
x⇥ p+ h̄�p̂

�
(22)

using the lab-frame (nonrotating) coordinates x and mo-
menta p. We note that the energy shift in Eq. (22) takes
a standard cranking form, �! · J . In terms of lab-frame
variables f("rot) is neither homogeneous in coordinate
space nor isotropic in momentum space due to finite ro-
tation, thus the spin and the orbital angular momentum
derived from f("rot) can be nonzero. We begin with cal-
culating the spin expectation value under an assumption
that ! is small. Up to the linear order of ! we get,

hSi =

Z

p
�h̄

✓
p̂� �h̄

p̂

p
⇥r

◆
f("rot)

⇡ �h̄�(! ⇥ x)

Z

p

p

3
f
0(p)� h̄

2
�
2
!

Z

p
f
0(p) (23)

where f
0(p) = @f(p)/@p. It should be mentioned that

our “expectation value” involves only the momentum in-
tegration,

R
p =

R
d
3
p/(2⇡h̄)3, but not the coordinate

integration, which is denoted later by
R
V =

R
d
3
x.

Here, we briefly mention the difference between setups
in Refs. [58, 61] and ours. If the rotation effects are intro-
duced by local vorticity vector as in Refs. [58, 61], physi-
cal quantities can be homogeneous. However, to charac-
terize the Einstein-de Haas effect, we implicitly assume a
finite size system, for which the center of rotation is well-
defined. Then, the velocity of rotating particles depends
on the distance from the center of rotation, and phys-
ical quantities including the spin expectation value can
be dependent on x as seen in the first term in Eq. (23).

We shall make a remark about our power counting of
h̄ order. In the last section we found the operators for
the spin and the orbital angular momentum in a heuristic
way. In principle, one could utilize the Wigner function
to take account of quantum corrections systematically in
the h̄ expansion. Then, S and "rot may have O(h̄3) and
O(h̄2) corrections, respectively, and they contribute to
an O(h̄3) correction to Eq. (23).

We next turn to the orbital angular momentum. In
the same way we expand the distribution function with

sponds to the “global equilibrium” case because our distribution
function is independent of n� up to the h̄ order. In the “local
equilibrium” case the distribution function may depend on n�

which is generally a function of spatial coordinates. For more
discussions on polarization effects in the local equilibrium case,
see Ref. [72].
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3

It should be noted that Lij and S
ij have the same physi-

cal unit but ~ in L
ij is hidden in the momentum p which

is of order O(~0) in a quasi-particle picutre based on
which the kinetic description is. In this way, in a semi-
classical treatment, the spin is a quantum effect, while
the orbital angular momentum is not, as is consistent
with our intuition.

Unfortunately, this is not yet the end of the setup.
As we mentioned in Eq. (14) the spin is related to the
current on the operator level. The current expectation
value would pick up a contribution from the energy shift
by the magnetic moment coupling. With this taken into
account, the spin is

S ! ~�
✓
p̂� ~� p̂

2p
⇥r

◆
, (19)

where the second term would be vanishing for spatially
homogeneous distributions. As we see soon below, the
rotation induces inhomogeneity, and there will be a finite
contribution.

IV. ROTATING CHIRAL FERMIONS

In this work we shall treat the effect of rotation us-
ing bulk matter rotating at constant angular velocity !
instead of local fluid vorticity, and we turn off electro-
magnetic fields. In equilibrium without rotation the dis-
tribution function f is homogeneous in coordinate space
and isotropic in momentum space, and is a function of
single particle energy ", i.e., f = f("). Let us consider
what happens if we apply rotation at finite !. In a frame
co-moving with rotating matter, it is a natural assump-
tion that f = f("rot) is reached eventually in local equi-
librium, where "rot is a single particle energy in the co-
moving frame. Solving the Dirac equation in a rotating
frame, we can easily find,

"rot = p� ! ·
�
x⇥ p+ ~�p̂

�
, (20)

represented in terms of the original (non-rotating) coor-
dinates. It is worth mentioning that the second term is
nothing but a cranking term, �! · J . Now, f("rot) is
neither homogeneous in coordinate space nor isotropic
in momentum space due to the rotation effect, the spin
and the orbital angular momentum deduced from f("rot)
become nonvanishing. Let us first consider the spin ex-
pectation value;

hSi =
Z

p
�~

✓
p̂� �~ p̂

2p
⇥r

◆
f("rot)

= �~�(! ⇥ x)

Z

p

p

3
f
0(p)� ~2!

Z

p
f
0(p) (21)

up to the linear order of ! expansion, where f
0(p) repre-

sent a momentum derivative of f(p). The phase space
integral is performed only for momentum with

R
p =R

d
3
p/(2⇡~)3. Here, below, we make a remark about the

~ order. The kinetic theory implicitly assumed the ~ ex-
pansion, so there may be unknown terms of ~2 order.
Therefore, in the above expression, the first term involv-
ing x⇥! may receive higher order corrections of ~2 order.
The second term, however, does not have coordinate de-
pendence and, because the coordinate independent term
in Eq. (20) is already of order ~1, unknown corrections
for this term would start from ~3 order. In fact, this in-
trinsic term not referring to x correctly reproduces the
chiral vortical effect, as is expected from Eq. (14).

We next turn to the orbital angular momentum. In
the same way we can expand the distribution function in
terms of ! to get,

hLi =
Z

p
(x⇥ p) f 0(p)(�!) · (x⇥ p+ ~�p̂)

= �x⇥ (! ⇥ x)

Z

p

p
2

3
f
0(p) + ~�(! ⇥ x)

Z

p

p

3
f
0(p) .

(22)

These are our central results in this paper. In what fol-
lows below, we give physical interpretations for these re-
sults.

V. CHIRAL EINSTEIN–DE HAAS AND
BARNETT EFFECT

The physical meaning of Eq. (21) becomes evident once
we add both left-handed and right-handed contributions
up. Then, after the integration by parts, for the first
term, we find,

hSi? = �~
X

R,L

�(! ⇥ x)

Z

p

p

3
f
0
�(p)

=
~
2
(! ⇥ x)

Z

p

⇥
fR(p)� fL(p)

⇤
=

~
2
(! ⇥ x)n5 .

(23)

where fR and fL represent the distribution functions of
right-handed and left-handed particles, respectively, and
n5 = nR � nL represents the chirality. This rotation-
induced spin alignment is intuitively understood in the
following way. For massless fermions the spin and the
momentum directions are locked up, so that, if we macro-
scopically move chiral matter with a velocity, u = !⇥x,
the spin should be tilted along u. In this sense the first
term of Eq. (21) or equivalently hSi? in Eq. (23) is a
unique result inherent in chiral fermions. Interestingly,
this transverse or troidal spin alignment requires a finite
chiral imbalance.

With simple algebra for the orbital angular momen-
tum, we can rewrite Eq. (22) into the following form,

hLi = x⇥ (! ⇥ x)
4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
� hSi?

= hLimech � hSi? . (24)

j5 = n5 v
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Transverse Barnett appears  
for massless and chirally 
imbalanced fermions
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FIG. 1. A schematic illustration for an intuitive picture to
understand the circular spin polarization and the associated
eddy magnetization µ in a rotating chiral system with the
angular velocity vector !. For simplicity we only consider
the right-handed fermions in the illustration. The red arrows
stand for the direction of particle momentum and spin.

we will consider a cylindrically symmetric system which
rotates rigidly around the z-axis, i.e., ! = !ẑ. Then in
such a setup the volume integration of hLimech yields

Z

V
hLimech = !ẑ

Z

V
r
2 4

3

Z

p
p
⇥
fR(p) + fL(p)

⇤
. (24)

Since p is the energy for chiral fermions, the p integra-
tion gives the energy density or the mass distribution,
together with which the volume integration leads to the
moment of inertia. To see this clearly, let us assume that
the distribution function features Fermi degeneracy to a
chemical potential µ, and then the energy density, E , is
calculated as E = 3

4µn where n is the number density.
Consequently, 4

3

R
p p

⇥
fR(p) + fL(p)

⇤
reduces to a rela-

tivistic counterpart of the mass density, µRnR + µLnL.
From this argument it is clear that hLimech corresponds
to the mechanically induced orbital angular momentum,
which is naturally of O(~0).

Next, we delve into the second term in hLi given by
�hSi?. This term has an intriguing interpretation as
the “Chiral Einstein–de Haas effect.” Let us consider the
following thinking experiment; we rotate the fermionic
system from the initial condition, hLi = hSi = 0. Ap-
parently, the total angular momentum carried by rotating
chiral matter should be hJi = hLimech. However, as men-
tioned above, due to the spin and momentum lock-up,
the transverse motion results in hSi? 6= 0. This nonzero
hSi? must be canceled by a change in the orbital part
so that the total angular momentum conservation can be
satisfied. In this way, a shift by �hSi? should arise in
hLi. Such a physical mechanism is comparable to the
Einstein–de Haas effect. In the nonrelativistic case the
spin is controlled by an external magnetic field, but it
can be changed by the momentum direction for chiral
fermions, which induces an orbital rotation.

We make two comments on the second term in Eq. (20).
The first one is that this term corresponding to the CVE
can be also exactly canceled in a finite size system by
surface states not to violate the angular momentum con-
servation [67]. The second comment is that, if we con-
sider the zero n5 limit, the second term in Eq. (20) would
dominate and lead to the local spin polarization proposed
in Ref. [33].

B. Chiral Barnett Effect

Along similar lines, we can apply our formula to ad-
dress the Barnett effect for chiral fermions. That is, a
finite magnetization is generated by rotation [1], which
can be quantified with our results. For this purpose we
need the gyromagnetic ratio to convert the angular mo-
mentum into the magnetic moment. For nonrelativis-
tic fermions, the gyromagnetic ratio is derived from the
Dirac equation as

µ = µL + µS = gL
qe

2m
L+ gS

qe

2m
S , (25)

where qe and m are, respectively, the electric charge and
the mass of the considered particle. For noninteracting
Dirac fermions the g-factors are gL = 1 and gS = 2. Since
gL 6= gS , the right-hand side of Eq. (25) is not parallel to
J = L+S. Once one takes an expectation value with the
J

2 and Jz eigenstates, however, one can show that the
right-hand side is projected onto the J direction, which
is guaranteed by the Wigner-Eckardt theorem, and the
effective g-factor becomes the Landé g-factor.

For chiral fermions Eq. (25) should be modified. In the
chiral limit Eq. (25) turns into (see Ref. [68])

µ = µL + µS = gL
qe

2p
L+ gS

qe

2p
S . (26)

The g-factors remain the same, and from now on we plug
gL = 1 and gS = 2 into µL and µS . We note that Eq. (26)
is a local relation, and so we compute the expectation
value as we did in the previous sections. The results up
to ~ order are

hµLi = �
qe

6
x⇥ (! ⇥ x)

Z

p
p f

0(p)

+ ~�qe
6
(! ⇥ x)

Z

p
f
0(p) , (27)

hµSi = �~�qe
3
(! ⇥ x)

Z

p
f
0(p) . (28)

We can immediately identify the first term of hµLi as the
mechanical contribution. The integration by parts makes
it more visible as

hµLimech =
1

2
x⇥ (! ⇥ x)ne , (29)

where ne represents the electric charge density. Given
that ! ⇥ x is the velocity vector associated with the ro-
tating motion, the above expression is exactly the one

KF-Pu-Qiu, PRA (2019)

“Eddy magnetization” ← rotation + chiral imbalance
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Opposites Attract: A Theorem about the Casimir force 
Kenneth-Klich, PRL97, 160401 (2006)

Casimir force between two bodies related  
by reflection is always attractive.

Looking for “repulsive” Casimir force

Flachi-Nitta-Takada-Yushii, PRL (2017)
Jiang-Wilczek, PRB (2019) × 2
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Axial Casimir Force

Qing-Dong Jiang1, Frank Wilczek1234
1Department of Physics, Stockholm University, Stockholm SE-106 91 Sweden

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
3Wilczek Quantum Center, Department of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China
4Department of Physics and Origins Project, Arizona State University, Tempe AZ 25287 USA

Quantum fluctuations in vacuum can exert a dissipative force on moving objects, which is known
as Casimir friction. Especially, a rotating particle in the vacuum will eventually slow down due to the
dissipative Casimir friction. Here, we identify a dissipationless force by examining a rotating particle
near a bi-isotropic media that generally breaks parity symmetry or/and time-reversal symmetry. The
direction of the dissipationless vacuum force is always parallel with the rotating axis of the particle.
We therefore call this dissipationless vacuum force the axial Casimir force.

I. INTRODUCTION

Originating from quantum fluctuations, the Casimir ef-
fect describes the phenomenon where an attractive force
emerges between two non-contacted, uncharged plates in
vacuum [1]. The Casimir effect tells us that vacuum is
not empty, but full of fluctuations with photons popping
in and out. In fact, there are many other effects that can
manifest the fluctuating nature of vacuum. For example,
quantum fluctuations can exert a torque on bodies that
lack rotational symmetry, called Casimir torque [2, 3]. If
some discrete symmetries are broken in materials, quan-
tum fluctuation can transmit symmetry breaking effect
to nearby atoms and perturbs the atom’s spectra, namely
the quantum atmosphere effect [4]. In recent years, an-
other interesting phenomenon, called Casimir friction,
was discovered. Here, objects moving relative to each
other can feel a dissipative viscous force due to the ex-
change of Doppler-shifted photons [5]. Perhaps counter-
intuitively, a spinning object in vacuum will eventually
slow down due to Casimir friction [6]. In recent years,
theorists have proposed many models that feature the
Casimir friction [7], and some of them are closely related
to experimental phenomena [8, 9].
However, to our best knowledge, all the proposed

Casimir friction phenomena (motion-induced vacuum
forces) are dissipative. A natural question then arises: is
it possible to find a dissipationless motion-induced vac-
uum force? This question is partially motivated by the
recent progress in quantum Hall physics, where dissipa-
tionless Hall viscosity emerges as a new topological sig-
nature [10]. We address this question in this paper by
examining a rotating particle near a bi-isotropic material
(BIM) plate. Existing commonly in nature, BIMs include
materials that break time-reversal symmetry (TRS) or
parity symmetry (PS) or both (PTS) [11]. In recent
years, the widely studied Chern insulators [12] and chiral
metamaterials [13] can be classified as bi-isotropic mate-
rials breaking TRS and PS, respectively.
We show that, in addition to the dissipative Casimir

friction, a dissipationless force can emerge for a rotating

particle near a PS or TS (or both) breaking BIMs. Since
the dissipationless rotation-induced force is always paral-
lel to the particle’s rotation axis and changes sign when
its spinning direction is reversed, we, therefore, call it
the axial Casimir force (ACF). Two cases are of particu-
lar interest: (i) when the rotation axis is parallel to the
BIM plate, the axial Casimir force is lateral (L-ACF);
(ii) when the rotation axis is perpendicular to the BIM
plate, the axial Casimir force is vertical (V-ACF) [Fig. 1].
We calculate ACF both numerically and analytically, and
show that TS breaking is crucial for V-ACF, whereas, by
contrast, PS breaking is important for L-ACF. Let us ob-
serve that very recent experiments have already achieved
a superfast rotation of nanoparticles, making the ACF
within the experimental reach [14].

z

x

x

x

z

z

BIM

(a) (b)

FIG. 1. Schematic of the structure. d is the distance from the
center of the rotating object to the BIM plane. Ω represents
the rotating frequency of the object. n̂ is the unit vector in
the rotating direction. θ is the angle between n̂ and the x
direction. (a) shows the general case, while (b) shows two
special rotating directions, perpendicular to the BIM plane
(top) and parallel with the BIM plane (bottom).

II. MODEL

We consider a spherical, isotropic particle rotating
with frequency Ω located at the position r0 = (0, 0, d)
above a BIM plate at z = 0 plane [Figure 1 (a)]. With-
out loss of generality, we assume that the rotating axis

Jiang-Wilczek, PRB (2019)
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Chiral Casimir Forces: Repulsive, Enhanced, Tunable

Qing-Dong Jiang1, Frank Wilczek1234
1Department of Physics, Stockholm University, Stockholm SE-106 91 Sweden

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
3Wilczek Quantum Center, Department of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China
4Department of Physics and Origins Project, Arizona State University, Tempe AZ 25287 USA

Both theoretical interest and practical significance attach to the sign and strength of Casimir
forces. A famous, discouraging no-go theorem states that “The Casimir force between two bodies
with reflection symmetry is always attractive.” Here we identify a loophole in the reasoning, and
propose a universal way to realize repulsive Casimir forces. We show that the sign and strength
of Casimir forces can be adjusted by inserting optically active or gyrotropic media between bodies,
and modulated by external fields.

Introduction: The Casimir effect is one of the best
known macroscopic manifestations of quantum field the-
ory, and has attracted interest since its first discovery
[1]. The original version of Casimir effect is an attrac-
tive force between two ideal, uncharged metal plates in
vacuum. Later on, Lifshitz et al., derived a general for-
mula for the Casimir force between between materials de-
scribed by dielectric response functions in this geometry
[2]. In their formula, the Casimir force between material
1 and material 2 across medium 3 is proportional to a
summation of terms with differences in material dielec-
tric functions

−
(

ϵ1(ω)− ϵ3(ω)
)(

ϵ2(ω)− ϵ3(ω)
)

(1)

over frequency ω, where ϵi is the dielectric function for
material i (i = 1, 2, 3). Between two like materials,
ϵ1 = ϵ2, these terms are always negative and correspond
to attractive Casimir force, regardless the mediating ma-
terial 3. A famous generalization of this result states
that objects made of the same isotropic material always
attract for reflection symmetric geometries (but arbitrary
shapes) in vacuum [4], or for a wide class of intermediate
materials, as we will review presently. This strong theo-
rem appears to rule out many convenient possibilities for
realizing repulsive Casimir forces.

Yet in principle the Casimir force can be repulsive. In
recent years, people have devoted substantial efforts to
realizing repulsive Casimir forces, especially with a view
toward applications to nano-devices and colloids, which
can contain nearby parts that one wants to keep separate.
In fact, repulsive Casimir forces have been proposed in
several special cases [5–7], and have even been observed
experimentally [8]. In this experiment, the authors mea-
sured the Casimir force between gold (solid) and silica
(solid) mediated by bromobenzene (liquid), of which the
dielectric functions satisfy ϵ1 > ϵ3 > ϵ2. In recent years,
the repulsive Casimir force has been also proposed in var-
ious topological and metamaterials [9, 10]. However, all
these proposals give tiny repulsive Casimir forces (com-
pared to the Casimir force between metals), and demand

particular parameters of materials, or particular shapes
of materials, making experimental realization challenging
and somewhat awkward.

In this paper, we do two things. First, we identify
an important loophole in the central no-go theorem [4]
on Casimir forces. It arises when there is an interven-
ing “lubricant” material with no symmetry between left-
and right-circular polarized photons (i.e., a chiral ma-
terial). Optically active materials, which break spatial
parity but preserve time reversal, are not rare, and pro-
vide good candidates. Second, we explicitly calculate the
Casimir force between similar objects separated by a chi-
ral medium (see figure 1). We find that the Casimir force
can, as a function of distance, oscillate between attractive
and repulsive, and that it can be tuned by application of
an external magnetic field.

0 l z

A B

R

+

L

+

L

-

kR

-

chiral material

C

right-circular
    photon

left-circular
    photon

k

k
k

FIG. 1. Schematic illustration of chiral Casimir effect. Two
parallel, uncharged plates (A & B) are placed at a distance l
separated by chiral material C. The red dots and green dots
represent right-circular polarized photons and left-circular po-
larized photons. The arrows indicate the propagating direc-
tions of chiral photons. k±

R(L) represent velocity of chiral pho-
tons, where superscript ± correspond to their propagating
directions, and the subscript R/L correspond to their chiral-
ity.

Identifying the loophole: To begin, we briefly review
the “Casimir” energy in massless free scalar field theory.

Jiang-Wilczek, PRB (2019)
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3

To model chiral media, we assume a chirality-

dependent dielectric function in material C, i.e., χL(R)
0 for

left- and right-circular polarized photons. The Green’s
function must be written in a matrix form in chiral basis
(ψL(x),ψR(x)), i.e.,

D̂0 =

(

D̂L
0 0
0 D̂R

0

)

(7)

where D̂L(R)
0 = (χL(R)

0 (iξ)ξ2 +∇×∇×)−1 represent the
Green’s function for left(right)-circular polarized pho-
tons. Figure 2(b) shows the Feynman diagram for chiral
Casimir energy. To keep track of the chiral degree of free-
dom, it is helpful to use a double wavy line to represent
the photon Green’s function. Even when the reflection
symmetry is kept between A and B, through their iden-
tical properties and symmetric geometry, the material
C breaks the symmetry. The propagators in the Feyn-
man diagram exchange colors (red ↔ green) under the
reflection operation Jm. Now J †

mUBAJm = IAUABIA ≠
UAB, where IA is an off-diagonal unit matrix. Thus,
TAUABTBUBA ≠ (

√
TAUABJm

√
TA)2, and the forego-

ing arguments fail.
Calculations for chiral media in plate geometry : By us-

ing a non-reciprocal Green’s function method, we can de-
rive more tractable expressions for chiral Casimir forces.
The algebra, which is not entirely trivial, is set out in the
supplemental materials [11]. (Compare [12–15].)
Specializing to plate geometry, we find the energy per

unit surface area

Ec =

∞
∫

0

dξ

2π

∞
∫

−∞

d2k∥
(2π)2

{

ln Det
(

I− RBŨBARAŨAB

)}

(8)

where ξ is the imaginary frequency, and k∥ = (kx, ky)
represents momentum in xy plane (parallel with plates).
Here RA (RB) represents reflection matrix at plate A
(B), and ŨAB (ŨBA) represents translation matrix from
A to B (B to A). (Note that this Ũ has quite a different
meaning from U , which appeared earlier.)
In a chiral medium, reflection symmetry of photons

is broken, implying that TE (s-polarized) wave and TM
(p-polarized) wave are not the eigenstates. In the more
convenient chiral basis, ŨAB and ŨBA are diagonal, as
long as chirality itself is a good quantum number. We
have then simply

ŨBA =

(

eik
+
zL

l 0

0 eik
+
zR

l

)

, ŨAB =

(

eik
−
zL

l 0

0 eik
−
zR

l

)

(9)

where k±zR and k±zR stand for the propagating velocity of
right-circular polarized photons and left-circular polar-
ized photons, respectively. The superscript ± indicates
the propagating directions of photons. (The meaning of
k±zR/L is also shown in figure 1.) However, photons can
change chirality at the boundary A & B due to reflection.

In this paper, we only consider the case where there is
reflection symmetry between A & B, implying the same
reflection matrices of A & B:

RA = RB =

(

rRR rLR
rRL rLL

)

, (10)

where rij represent the reflection magnitude of a photon
from chirality j to i (i, j = L,R).
Eqn. (8) can be interpreted integrating over round

trips of virtual photons. First imagine that a photon goes
from B to A with translation matrix (ŨAB), and then is
reflected at plate A (RA). After its first reflection, it
goes back from A to B with translation matrix (ŨBA),
and then it will be reflected at plate B (RB) again.

(b)(a)

FIG. 3. Chiral Casimir force due to Faraday effect, normalized
to the original metallic Casimir force. (a) shows the Casimir
force enhancement in different magnetic field. The red and
blue curves represent Casimir force at magnetic field B = 4T
and B = 10T, respectively. The shadow region corresponds
to repulsive Casimir force regime. (b) shows how the mag-
netic field B can control the Casimir force. The solid line and
dash line represent the Casimir force that is measured at the
distance l = 8µm and l = 6µm, respectively.

(i) Faraday materials. In a medium displaying the
Faraday effect, the optical rotation angle θ is determined
by θ = VBl, where V is the Verdet constant (a key pa-
rameter in Faraday materials), B is the magnetic field
in the light propagating direction, and l is the distance
that the light pass through. In an alternate descrip-
tion, the magnetic field introduce a phase velocity dif-
ference δkz = VB between left-circular polarized pho-
tons and right-circular polarized photons. Therefore, the
wave vectors of photons with different chirality satisfy
k+zR = k−zL = k̄z + δkz and k−zR = k+zL = k̄z − δkz,
where k̄z is the average wave vector of right-circular and
left-circular polarized photons [16]. With the phase ve-
locity expressions of chiral photons, one can obtain the
translation matrices ŨAB (ŨBA) for Faraday materials.
For ideal metal plates, the reflection matrices are simply
taken off-diagonal unit matrices, i.e., rRR = rLL = 0 and
rLR = rRL = −1. The off-diagonal reflection matrix is
due to the fact that photons change their chirality after
being reflected at an ideal metal plate [17].
Recently, experiments have measured very large Verdet

constants in some organic molecules and liquids. We set
Verdet constant as V = 5 × 104 radm−1T−1 in the cal-

Faraday materials
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Following Imaki-san’s “Bessel function methodology”, the force corresponds to (6) is simiarly calculated as:
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(K1 terms cancel out by coincidence). And its numerical plot is:
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CVE more like the Casimir force

hjµ5 i ⇠ htr[�µ�5S(x, x)]i
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Energy shift by the rotation

Looks like the anomaly
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CVE more like the Casimir force
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Duality: Thermodynamics ~ Casimir Effect
KF-Ohta, Physica A299, 248 (2001)

“Explicit conversion from the Casimir force to  
  Planck’s law of radiation”

p=−f = −
2h̄c

β

∫ d3k

(2π)3
ln(1− e−βk), (15)

u= f + Ts = f − T
∂f

∂T
= −

∂(βp)

∂β
= 2h̄c

∫ d3k

(2π)3
k

eβk −1
, (16)

where p, f , u and s are the pressure, the Helmholtz free energy density, the
internal energy density and the entropy density, respectively. β stands for the
inverse temperature β = h̄c/kBT . The expression of u is nothing but Planck’s
law of radiation. Looking at the expressions (14) and (16) we can recognize
the duality relations,

2l ⇐⇒ β =
h̄c

kBT
, p ⇐⇒ −u. (17)

The reason why the appearance of the additional coefficient in front of l is that
we adopted the fixed boundary condition in the spatial direction as mentioned
at the beginning of this paper. This duality relation is an embodiment of the
symmetry under the exchange of the temporal axis and the spatial axis, which
corresponds to the swap of the electric field (temporal component) and the
magnetic field (spatial component) in the electrodynamics, that is, the electro-
magnetic duality.

As long as concerned with the O(4) symmetry, one would regard l as the (in-
verse) effective temperature for the system. As is obvious in the calculation of
the partition function in the functional integral method [10], each mathemat-
ical procedure is absolutely symmetric. Nevertheless physics is different, or,
actually the latter relation in (17) prevents us from accepting l as the genuine
temperature in a thermodynamic sense. For instance the entropy density in
the thermodynamics can be written in terms of the pressure p and the internal
energy density u as

s =
p+ u

T
, (18)

where the explicit expressions are derived from the equations (15) and (16)
as p = π2h̄c/45β4 and u = π2h̄c/15β4. We can immediately confirm ourselves
that the thermodynamic relation,

∂s

∂u
=

1

T
, (19)

is satisfied, which is the definition of the absolute temperature. Once we admit
the duality relation (17), the dual entropy density at finite extension is given

6

[arXiv: quant-ph/0108145]

I am suspecting some dual Casimir system 
which has the physics of the chiral vortical effect
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Conclusions

Chiral Magnetic Effect is a dynamical 
phenomenon, which is unclear with µ5, but very 
clear with parallel electromagnetic fields 

Rotating chiral matter exhibits the Barnett effect 
not only the longitudinal but also the transverse 
(eddy) directions, but the decomposition to L and S 
still has ambiguity 

Axial (chiral) Casimir effect is a new detectable 
phenomenon which may give us a hint to CVE
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