Impact of the characteristics of magnetic field on the CME and CMW measurements at RHIC

Guo-Liang Ma (马国亮)

(Fudan University)

Xin-Li Zhao(赵新丽), Yu-Gang Ma (马余刚)

References: [1] Xin-Li Zhao, Guo-Liang Ma, Yu-Gang Ma, Phys. Rev. C 99, 034903 (2019) [arXiv:1901.04151]. [2] Xin-Li Zhao, Guo-Liang Ma, Yu-Gang Ma, https:// doi.org/10.1016/j.physletb.2019.04.002 [arXiv:1901.04156]. SINAP

The 5th Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions , 2019.4.8-12, Beijing

Outline

>> Introduction

- > Results and Discussions
- (a) B and CME in isobaric collisions
- (b) E·B and CMW in Au+Au collisions

> Summary

Chiral Magnetic Effect (CME)

D.E. Kharzeev, J. Liao et al, PROG. PART. NUCL. PHYS. 88,1(2016)

The chiral anomaly creates differences in the number of left and right handed quarks. An excess of right or left handed quarks leads to a current flow along the magnetic field.

$$\mathbf{J} = \frac{Qe}{2\pi^2} \mu_5 \mathbf{B}$$

Charge separation signal: $\Delta \gamma \propto \langle \mathbf{B}^2 \cos 2(\Psi_{\mathbf{B}} - \Psi_{\mathbf{EP}}) \rangle$

Chiral Separation Effect (CSE)

D.E. Kharzeev, J. Liao et al , PROG. PART. NUCL. PHYS. 88,1(2016)

An axial current is generated along an external magnetic field, with its magnitude in proportion to the system's (nonzero) vector chemical potential as well as the magnetic field magnitude.

$$\mathbf{J}_{\mathbf{5}} = \frac{Qe}{2\pi^2} \mu \mathbf{B}$$

CSE signal:???

Chiral Magnetic Wave (CMW)

D.E. Kharzeev, J. Liao et al, PROG. PART. NUCL. PHYS. 88,1(2016)

G.-L. Ma, Phys. Lett. B 735, 383 (2014)

The interplay of CME and CSE lead to a collective wave mode, i.e. chiral magnetic wave. It results in a electric quadrupole which further lead to charge-dependent elliptic flow through final state interactions

CME:
$$\mathbf{J} = \frac{Qe}{2\pi^2} \mu_5 \mathbf{B} \implies \text{CSE: } \mathbf{J}_5 = \frac{Qe}{2\pi^2} \mu \mathbf{B}$$

CMW (CME+CSE) signal: v2 splitting of positive and negative charged particles (slope para. r)

Outline

>> Introduction

Results and Discussions (a) B and CME in isobaric collisions

(b) E·B and CMW in Au+Au

> Summary

Xin-Li Zhao, Guo-Liang Ma, Yu-Gang Ma, Phys. Rev. C 99, 034903 (2019) [arXiv:1901.04151].

Using Isobaric Collisions for CME Search

Identical nucleon number \rightarrow Identical background Different proton number \rightarrow Different magnetic field

String-melting AMPT model

Zi-Wei Lin, Che Ming Ko et al, PHYSICAL REVIEW C 72, 064901 (2005)

Geometry Configuration of Isobaric Collisions

Woods-Saxon form of spatial distribution of nucleons:

Case 1	R ₀	а	β2	β4
Ru96	5.13	0.46	0.13	0.00
Zr96	5.06	0.46	0.06	0.00
Case 2	R ₀	а	β2	β4
Case 2 Ru96	R ₀ 5.13	a 0.46	β ₂ 0.03	β ₄ 0.00

$$\rho(r,\theta) = \rho_0 / (1 + exp((r - R_0 - \beta_2 R_0 Y_2^0(\theta)) / a))$$

Relative ratio (RR):
$$R_Q = \frac{2(Q^{Ru} - Q^{Zr})}{Q^{Ru} + Q^{Zr}}$$

e.g. for case 1,
$$R_{\beta_2} = \frac{2(0.13 - 0.06)}{0.13 + 0.06} = 0.33$$
; for case 2, $R_{\beta_2} = \frac{2(0.03 - 0.18)}{0.03 + 0.18} = -1.43$

Q can represent |B|, $\cos 2(\Psi_B - \Psi_2)$, $B^2 \cos 2(\Psi_B - \Psi_2)$, $\cos 2(\Psi_B - \Psi_2^{SP})$ and $B^2 \cos 2(\Psi_B - \Psi_2^{SP})$.

Calculation Method of Ψ_2 & $\Psi_2{}^{\text{SP}}$

In model,

$$\Psi_2 = \frac{1}{2} \left[\arctan \frac{\langle r_p^2 \sin(2\phi_p) \rangle}{\langle r_p^2 \cos(2\phi_p) \rangle} + \pi \right]$$

X. L. Zhao, Y. G. Ma, G. L. Ma, PRC 97, 024910 (2018)

 Ψ_2 is participant plane which is constructed by initial geometry of partons.

$$\Psi_2^{SP} = \frac{1}{2} \arctan \frac{\langle r_s^2 \sin(2\phi_s) \rangle}{\langle r_s^2 \cos(2\phi_s) \rangle}$$

Sandeep Chatterjee et al, PRC 92, 011902(R) (2015)

 Ψ_2^{SP} is spectator plane which is constructed by spectator neutrons from one projectile.

In experiment, Ψ_2 is the 2nd-harmonic event plane measured by the TPC, and Ψ_2^{SP} is assessed by spectator neutrons measured by ZDC.

Jie Zhao *et al*, arXiv:1807.05083; Hao-Jie Xu *et al*, arXiv:1710.07265; Sergei A. Voloshin, arXiv:1805.05300

Spatial Distributions of Electromagnetic Fields

From Lienard-Wiechert potential:

$$e\mathbf{E}(t,\mathbf{r}) = \frac{e^2}{4\pi} \sum_n Z_n \frac{\mathbf{R}_n - R_n \mathbf{v}_n}{(R_n - \mathbf{R}_n \cdot \mathbf{v}_n)^3} (1 - v_n^2),$$
$$e\mathbf{B}(t,\mathbf{r}) = \frac{e^2}{4\pi} \sum_n Z_n \frac{\mathbf{v}_n \times \mathbf{R}_n}{(R_n - \mathbf{R}_n \cdot \mathbf{v}_n)^3} (1 - v_n^2),$$

|B|

$cos2(\Psi_B-\Psi_2)$

 $R_{Q} = \frac{2(Q^{Ru} - Q^{Zr})}{O^{Ru} + O^{Zr}}$

- > The maximum of $\cos 2(\Psi_{\rm B} \Psi_2)$ is about -0.5.
- > In central and mid-central collisions, $\cos 2(\Psi_B \Psi_2)$ are similar in the four cases but different in peripheral collisions.

- In mid-central collisions, RR are similar for case 1 and 2.
- In peripheral collisions, RR are different.

A bad news for looking for CME!

$B^2 cos2(\Psi_B-\Psi_2)$

- > The maximum of $B^2 cos 2(\Psi_B \Psi_2)$ is about -10.
- > In central and mid-central collisions, $B^2 cos2(\Psi_B \Psi_2)$ are similar in the four cases but different in peripheral collisions.

▶ RR of $B^2 cos2(\Psi_B - \Psi_2)$ are similar to RR of $cos2(\Psi_B - \Psi_2)$.

contaminated by deformation

$$R_Q = \frac{2(Q^{Ru} - Q^{Zr})}{Q^{Ru} + Q^{Zr}}$$

 $\cos 2(\Psi_{\rm B}-\Psi_2^{\rm SP})$

> cos2(Ψ_B − Ψ₂^{SP}) are around two times larger than cos2(Ψ_B − Ψ₂).
> In peripheral collisions, this correlation cos2(Ψ_B − Ψ₂^{SP}) = −0.9.

Ψ_2^{SP} has stronger correlation with Ψ_B than Ψ_2 .

RR of $\cos 2(\Psi_B - \Psi_2^{SP})$ for the two cases are close to zero in peripheral collisions.

A good news for looking for CME!

$$R_Q = \frac{2(Q^{Ru} - Q^{Zr})}{Q^{Ru} + Q^{Zr}}$$

$B^2 cos2(\Psi_B-\Psi_2^{SP})$

CME observable $\Delta \gamma$:

>
$$B^2 cos2(\Psi_B - \Psi_2^{SP}) > B^2 cos2(\Psi_B - \Psi_2)$$
.

~15 ~10

- For case 1, RR is near 15%.
- For case 2, RR increases from 0 to 15% from central to peripheral events.

Less contaminated by deformation $R_{Q} = \frac{2(Q^{Ru} - Q^{Zr})}{O^{Ru} + O^{Zr}}$ in peripheral events

$\Psi_2 VS \Psi_2^{SP}$

- For case 1, RR of $B^2 cos2(\Psi_B \Psi_2)$ and $B^2 cos2(\Psi_B \Psi_2^{SP})$ are similar.
- > For case 2, RR of Ψ_2 is larger than RR of Ψ_2^{SP} .
- $\succ \Psi_2^{SP}$ is expected to reflect much cleaner information about the CME signal.

Outline

> Introduction

> Results and Discussions

(a) B and CME in isobaric collisions

(b) E·B and CMW in Au+Au

> Summary

XL Zhao, GL Ma, YG Ma, https://doi.org/10.1016/j.physletb.2019.04.002 [arXiv:1901.04156].

Chiral anomaly μ_5 sources

- **QED anomaly effects**: Fermi surface balance in the Dirac sea; neutral pion condensation; Dirac semimetal experiments etc.
- QED anomaly in heavy-ion collisions?

$$\mathbf{E} \cdot \mathbf{B} = E_x B_x + E_y B_y + E_z B_z.$$

E·B in Au+Au 200GeV

• A dipolar distribution of $E \cdot B$ is observed in noncentral Au+Au collisions.

From E·B dipole to electric quadrupole

- A dipolar E·B in a magnetic field can lead to a electric quadrupole with the help of CME.
- No formation of CMW here

 The density of E·B is consistent with the centrality dependence of the slope para. r by STAR

Event-by-event E·B in Au+Au

- A dipolar E·B holds on event-by-event basis.
- Our new mechanism does not need the CSE (μdependent) → different energy dependence from the CMW-driven one

Summary

> B and CME in isobaric collisions

(a) Deformation difference causes some effects.

(b) $\Psi 2^{sp}$ has stronger correlation with ΨB than $\Psi 2$

 $\Rightarrow \Delta \gamma$ w.r.t $\Psi 2^{sp}$ reflects much cleaner information about the CME signal

E·B and CMW in Au+Au

- (a) A dipolar E·B is observed in noncentral Au+Au collisions.
- (b) It can result in a electric quadrupole without CMW a new interpretation to the slope r measured by STAR.
- (c) Source for other chiral anomalous effects?

Thank you for your attention!

Backup

Centrality cuts for Ru+Ru and Zr+Zr

Centrality	b _{min} (fm)	b _{max} (fm)
0-10%	0	3.9
10-20%	3.9	5.5
20-30%	5.5	6.8
30-40%	6.8	7.8
40-50%	7.8	8.8
50-60%	8.8	9.6
60-70%	9.6	10.3

Distributions of $\Psi_B-\Psi_2$

Chiral Magnetic Wave (CMW)

The interplay of CME and CSE lead to a collective wave mode, i.e. chiral magnetic wave. It results in a electric quadrupole which further lead to charge-dependent elliptic flow through final state interactions

CME:
$$\mathbf{J} = \frac{Qe}{2\pi^2} \mu_5 \mathbf{B} \iff \mathbf{CSE:} \quad \mathbf{J} = \frac{Qe}{2\pi^2} \mu \mathbf{B}$$

CMW (CME+CSE) signal: v2 splitting of positive and negative charged particles (slope para. r)