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Xu et al., Science  07 Aug Li et al, Nature Physics volume 12, pages 550–554 (2016)

ZrTe MoxW1-xTe2 TaA

Dirac and Weyl Semi-metals

source: wikipedia

Graphene

pseudo-chiral effects 

Mizher, Raya, Villavicenci 2016
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Outline

1. Chiral Fluids 

2. World-line approach 

3. Quantum Phase space with internal symmetries 

4.  Chiral Kinetic Theory
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1. Chiral Fluids: Theory
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Not a classical representation!  
Valid for any (!) representation

Spin ?

• bilinear form 

SK derivation in worldline formalism, see

PRD 99, 056003 (arXiv:1901.10492)

• Spin via anti-commuting  
   variables (Berezin and Marinov 1976)   



3. Quantum Phase Space
Closer look: phase space for spin and chirality

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

no approximations!

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

no approximations!

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

• Saddle point limit: Liouville  
   evolution of Wigner distribution

no approximations!

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

• Saddle point limit: Liouville  
   evolution of Wigner distribution

no approximations!

Grassmann coordinates

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

• Saddle point limit: Liouville  
   evolution of Wigner distribution

no approximations!

Grassmann coordinates

• Worldline path integral defines phase  
    space measure in semi-classical limit

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

• Saddle point limit: Liouville  
   evolution of Wigner distribution

no approximations!

Grassmann coordinates

• Grassmann algebra fixes the  
    form of the distribution function uniquely!

• Worldline path integral defines phase  
    space measure in semi-classical limit

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality

• Saddle point limit: Liouville  
   evolution of Wigner distribution

no approximations!

Grassmann coordinates

• Grassmann algebra fixes the  
    form of the distribution function uniquely!

unpolarized part

• Worldline path integral defines phase  
    space measure in semi-classical limit

!10



3. Quantum Phase Space
Closer look: phase space for spin and chirality
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no approximations!

Grassmann coordinates

• Grassmann algebra fixes the  
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3. Quantum Phase Space
Closer look: chiral anomaly

• Anomaly from phase of fermion determinant 
   Alvarez-Gaume & Witten, Nucl. Phys B234 (1984) 269

• Can be explicitly computed in  
   worldline formulation 

• spectrum contains fermionic zero modes 
(contribution to initial density matrix)

detailed derivation: arxiv:1702.01233 or arxiv:1901.10492 in real-time formulation
!11

https://www.sciencedirect.com/science/journal/05503213
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exact spin structure

polarized unpolarized

exact color structure

singlet octet

• practical approach to CKT: 
color and spin, via moments

• many body generalization Pauli-
Lubanski vector (BMT equation)

• currents etc generalized  
   phase space averages

• anomaly: axial current requires ‘proper 
derivation’ from worldlines in TWA
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4. Chiral Kinetic Theory

• typical scale ~ g2T  
    —> average distributions

• From Liouville to Boltzmann

• Simpler: (no spin) from world-
lines: Bödeker’s transport

NM, R. Venugopalan in preparation

• Collision terms polarized/unpolarized

polarized/unpolarized

!13



Summary

• Worldline approach ab-initio:  
    Compute (!) kinetic theory from QFT 

• Closed Grassmann for internal symmetries 

• Generalized Quantum Phase Space, measure,  
    Wigner distribution, Liouville equation 

• Chiral anomaly manifest 

• May be useful to constrain  
    anomalous hydrodynamics
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• Color measure

• One unique form of phase space distribution

• Color bilinears
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• linear order in axial-vector field B

• Linear term: chiral current
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• we computed second term already in arxiv:1702.01233 (*)

(*) by analytic continuation. We did not realize then it could be written in SK form / density matrix 

• it gives the well known anomaly relation

Backup: anomaly



Backup:  anomaly and (in-)compressibility  
of semi-classical phase space

• Liouville’s equation implies incompressibility  
   of (semi-classical) phase space

• canonical phase space variables: phase space incompressible 
   at this order (reverse not true)

• higher orders: Moyal equation, quantum phase  
   space compressible

• compressibility on semi-classical level: understand  
as Jacobian to semi-classical phase space measure

Does this have to do anything with the anomaly?
!19
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Backup:  anomaly and (in-)compressibility  
of semi-classical phase space

• Xiao, Shi, Niu make this semi-classical  
    effective theory “many body”

• compressibility of classical phase space 

• different interpretations of the same equations

Berry CKT valid  
near fermi surface

not in interior of  
fermi sphere

Xiao, Shi, Niu 
- electrons in magnetic Bloch bands

- electron number (per band) is conserved

- chemical potential is time dependent

   (fermi volume changes in B field)

   “conserved charge defines chemical potential” 
- no anomaly 

Berry CKT 
- Weyl fermions

- # of L/R particles

- chemical potential is constant

- particle number changes (=anomaly)

    “chemical potential defines non-conserved charge”!20


