Magnetic Field and Rotation

Induced Effects

wanmon

Kenji Fukushima

The University of Tokyo

Review : 1812.08886 (PPNP in press)

- The 5th Workshop on

Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions -

All new works are "new developments"

but...
 simply impossible to cover all of them.

"Chosen" New Subjects

—CME - Dynamical vs. Equilibrated
\square Effect of the mass term - nontrivial cancellation
\square Absence of "equilibrium" chiral magnetic effect

Chiral Barnett Effect

\square Orbital angular mom. vs. Spin — electron vortex
\square Longitudinal vs. Transverse
—Axial Casimir Force
\square No-go theorem and repulsive Casimir force
\square Comment: Chiral vortical effect as a Casimir force

AXIAL WARD IDENTITY

Axial Ward Identity (Abelian)

$$
\partial_{\mu} j_{5}^{\mu}=-\frac{e^{2}}{16} \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta}+2 m \psi \cdot \sqrt{5} \psi
$$ frequently dropped represents the chirality production rate

$\frac{\partial n_{5}}{\partial t}=\frac{e^{2} E B}{2 \pi^{2}} \quad$ for parallel E and B and $m=0$

\boldsymbol{E} B \uparrow \&

$\mathrm{U}(1)_{\mathrm{A}}$ symmetry is broken

 by the chiral anomaly
Mass Effect

 Pair production induced by \boldsymbol{E} and \boldsymbol{B}

$$
\omega=\frac{e^{2} E B}{4 \pi^{2}} \operatorname{coth}\left(\frac{B}{E} \pi\right) \exp \left(-\frac{\pi m^{2}}{e E}\right)
$$

not the chirality itself but when $B \gg E$ (LLL)

Strong $B \rightarrow$ Dimensional Reduction Momentum direction \sim Chirality

Mass Effect

Pair production induced by \boldsymbol{E} (and \boldsymbol{B})

$$
\underset{\longrightarrow}{\omega} \xrightarrow{B \gg E} \quad \frac{e^{2} E B}{4 \pi^{2}} \exp \left(-\frac{\pi m^{2}}{e E}\right)=\frac{1}{2} \partial_{t} n_{5}
$$

We already know the answer, but how can we get this from the AWI?

Extremely important question to understand the Chiral Magnetic Effect

Chiral Magnetic Effect (no μ_{5})

Schwinger process in K^{\prime}

$$
\Gamma=\frac{q^{2} E_{z}^{\prime} B_{z}^{\prime}}{4 \pi^{2}} \operatorname{coth}\left(\frac{B_{z}^{\prime}}{E_{z}^{\prime}} \pi\right) \exp \left(-\frac{m^{2} \pi}{\left|q E_{z}^{\prime}\right|}\right)
$$

Current generation rate

Fukushima-
-Kharzeev-
-Warringa, PRL (2010)
$\partial_{t} j_{y} \simeq \frac{q^{2} B_{y}}{2 \pi^{2}} \frac{g \mathcal{E}_{z} \mathcal{B}_{z}^{2}}{\mathcal{B}_{z}^{2}+\mathcal{E}_{z}^{2}} \operatorname{coth}\left(\frac{\mathcal{B}_{z}}{\mathcal{E}_{z}} \pi\right) \exp \left(-\frac{2 m^{2} \pi}{\left|g \mathcal{E}_{z}\right|}\right)$

Chiral Magnetic Effect (no μ_{5})

Technology simplified for cond-mat exp.

Chiral Magnetic Effect (no μ_{5})

Lorentz force $=$ "Classical" MR
Perpendicular E and B are Lorentz force free

Li et al.
Nature Physics (2016)
Negative "magnetoresistance"

Chiral Magnetic Effect (no μ_{5})

Fully field-theoretical calculation

Fukushima-Hidaka, PRL (2018) [full version in prep.]

(a1) $q \rightarrow q g$

(a2) $q g \rightarrow q$

$(\mathrm{b} 1) \bar{q} \rightarrow \bar{q} g$

(b2) $\bar{q} g \rightarrow \bar{q}$

$(\mathrm{c} 1) q \bar{q} \rightarrow g$

$(\mathrm{c} 2) g \rightarrow q \bar{q}$

Good agreement with

 the cond-mat exp.Consistent with lattice-QCD at $B=0$

Chiral Magnetic Effect (no μ_{5})

Fully field-theoretical calculation

Fukushima-Hidaka, PRL (2018) [full version in prep.]

(a1) $q \rightarrow q g$

Clarifying CME Controversies

Dynamical Chiral Magnetic Effect

$$
j^{3}=\langle\mathrm{in}| \bar{\psi} \gamma^{3} \psi|\mathrm{in}\rangle=2 \omega \cdot t
$$

This can be directly derived, and moreover, we find:

$$
\left.\bar{j}^{3}=\langle\text { out }| \bar{\psi} \gamma^{3} \psi \mid \text { in }\right\rangle=0
$$

In-Out amplitude can be interpreted as a static expectation value in Wick-rotated theory ($\boldsymbol{T} \rightarrow 0$ theory)

No Chiral Magnetic Effect in equilibrium!
Yamamoto, PRB (2015) / Copinger-KF-Pu, PRL (2018)

Clarifying CME Controversies

μ_{5} is a convenient but controversial bookkeeping device

CME current is nonzero wrongly even in equilibrium lattice-QCD if μ_{5} is coupled.

CME current must be zero in equilibrium lattice-QCD if Euclid electromagnetic fields are applied (testable prediction).

CHIRAL BARNETT EFFECT

Rotation Effect

 Gyromagnetic Effect

Rotation Effect

 Barnett Effect

"Gyroscopic" Motion

Rotation Effect

Barnett Effect

$$
\omega \cdot J=\mu \cdot B
$$

Magnetization

$$
\boldsymbol{M}=\underset{\text { magnetic susceptibility }}{\chi_{B} \boldsymbol{B}}
$$

Magnetic moment

$$
\boldsymbol{\mu}=\gamma_{\text {gyromagnetic ratio }}^{\boldsymbol{J}}
$$

$$
M=\frac{\chi_{B}}{\gamma} \omega \quad \begin{aligned}
& \text { Standard formula } \\
& \text { for the Barnett effect }
\end{aligned}
$$

Rotation Effect

Angular Momentum
$=$ Noether Current from Rotational Symmetry

$$
J^{\lambda \mu \nu}=L^{\lambda \mu \nu}+S^{\lambda \mu \nu}
$$

Neither L nor S conserved separately

$$
\partial_{\lambda} L^{\lambda \mu \nu}=-\partial_{\lambda} S^{\lambda \mu \nu}=\bar{\psi} i \hbar\left(\gamma^{\mu} \partial^{\nu}-\gamma^{\nu} \partial^{\mu}\right) \psi
$$

Rotation Effect

Different decomposition

$$
\begin{aligned}
& \tilde{L}^{\lambda \mu \nu}=\frac{1}{2} L^{\lambda \mu \nu}+\frac{1}{2} \bar{\psi} i \hbar\left[\left(x^{\mu} \gamma^{\nu}-x^{\nu} \gamma^{\mu}\right) \partial^{\lambda}\right] \psi \\
& \tilde{S}^{\lambda \mu \nu}=J^{\lambda \mu \nu}-\tilde{L}^{\lambda \mu \nu} \\
& \longrightarrow \partial_{\lambda} \tilde{L}^{\lambda \mu \nu}=\partial_{\lambda} \tilde{S}^{\lambda \mu \nu}=0 \quad \begin{array}{l}
\text { Separately } \\
\text { conserved? }
\end{array}
\end{aligned}
$$

We will see a similar situation in the optical sector Separately conserving optical L and S definable!?

Rotation Effect

Different decomposition

PRL 118, 114802 (2017)
|빕 Selected for a Viewpoint in Physics
PHYSICAL REVIEW LETTERS

Relativistic Electron Vortices

Stephen M. Barnett
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
(Received 25 November 2016; published 13 March 2017)

The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with $\ell \hbar$ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

Rotation Effect

Different decomposition

Foldy-Wouthuysen transformation

$$
\begin{aligned}
& H^{\prime}=e^{i S} H e^{-i S}=\beta\left(p^{2}+m^{2}\right)^{1 / 2} \\
& e^{i S}=e^{\beta \alpha \cdot \mathbf{p} \theta / p}, \quad \tan (2 \theta)=\frac{p}{m}
\end{aligned}
$$

Conserved L and S defined for non-rela. theory

Rotation Effect

Different decomposition

$$
\begin{aligned}
\tilde{\mathbf{L}}= & e^{-i S} \mathbf{x} \times \mathbf{p} e^{i S}=\mathbf{x} \times \mathbf{p}+i \frac{\beta \boldsymbol{\alpha} \times \mathbf{p}}{\sqrt{m^{2}+p^{2}}} \\
& +\left(1-\frac{m}{\sqrt{m^{2}+p^{2}}}\right)\left(\mathbf{S}-\frac{(\mathbf{p} \cdot \mathbf{S}) \mathbf{p}}{p^{2}}\right) \\
\tilde{\mathbf{S}}= & e^{-i S} \mathbf{S} e^{i S}=\mathbf{S}-i \frac{\beta \boldsymbol{\alpha} \times \mathbf{p}}{\sqrt{m^{2}+p^{2}}} \\
& -\left(1-\frac{m}{\sqrt{m^{2}+p^{2}}}\right)\left(\mathbf{S}-\frac{(\mathbf{p} \cdot \mathbf{S}) \mathbf{p}}{p^{2}}\right)
\end{aligned}
$$

Commute with a free Dirac Hamiltonian

Rotation Effect

We prefer the former decomposition because:

1) Reduced to ordinary L and S in non-rela. limit
2) S is related to the axial current

$$
S^{0 i j}=\epsilon^{i j k} \frac{\hbar}{2} \bar{\psi} \gamma^{k} \gamma_{5} \psi=\epsilon^{i j k} \frac{j_{5}^{k}}{2}
$$

Corresponding Spin Operator:

$$
\begin{array}{r}
\boldsymbol{S} \rightarrow \hbar \lambda\left(\hat{\boldsymbol{p}}-\hbar \lambda \frac{\hat{\boldsymbol{p}}}{p} \times \boldsymbol{\nabla}\right) \\
\text { Torque from gyromagnetic effect }
\end{array}
$$

Spin

Rotation Effect

Spin Expectation Value

Energy in a rotating fluid $\varepsilon_{\mathrm{rot}}=p-\boldsymbol{\omega} \cdot(\boldsymbol{x} \times \boldsymbol{p}+\hbar \lambda \hat{\boldsymbol{p}})$
$\langle\boldsymbol{S}\rangle=\int_{\boldsymbol{p}} \lambda \hbar\left(\hat{\boldsymbol{p}}-\lambda \hbar \frac{\hat{\boldsymbol{p}}}{p} \times \boldsymbol{\nabla}\right) f\left(\varepsilon_{\mathrm{rot}}\right)$
$=\omega \cdot J$
$\approx-\hbar \lambda(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \frac{p}{3} f^{\prime}(p)-\hbar^{2} \lambda^{2} \boldsymbol{\omega} \int_{\boldsymbol{p}} f^{\prime}(p)$
$\langle\boldsymbol{S}\rangle_{\perp}$ "Transverse" Barnett Effect
Chiral Vortical Effect
~Barnett Effect

Rotation Effect

Spin Expectation Value

$$
\begin{gathered}
\langle\boldsymbol{S}\rangle_{\perp}=-\hbar \sum_{R, L} \lambda(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}} \frac{p}{3} f_{\lambda}^{\prime}(p) \\
=\frac{\hbar}{2}(\boldsymbol{\omega} \times \boldsymbol{x}) \int_{\boldsymbol{p}}\left[f_{R}(p)-f_{L}(p)\right]=\frac{\hbar}{2}(\boldsymbol{\omega} \times \boldsymbol{x}) n_{5} \\
\boldsymbol{j}_{5}=n_{5} \boldsymbol{v} \\
\text { Transverse Barnett appears } \\
\text { for massless and chirally } \\
\text { imbalanced fermions }
\end{gathered}
$$

Rotation Effect

 KF-Pu-Qiu, PRA (2019)

"Eddy magnetization" \leftarrow rotation + chiral imbalance

AXIAL CASIMIR FORCE

Casimir Effect

Wikipedia

No-Go Theorem

Opposites Attract: A Theorem about the Casimir force Kenneth-Klich, PRL97, 160401 (2006)

Casimir force between two bodies related by reflection is always attractive.

Looking for "repulsive" Casimir force
Flachi-Nitta-Takada-Yushii, PRL (2017) Jiang-Wilczek, PRB(2019) $\times 2$

Breaking No-Go Theorem

 Jiang-Wilczek, PRB (2019)

Breaking No-Go Theorem

Jiang-Wilczek, PRB (2019)

Breaking No-Go Theorem

 Jiang-Wilczek, PRB (2019)

Faraday materials

Breaking No-Go Theorem

KF-Imaki-Zebin, in prep.
CME Term
Repulsion for $\theta(t, \boldsymbol{x})=b / t-\boldsymbol{b} \cdot \boldsymbol{x}$?

April 12,2019 @ Tsinghua, China

Comment: Casimir vs. CVE

CVE more like the Casimir force

$$
\left\langle j_{5}^{\mu}\right\rangle \sim\left\langle\operatorname{tr}\left[\gamma^{\mu} \gamma_{5} S(x, x)\right]\right\rangle \begin{gathered}
\text { Looks like the anomaly } \\
\sim \frac{d^{4} p}{(2 \pi)^{4}} \\
\sim \sin \left[\gamma_{5} \gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\nu}\right] \\
\text { Energy shift by the rotation }
\end{gathered}
$$

Comment: Casimir vs. CVE

CVE more like the Casimir force

$$
\begin{aligned}
& j_{5} \propto \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\partial}{\partial p_{0}} \frac{p_{0}}{p^{2}-m^{2}} \\
& =\left(T \sum_{n}-\int \frac{d p_{0}}{2 \pi}\right) \frac{\partial}{\partial p_{0}} \frac{p_{0}}{p^{2}-m^{2}} \\
& =\cdots=\frac{i}{12} T^{2}
\end{aligned}
$$

Comment: Casimir vs. CVE

Duality: Thermodynamics ~ Casimir Effect

KF-Ohta, Physica A299, 248 (2001)
[arXiv: quant-ph/0108145]
"Explicit conversion from the Casimir force to Planck's law of radiation"

$$
2 l \Longleftrightarrow \beta=\frac{\hbar c}{k_{\mathrm{B}} T}, \quad p \Longleftrightarrow-u
$$

I am suspecting some dual Casimir system which has the physics of the chiral vortical effect

Conclusions

Chiral Magnetic Effect is a dynamical phenomenon, which is unclear with μ_{5}, but very clear with parallel electromagnetic fields

Rotating chiral matter exhibits the Barnett effect not only the longitudinal but also the transverse (eddy) directions, but the decomposition to L and S still has ambiguity

Axial (chiral) Casimir effect is a new detectable phenomenon which may give us a hint to CVE

