LHCb Silicon Detectors

Mark Tobin

Curriculum Vitae (since PhD)

University of Liverpool (post-doc).

- LHCb VErtex LOcator (VELO).
 - Module reception tests at CERN.
 - Installation & testing of low voltage system.
 - Commissioning of full detector system.

University of Zurich (post-doc).

- LHCb Silicon Tracker (ST).
 - Commissioning & operation of system.
 - Online monitoring of data.
 - Module testing after detector repairs.
 - Deputy project leader.

EPFL-Lausanne (post-doc).

- LHCb Silicon Tracker.
 - Commissioning of detector for Run 2.
 - Monitoring of radiation damage in sensors.
 - Project leader.
- LHCb Scintillating Fibre (SciFi) Tracker.
 - Characterisation of irradiated SiPMs.
 - Editor of LHCb Upgrade Tracker TDR.
 - Test beam co-ordinator.

AGH-Krakow (post-doc).

- LHCb Upstream Tracker.
 - Experimental control software.

VERTEX LOCATOR (VELO)

J. Instrum. 9 (2014) P09007

LHCb VELO

Reception tests at CERN.

- Visual inspection of modules.
- Problem with construction jig.

Test beams at SPS.

- Pre-production modules.
 - Full offline software chain used.
 - Study performance of sensors.
- Partially equipped detector half.
 - System test of full read-out chain.

Low voltage system.

- Installation team of 3 people.
- Testing of CAEN LV modules.
 - Linearity of supplies, interlocks, etc.
- Integration in full system.

Detector commissioning.

- Module powering & read-out tests.
- Preparation for LHC injection tests.
 October 2018
 IHEP

Commissioning

- Installation in 2008 \rightarrow test services (LV, HV, read-out, etc.)
- Forward geometry \rightarrow low rate cosmic muons.
- Use particles from LHC injection tests.
 - Beam stopper 350 m from LHCb.

14

Commissioning

120 Counts

NIM A604, 1 (2009)

- Installation in 2008 \rightarrow test services (LV, HV, read-out, etc.)
- Forward geometry \rightarrow low rate cosmic muons.
- Use particles from LHC injection tests.
 - Beam stopper 350 m from LHCb.

Border

SILICON TRACKER

Int. J. Mod. Phys. A 30 (2015) 1530022

Time Alignment

Optimize charge collection:

- Different length cables.
- Time of flight different for each station.

Perform time delay scan.

- Read out successive samples spaced by 25ns
- Fit Landau⊗Gaussian to charge distribution for each sample.
- Shift sampling point

Time Alignment

Optimize charge collection:

- Different length cables.
- Time of flight different for each station.

Perform time delay scan.

- Read out successive samples spaced by 25ns
- Fit Landau & Gaussian to charge distribution for each sample.
- Shift sampling point
 - Plot MPV vs sample time.
 - Fit pulse shape.

Internal Time Alignment < 1 ns

Alignment and resolution

- Use tracks from VELO+T stations.
- Global χ² minimisation based on Kalman track fit residuals
 W.D. Hulsbergen, Nucl. Inst. Meth. A600, 471 (2008).
- Additional mass constraint applied to vertices from $D^0 \rightarrow K^+ \pi^-$.
 - J. Amoraal et al., Nucl. Inst. Meth. A714, 48 (2013).
- Alignment precision ≈ 10 µm.

Broken bonds in TT

Module testing in Zürich

Read out half module

- Set-up burn-in stand for module testing.
 - Also used for master student projects.
- Electrical tests of bare hybrids.
- Developed module testing programme.
 - Stress tests of repaired modules.
 - Temperature cycling.
 - Measure current-voltage curves
 - Modules successfully re-installed.

October 2018

HV problems

Radiation damage studies

- Monitor changes in leakage currents.
- Monitor changes in depletion voltage
 - Dedicated charge collection efficiency scans.
- Compare results with predictions.

LHCB TRACKER UPGRADE

CERN/LHCC-2014-001; LHCb TDR 015 (2014)

LHCb Upgrade: SciFi Tracker

- Characterisation tests of irradiated SiPMs.
 - Irradiated at neutron-reactor to equivalent of 50 fb⁻¹.
- Adapted VELO read-out system.
 - Fast shaping of signals.
 - Required attenuation of signals by a factor of 200.
- Measure noise cluster rates, signals, etc.

LHCb Upgrade: Upstream Tracker

- New silicon microstrip detector.
 - Finer segmentation, reduced material, closer to beam.
- Replace all electronics.
 - Read out full detector at 40 MHz.
 - New read-out ASIC (SALT).
 - PEPI electronics (control and data signals).
- New experimental control system (ECS).
 - Testing electronics and data processing.
 - Integration with central LHCb ECS.

- SCADA system (WinCC-OA).
- Finite-state machine hierarchy.
- JCOP framework

Lessons learned

Low Voltage Tests

- Crucial to test cables and power supplies with dummy load.
- Designer assumed boards could supply -ve voltages... had to swap some cables

Software

- Use online/offline software with real data as early as possible.
- Test beam with was crucial to debug VELO geometry.

LHC injection tests

- Opportunity to see real tracks in forward detector.
- Initial time and spatial alignment.

Online Monitoring

Critical for data quality and detector performance.

Radiation monitoring

- Make IV and CCE scans from the beginning.
- Define and test procedure

Broken bonds

- Changed design of hybrids (original bond heights very different in VELO & ST).
- Encapsulate bond wires (should be tested).

Knowledge transfer

- Keep detailed logs of everything.
- Huge amount of time wasted to correlate (historical) information from different systems and databases.
- Document all procedures (people leave).

Research plan

- Local commissioning.
 - Development of ECS software and tools.
 - Perfect read-out and data processing.
 - Stave testing and installation at CERN.
 - Develop monitoring and calibration procedures.
- Global commissioning.
 - Integration of UT after installation in cavern.
 - High rate tests of read-out with other sub-systems.
- Final commissioning.
 - TED shots initial time alignment of detector.
 - First beams time and spatial alignment of detector.
 - Data quality and detector performance studies.
- Future commissioning.
 - LHCb phase 2 upgrade \rightarrow develop 4-D tracking detectors?

Summary

- LHCb Vertex Locator.
 - Design, construction and commissioning.
 - Quality assurance of modules and LV system.
- LHCb Silicon Tracker.
 - Commissioning of detector system for Run 1&2.
 - Radiation damage studies.
 - Responsible for detector operations during Run 1&2.
 - Project management (deputy & PL).
- LHCb SciFi Tracker.
 - Development of silicon photo-detectors.
 - Technical Design Report.
- LHCb Upstream Tracker
 - Design and implementation of control software.
 - Responsible for online monitoring of data.

BACK UP

VErtex LOcator (VELO)

- Two retractable halves.
 - 5 mm from beam when closed, 30 mm during injection.
- 21 R-φ modules per half.
- Operates in secondary vacuum.
- 300 μm aluminium foils separates detector from beam vacuum.
- Cooling using bi-phase CO₂ system.
 - Operates @ -30°C, Sensors @ -10°C.

Tracker Turicensis (TT)

- ^{*}Silicon micro-strip detectors.
 - p⁺-on-n from Hamamatsu Photonics K.K.
- Four planes (0°, +5°, -5°, 0°).
- Pitch: 183 μm; Thickness: 500 μm.
- Long read-out strips (up to 37 cm).
- 143360 read-out channels.
- Total Silicon area is 8 m².
 - Covers full acceptance before magnet.
- Cooling plant operates at 0°C.
 - Sensors @ 8°C.

Inner Tracker (IT)

- Silicon micro-strip detectors.
 - p⁺-on-n from Hamamatsu Photonics K.K.
- Three stations in z.
 - Four boxes in each station.
 - Four planes (0°, +5°, -5°, 0°)
- Pitch: 198 μm
- Thickness: 320 or 410 μm
- 129024 read-out channels.
- Total Silicon area is 4.2 m².
 - Covers region around beam with highest flux.
- Cooling plant operates at 0°C.
 - Sensors @ 8°C.

read-out chain

< 1 Mrad in 10 years

Tell1 read-out boards in counting House: Zero Suppression

Current Tracker

Upstream Tracker (UT)

- Replace TT with new silicon strip detector.
 - Four layers (x, u, v, x) as now.
- Finer segmentation around beam-pipe.
 - Increased occupancy.
- Reduce material.
 - Thinner sensors.
 - 500 μm → 300 μm.
- Move sensors closer to beam.
 - Optimise shape of inner sensors.
 - Increase acceptance at large η .
- New read-out chip (SALT).

Radiation Length(% X0), Z(mm) = 2270 - 2700

SciFi Tracker

- Replace IT+OT with single technology.
 - Occupancy too high in OT.
 - Electronics embedded in IT modules.
- Scintillating fibres read out with SiPMs.
 - 2.5 m long, 250 μm diameter.
 - Keep 12 layers (x, u, v, x) x 3
- SiPMs outside acceptance.
 - Radiation damage from neutrons.
 - Require cooling to -40°C.
- New ASIC for read-out (PACIFIC).
- Radiation hardness of fibres.

SciFi Tracker

MAG 115×