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“Hydro+” and chiral/spin hydrodynamics

 1
Chirality workshop,Tsinghua, Apr.9, 2019

HIC offer unique opportunities to explore the macroscopic 
quantum effects associated with chirality and/or spin polarization. 

This in turn motivates extensive studies of hydro-like 
description of the dynamics of axial charge and spin density. 

In parallel, a general framework, “hydro+”, is developed to 
systemically describe hydro with additional slow modes.  

I shall review this newly developed formalism, and illustrate its 
salient features in the context of chiral/spin hydrodynamics. 
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“Hydro+”: general framework
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Hydro. as a low energy effective theory

Hydro. describes slow evolution of conserved densities, e.g, 
energy density e and momentum density.

Hydro. equation: conservation laws with constitutive relation 
obtained by gradient expansion. 

∂μ Tμν = 0 .

Γhydro ∝ Q2

ω

Hydro.

Γmic
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Hydro. as a low energy effective theory

Hydro. describes slow evolution of conserved densities, e.g, 
energy density e and momentum density.

Hydro. equation: conservation laws with constitutive relation 
derived by gradient expansion. 

∂μ Tμν = 0 .

Γhydro ∝ Q2

What happens if there is an additional slow mode ɸ? Γϕ ≪ Γmic

ωΓmic

❓❓

Γɸ
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Parametrically slow mode(s)

Parametrically slow modes: smallness of Γɸ  is controlled by 
another small parameter δ(+).

For example, fluctuations near a critical point equilibrates slowly 
due to the grow of correlation length ξ (critical slowing down). 

The emergence of parametrically slow mode(s) can be found in 
many interesting and relevant physical situations. (this talk: axial 
density and spin density). 

Those modes would be of phenomenological important when 
(Γɸ)-1 is comparable to the lifetime of the fireball.

lim
δ(+)→0

Γϕ → 0 , lim
Q→0

Γϕ ≠ 0 , Γϕ ≪ Γmic .

lim
lmic/ξ→0

Γfluc → 0 .
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The presence of Γɸ naturally divide the low frequency behavior of 
the system into two (qualitatively) different regimes.

Hydro regime: ω<< Γɸ,  ɸ ⇒ its equilibrium value ɸeq(e).

“Hydro+” regime: ω>>Γɸ,  ɸ  is off-equilibrium and has to be 
treated as a mode independent of hydro modes.

“Hydro+” aims at formulating a hydro-like theory describing 
intertwined dynamics of hydro. d.o.f and ɸ.

ω

Hydro.

ΓmicΓɸ

Hydro+
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Qualitative feature I: the generalization of thermal equilibrium

In “hydro+” regime, a macroscopic state is characterized by e,  ɸ.

Generalized entropy s(+): log of the number microscopic states 
with given e, ɸ. 

In principle, s(+) can be determined once ɸ is specified. E.g. : ɸ=nA

From s(+), one could define other generalized thermodynamic 
functions such as β(+) and p(+) .   

ω

s(e)

ΓmicΓɸ

s(+)(e,ɸ)

ds(+) = β(+) de + …
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Qualitative feature II: transport coefficient

Slow equilibration of ɸ, large 
transport coefficient(s) λ  in hydro 
regime. 

ωΓmicΓɸ

  

λeff

λhydro~1/Γɸ

λ(+) ~1/Γmic

λhydro ∝ Γ−1
ϕ + 𝒪(δ(+))

For example, transport coefficients 
grow near the critical point.

λ(+) ∝ Γ−1
mic

However, “effective λ” would drop rapidly to a much smaller value 
in “hydro+” regime. 
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Construction of Hydro+
E.o.M for ɸ:

Aɸ(e, ɸ) describes the response of ɸ  to compression/
expansion. E.g. for axial charge ɸ=nA, Aɸ = nA.

Fɸ(e, ɸ) is the “returning” force:

E.o.M for hydro. variables remain the same:

The constitutive relation for Tμν and Fɸ can be obtained by the 
double expansion in (Q lmfp) and δ(+). The generalized 2nd law 
imposes an important constraint:

uμ ∂μϕ = Aϕ(∂ ⋅ u) + Fϕ(e, ϕ)

∂μ Tμν = 0

lim
Q→0

Fϕ ∝ Γϕ (ϕ − ϕeq(e))

∂μ sμ
(+) ≥ 0
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Sound dispersion for  “hydro+” with one scalar mode
Stephanov-YY, 1712.10305, PRD ’18  

Effective sound velocity becomes different.

Effective bulk viscosity also becomes different. 

kΓmicΓɸ

ReωSou

kΓmicΓɸ

ImωSou

c2
s = (

∂p
∂e

) ≤ c2
s,(+) = (

∂p(+)

∂e
)ϕ .

ζ = (e + p)
Δc2

s

Γϕ
≫ ζ(+)



Applications to chiral/spin hydrodynamics
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So, generic parametrically slow mode(s). Now:
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Axial charge density as a parametrically slow mode

The axial charge density nA relaxes slowly in many situations.

Weyl/Dirac semimetal. (inter F.S collision rate is much smaller 
than intra F.S. collision rate)

Weakly coupled QGP.

Maybe for sQGP. (Naively substituting αs=0.2 into wQGP result 
gives 1/ΓA=10 fm)

If nA is a parametrically slow mode, it will have interesting 
implications. 

ΓA ∼ α5
s T ≪ Γmic ∼ α2

s T

(Shu Lin and Yee, PRD 17; 
See Shu’s talk) 
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(Stephanov, Yee and YY PRD15, 1501.00222) 

Consider vector charge conservation and axial charge non 
conservation.

With external magnetic filed, nA mixes with nV due to CME and 
CSE. 

Implications for HIC: signature of CMW is not only limited by 
the lifetime of B, but also that of nA. 

kΓmicΓA

Reω

CMW

D =
v2

CMW

ΓA
⇒ σ = χD =

C2
AB2

χΓA

kΓmicΓA

-Im ω

Dk2

Dispersion relation for nV+nA

∂μJμ
V = 0 , ∂μJμ

A = − ΓA nA

(Large Diffusion 
in hydro. regime)
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Magnetohydrodynamic (MHD) + nA or “MHD+”

MHD variables (assuming σQ<<1):  e, uμ, Bμ . 

Magnetic field B is a hydro variable as its relaxation rate 
vanishes at small Q

Electric field E and vector charge density n are not because 
their relaxation rates are proportional to conductivity σ.

“MHD+” variables: e, uμ, Bμ, nA . 

E.o.M: conservation law, Bianchi identity + anomaly equation

ΓB ∼ Q2/σ .

(Hattori,  Hirono, Yee and YY, 1711.08450) 

∂μJμ
A = CA B ⋅ E .

To close “MHD+”, we need to express E in term of 
“MHD+” variables (constitutive relation).
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∂ ⋅ s(+) = [−β (e + p(+)) + s(+) − H ⋅ B + μA nA] (∂ ⋅ u)

+[μA (CA E ⋅ B)+𝒪(∂2)] ≥ 0

Attempt 1: μA ∼ 𝒪(1) ,
p(+) = − e + β−1

(+) s(+) + H ⋅ B + μA nA

E ∝ CAμAB ∼ 𝒪(1)

Let us assume gradient expansion is sufficient so that 

Constitutive relation of E in “MHD+”

Then

E ∼ 𝒪(∂) .
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Let us try double expansion.

∂ ⋅ s(+) = [−β (e + p(+)) + s(+) − H ⋅ B + μA nA] (∂ ⋅ u)

+[μA (CA E ⋅ B)+𝒪(∂2)] ≥ 0

Attempt 1: μA ∼ 𝒪(1) ,
p(+) = − e + β−1

(+) s(+) + H ⋅ B + μA nA

E ∝ CAμAB ∼ 𝒪(1)

Attempt 2: μA ∼ 𝒪(∂)

E ∝ CAμAB ∼ 𝒪(∂)Then

μA nA ∼ 𝒪(∂)

Let us assume gradient expansion is sufficient so that 

Constitutive relation of E in “MHD+”

Then

E ∼ 𝒪(∂) .
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Double expansion

The gradient controls the “slowness” of hydro. modes. δ(+)  

controls the slowness of “+” modes.

Natural extension: the double expansion in terms of δ(Q)  and 
δ(+).

“Hydro+” variables:          ;   Others:              or smaller. 

For “MHD +”, we identify CA=e2/(2π2)<< 1 as the small 
parameter δ(+) . 

𝒪(δ) : δQ , δ(+) 𝒪(δ2) : (δ2
Q) , (δ2

(+)) , (δ(Q)δ(+))

Does that work?

𝒪(1) 𝒪(δ)
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Results: the universality of CME with dynamical magnetic field

∂ ⋅ s(+) = (…)(∂ ⋅ u) +[μA (CA E ⋅ B)+𝒪(∂2)] ≥ 0

We found:

⃗E =
1
σ (−CAμA

⃗B +∇ × ⃗B ) ⃗j = CAμA
⃗B +σ ⃗E

Generalized 2nd law leads to the universal form for CME in 
“MHD+”. Non-trivial since gauge field is dynamical. (CVE is not) 

The relaxation rate:

⇒

The double expansion is not only consistent, but also leads 
to interesting result. 

(Hattori,  Hirono, Yee and YY, 1711.08450) 

(Hou,  Liu and Ren, PRD12) 

∂μJμ
A = CA B ⋅ E . ⇒ ΓA ∝ C2

A ∼ δ2
(+)
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hydro+spin density

Additional modes: spin density.

Gluon spin contributions can be significant in 
strongly interacting QGP. 

❓
Is spin density parametrically slow?

Yes if spin-orbital coupling is weak. How about sQGP?

Spin hydrodynamics: hydro+ (parametrically slow) tensor modes

Generalized entropy.

Prediction: slow equilibration of spin density would lead to a 
larger transport coefficient (not yet reported). 

(Florkowski,Friman,Jaiswal, Speranza,PRC17;Hattori,  
Hongo, Huang, Matsuo and Taya, 1901.06615) 

Becattini, Florkowski, Speranza, PLB18

(See Becattini&Taya’s talk) 



Conclusion and outlook
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Conclusion and outlook I.

Understanding the criticality and chirality of QGP liquid motivates 
the extension of hydro. (or MHD) to include additional 
parametrically slow modes. 

I present “Hydro+” as a general theory describing parametrically 
slow modes.

By demonstrating its features in the context of chiral/spin 
hydrodynamics, we see rich physics underlying fluid with 
parametrically slow modes

ω

Hydro.

ΓmicΓɸ

Hydro+
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Conclusion and outlook II

If axial density/spin density are parametrically slow for QGP, it 
would lead to interesting effects for HIC.

Good progress is made on the numerical implication of “hydro+” 
for critical fluctuations based on different hydro codes (VH1+1, 
OSU hydro. and MUSIC). 

One can do the same for chiral/spin hydrodynamics in future.

Rajagopal-Ridgway-Weller-YY, in 
preparation; Lipei Du-Heinz; Chun. 



Back-up
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Outline

Review of “hydro+”.

Application for chiral/spin hydrodynamics. 

Conclusion.



The constitutive relation at leading order.

Similar for the viscous part

(The gradient of ɸ will only enter as                             ) 
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Example: “hydro+” with one scalar mode

Tμν = ϵ uμ uν + p(+) (gμν + uμuν) + 𝒪(∂)

p(ϵ) → p(+)(ϵ, ϕ)

ζ → ζ(+) , η → η(+)
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Tμν
𝒪(∂2) ∼ ∂μϕ∂νϕ


