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Introduction
Chiral Anomaly and Chiral Kinetic Theory

Kinetic theory has many applications in nuclear physics,
astrophysics, cosmology and condensed matter physics. Earlier it’s
relativistic version misses the effect triangle anomaly

∂µJ
µ
5 =

1

4π2
E ·B

(Breaking of the axial symmetry at quantum level !)

For Fermi liquid, this deficiency has been fixed by including the
effect of Berry Phase and Berry Curvature1 Ωp = ± p̂

2|p|

The effect of Berry phase and curvature modify the particle number
current together with transport equation.

1Berry, Proc. R. Soc. A (1984)
Son, Yamamoto, PRD (2012) PRL (2012),
Stephanov, Yin, PRL (2012),
Gao, Liang, Pu, Q. Wang, X.-N. Wang, PRL (2012), PRD (2014),
Hidaka, Pu, Yang, PRD (2016)



Introduction
Chiral Anomaly and Chiral Kinetic Theory

For the derivation of Chiral Kinetic Theory in QFT, two different
formalism are used

Field Theory Approach2

Effective Field Theory Approach

On-Shell Effective Field Theory (OSEFT)

[ Carignano, Manuel, Torres-Rincol, PRD (2018) ]

High density Effective Theory (HDET)

[ Son, Yamamoto, PRD (2014) ]

High density effective theory is an effective field theory valid in the
vicinity of Fermi surface.

2Hidaka, Pu, Yang, PRD (2017), PRD (2018),
Gao, Liang, Pu, Q. Wang, X.-N. Wang, PRD (2011),
Huang, Shi, Jiang, Liao, Zhuang, PRD (2018)



Introduction
High Density Effective Theory

High density effective theory is useful to describe the low energy
dynamics of the system.

It can be constructed by integrating out fast modes from the theory.

This process generates the non-local effective Lagrangian which can
be expanded in terms of the large momenta.



High Density Effective Theory

Lagrangian for right handed chiral fermions with finite density and
zero temperature

L0 = ψ̄(iγµDµ)ψ + µψ̄γ0ψ,

With E± = µ± |p| : Energy of (anti-)particles

At low energy, particles with E+ ∼ 0 =⇒ slow modes

antiparticles with E− ∼ −2µ =⇒ fast modes



High Density Effective Theory

Decomposing the energy and momentum of fermions as3

p0 = µ+ l0 and p = µv + l with l0, l� µ with

ψ(x) =
∑

v e
iµv·x[ψ+v(x) + ψ−v(x)

]

Projection Operator: P± = 1
2 (1 + σ · v)]

with P±ψ±v = ψ±v, P±ψ∓v = 0

L1 = ψ†+viv ·Dψ+v + ψ†−v(2µ+ iv̄ ·D)ψ−v

+ ψ†+vi /D⊥ψ−v + ψ†−vi /D⊥ψ+v,

where /D⊥ = σµ⊥Dµ and σµ⊥ = (0,σ − v(v · σ)).

3Hong, PLB (1998), NPB (2000)
Schafer NPA (2003)
Son, Yamamoto, PRD (2013)



High Density Effective Theory

Integrating out heavy mode by using EOM

ψ−v =
1

2µ

∑
n

(−iv̄ ·D
2µ

)n
(−i /D⊥ψ+v)

Effective Lagrangian:

Leff = ψ†+v
∑
n

D(n)ψ+v

= ψ†+v

[
iv ·D +

/D
2
⊥

2µ
+

/D⊥(−iv̄ ·D) /D⊥
4µ2

]
ψ+v,

uto order O(1/µ2)



Equations of Motion

Equation of motion emerging from the effective Lagrangian is
satisfied by the two-point function

DxGv(x, y) = 0, Gv(x, y)D†y = 0,

P−Gv(x, y) = 0, Gv(x, y)P− = 0 [Projection Condition]

In terms of central X = (x+ y)/2 and relative s = (x− y)
coordinates, corresponding Wigner function:

Gv(X, l) =
∫
d4s eil·s Gv(x, y) ≡

∫
s
eil·s Gv(x, y),∫

s
=
∫
d4s, and lµ : Residual Momenta of particle



Equations of Motion

The gauge invariant Wigner function is4

G̃v(X, l) =

∫
s

eil·s Gv(X + s/2, X − s/2)U(X − s/2, X + s/2).

with Wilson line defined as

U(y, x) = P exp
[
− i
∫ y

x

dzµAµ(z)
]
,

path ordering P from y to x.

4Elze, NPB (1986)
Vasak, Ann. of Phys.,(1987)



Equations of Motion

The sum and subtracted part of EOM

I
(n)
± =

∫
s

eil·s
(
D(n)
x Gv(x, y)±Gv(x, y)D(n)†

y

)
with n = 0, 1, 2.

Taking gradient expansion for derivatives

∂x = ∂s +
1

2
∂X , ∂y = −∂s +

1

2
∂X

and gauge field

Aµ(X ± s/2) ≈ Aµ(X)± 1

2
(s · ∂X)Aµ(X) +O(∂2

X).

neglecting the higher order terms.



Equations of Motion

With contributions from Wilson line I
(n)
±

I
(0)
+ = 2v · l̄ G̃v, I

(0)
− = ivµ∆µG̃v,

I
(1)
+ =

1

µ

[
− l̄2⊥ + B · v

]
G̃v, I

(1)
− =

i

µ
l̄µ⊥∆µG̃v,

I
(2)
+ =

1

4µ2

[
4l̄‖ l̄

2
⊥ − 4l̄‖(B · v)+2B · l̄⊥ + 2(E × l̄) · v

]
G̃v

I
(2)
− = − i

4µ2

[(
4l̄‖ l̄

µ − v̄µ(l̄2⊥ − B · v)
)

∆µ−
(
εijkvkv̄µF

iµ
)

∆j

]
G̃v,

∆µ = ∂µ − Fµν ∂
∂lν

and l̄µ = (lµ −Aµ) : kinetic momentum of particle.

Disagree with Son and Yamamoto, PRD (2013) at O(1/µ2).



Equations of Motion

From I
(n)
+ terms

G̃v = 2π P+ δ
(
l0 − l‖ −

1

2µ
[l2⊥ −B · v] +

1

2µ2
[l‖(l

2
⊥ −B · v)]

+
1

4µ2
[B · l⊥ + (E× l) · v]

)
nv(X, l),

nv(X, l): distribution function.

PUZZLE: δ-function ⇒ dispersion relation depends on v and not
invariant under Reparametrization!



Reparametrization Invariance and Frame Dependence

Reparametrization is a redundancy under which the physical
implications remain unchanged.

HDET is constructed by dividing momentum5

pµ = µvµ + lµ, vµ = (1,v), and v2 = 0.

Decomposition is not unique:
vµ −→ vµ

′
= vµ + δvµ, lµ −→ lµ

′
= lµ − µ δvµ,

with v · δv = 0.

5Killian, Ohl, PRD (1994),

Finkemeier, Georgi, Irvin, PRD (1997)

Sundrum, PRD (1998)



Reparametrization Invariance and Frame Dependence

Under reparametrization transformation (RT)

δψv = iµδv · xψv − /δv
2

(
1− 1

2µ+iv̄·D i /D⊥

)
ψv,

δψ†v = −iµδv · xψ†v − ψ†v
(

1− i /D⊥ 1
2µ+iv̄·D

)
/δv
2 .

Non-local effective Lagrangian

δL = ψ†viv ·Dψv + ψ†v /D⊥
1

2µ+ iv̄ ·D
/D⊥ψv = 0.

remains invariant.



Reparametrization Invariance Equations of Motion

Variation of G̃v

δG̃v(X, l) =

∫
s

[
−

/δv

2
G̃v(X, l)− G̃v(X, l)

/δv

2

− 1

4µ
εjik δvj ∆iσ

k G̃v(X, l) +
1

2µ
δvj lj ∆ij G̃v(X, l)

]
,

with ∆ij = δij − vi vj

tr δG̃v(X, l) = 1
4µδvj∆iv

kεijktrG̃v(X, l) + 1
2µδvj li∆ijtrG̃v(X, l)

Arises from antiparticle contribution

Wigner function is not invariant under RT!



Reparametrization Invariance Equations of Motion

δ I
(n)
± =

∫
s

eil·s(D(n)
x Gv(x, y)±Gv(x, y)D†(n)

y ) = 0, Invariant under RT

Contributions of Differential operators and Gauge invariant Wigner
function cancels each other.

I
(0)
+ = 2v · l̄ G̃v, I

(0)
− = ivµ∆µG̃v,

I
(1)
+ =

1

µ

[
− l̄2⊥ + B · v

]
G̃v, I

(1)
− =

i

µ
l̄µ⊥∆µG̃v,

I
(2)
+ =

1

4µ2

[
4l̄‖ l̄

2
⊥ − 4l̄‖(B · v) + 2B · l̄⊥ + 2(E × l̄) · v

]
G̃v

I
(2)
− = − i

4µ2

[(
4l̄‖ l̄

µ − v̄µ(l̄2⊥ − B · v)
)

∆µ −
(
εijkvkv̄µF

iµ
)

∆j

]
G̃v,

Dispersion relation and CKE depends on v and not unique

Expected: antiparticle contribution is v dependent!



Transport Equation

We use a natural scheme by making a choice l ‖ v, or equivalently l‖ = l,
l⊥ = 06

I
(0)
+ = 2v · lG̃v, I

(0)
− = ivµ∆µG̃v,

I
(1)
+ =

B · v
µ

G̃v, I
(1)
− = 0,

I
(2)
+ = −B · vl

µ2
G̃v,

I
(2)
− =

1

4µ2

[
− iv̄µB · v∆µ + iv̄νεijmvmFiν∆j

]
G̃v.

6Hands, PRD (2004)



Transport Equation

Combining plus equations as

I
(0)
+ + I

(1)
+ + I

(2)
+ =

[
2(l0 − l) +

B · v
µ
− B · v l

µ2

]
G̃v.

Results into the dispersion relation l0 = l − B·v
2µ + B·v l

2µ2 .

In terms of original momentum

p0 = p− B · p̂
2p

Same as dispersion relation for particle in magnetic field.



Transport Equation

Using P+G̃v = G̃vP+ = G̃v, G̃v can be parametrize as

G̃v = 2πδ
(
l0 − l +

B · v
2µ
− B · vl

2µ2

)
nv(X, l)P+.

nv is the distribution function

The transport equation from the I
(n)
− terms is

[
∆0 + vi

(
1 +

B · v
2µ2

)
∆i +

v̄νεijmvmFiν∆j

4µ2

]
nv(X, l) = 0.



Transport Equation

In terms of full momentum p = µv + l:[
∆0 + p̂i

(
1 +

B · p̂
2p2

)
∆i −

εijkp̂jEk + Bi
⊥

4p2
∆i

]
nv(X, l) = 0.

Agrees with OSEFT approach upon identifying a cut-off between two
theory7.

CKE from field theory approach8

[
∆0 + p̂i

(
1 +

B · p̂
2p2

)
∆i −

εijkp̂jEk

2p2
∆i

]
n(X, l) = 0

7Cariganano, Manuel, Torres-Rincon, PRD (2018)
8Hidaka, Pu, Yang, PRD (2017), PRD (2018)



Constitutive Equation

From jµ = ψ†σµψ, particle number and total current is

n =
1

(2π)4

∫
l

(
1 +

1

2µ2

[
B · v

])
trG̃v(X, l),

ji =
1

(2π)4

∫
l

[
vi +

1

2µ
∆jv

k +
1

4µ2

(
− ∂Xj lνεijmvmv̄ν

− 2B · vvi + Fνj v̄
νvmεijm

)]
trG̃v(X, l).

We used scheme condition l ‖ v to simplify the expression

Agrees with [Manuel et al. PRD (2018)] after identifying a cut-off.



Equivalence of Chiral Kinetic Equation

Distribution function n and nv are coefficients of δ-function of G̃ and G̃v

G̃ =

∫
s

eip·sψ(x)ψ†(y)U(y, x), G̃v =

∫
s

eil·sψv(x)ψ†v(y)U(y, x).

using ψ(x) = eiµv·x
(

1 + 1
2µ (−i /D⊥)

)
ψv(x)

ψv : Dressed particle

trG̃ = trG̃v − 1
4µ2 li∆jtrG̃vε

ijmvm ⇒ n = nv − 1
4µ2 li∆jnvε

ijmvm



Equivalence of Chiral Kinetic Equations

[
∆0 + p̂i

(
1 + B·p̂

2p2

)
∆i − εijkp̂jEk

2p2 ∆i

]
n(X, l) = 0

[CKE from Field Theory formalism]

⇓[
∆0 + p̂i

(
1 + B·p̂

2p2

)
∆i − εijkp̂jEk+Bi⊥

4p2 ∆i

]
nv(X, l) = 0

[CKE from HDET formalism]



Conclusions

We revisit CKT and find it differs from its counterpart from field
theory approach at higher order of (1/µ). It agrees with the CKE
obtained by OSEFT.

Despite the disagreement, both CKE obtained from field theory and
effective field theory formalisms are equivalent with the difference
being choices of degrees of freedom.

Under Reparametrization transformation of Fermi velocity v,
distribution function and CKE both transforms. A specific choice
v ‖ l results into our CKE.



Thanks...


