

Polarization fraction measurement in same sign WW scattering using deep learning

Junho Lee, Qiang Li, Nicolas Chanon, Andrew Levin, Jing Li, Meng Lu, Yajun Mao 2019.04.20

Outline

- 1. Higgs and vector boson
- 2. Vector boson scattering (VBS)
- 3. VBS same-sign WW
- 4. Polarization fraction measurement in VBS same-sign WW
- 5. Polarization fraction measurement in VBS ZZ (on-going)
- 6. Conclusion

Higgs and longitudinal fraction of vector boson

• Without Higgs, gauge bosons are massless in Standard Model (SM) with gauge symmetry.

- Higgs mechanism put forwarded
 - Breaking gauge symmetry, attaining mass of gauge bosons.
 - For Electroweak sector, Electroweak symmetry breaking
 - Massive vector bosons $(W^+, W^-, \text{ and } Z \text{ boson})$
 - Transverse and longitudinal polarization fraction
 - Additional massive scalar boson : Higgs boson.

VBS and Unitarity violation

If there is no Higgs boson
 → Cross-section of vector boson scattering diverges.

- If Higgs boson is too heavy (> 1 TeV)
 →Diverge
- \rightarrow Unitarity violation
 - $V_L V_L \rightarrow V_L V_L$ scattering is crucial.

Higgs boson and vector boson scattering (VBS)

- SM Higgs boson found around mass of ~125GeV.
- Higgs boson unitarization can be tested by VBS process $(V_L V_L \rightarrow V_L V_L)$
 - VBS same-sign WW scattering is one of the most promising channel

Vector boson scattering

- Two energetic jets in forwarded region
- Relatively pure EWK region in between the two jets
 - Profits from low background

VBS Same-sign WW scattering

- The process (WW -> WW) has been observed by both ATLAS and CMS with luminosity of $\sim 36 f b^{-1}$, at $\sqrt{s} =$ 13 *TeV*.
- Longitudinal fraction of vector boson only takes ~6% \rightarrow Not enough data for measuring $W_L W_L \rightarrow W_L W_L$ with current Data.
 - \rightarrow High Luminosity LHC, prediction on $W_L W_L \rightarrow W_L W_L$
 - $\sqrt{s} = 14 TeV$
 - Lumi = $3000 f b^{-1}$

Multivariate analysis?

with YR18 syst. uncert.

(14 TeV)

CMS Phase-2 Simulation

3.5

VBS Same-sign WW private event production

MC production pipe line

DECAY

MadGraph5_ aMC@NLO

Charged lepton

- Charged lepton number ≥ 2
- Same electrical charge
- $P_T > 20 \, {\rm GeV}$
- $|\eta| < 2.4$
- Z veto $(40 < M_{ll} < 70, \text{ or } M_{ll} > 110)$
- $\Delta \eta_{ll} < 2.0$
- Missing transverse momentum
 - $P_T > 40 \, {\rm GeV}$

Jet

Pythia & Delphes

- Jet number ≥ 2
- $P_T > 30 \, {\rm GeV}$
- $|\eta| < 4.7$
- *M_{jj}* > 850 GeV
- $\Delta \eta_{jj} > 2.5$
- Other
 - B jet veto

Event selection

DNN dense model

DNN particle-based model

Higher significance achievable!

13

Polarization Fraction Measurement in VBS ZZ (on-going)

Advantages comparing with VBS Same-sign WW:

- No missing transverse momenta
 → Particle-based DNN
- Easy to modeling background from other process

Disadvantage :

- Low cross-section
 - \rightarrow Lower yield for signal MC

Summary

- Longitudinally polarized vector boson scattering $(V_L V_L \rightarrow V_L V_L)$ is crucial for testing Higgs unitarization.
- Within VBS same-sign WW channel, which is one of the most promising VBS channel, we need further more data or advanced technique for observing $V_L V_L \rightarrow V_L V_L$.
- DNN can be applied to improve sensitivity.
 - Particle-based DNN could be tried for further improvement.
- Particle-based DNN model might be able to apply on other similar analysis.

Thank you!

Back-up

SSWW BDT

22

1000 trees of 5 maximum depth, 'Adaptive Boost' used for boosting (Gradient optimizer tested as well)

TMVA overtraining check for classifier: BDT

SSWW Background samples

Plots are from FTR 18-005 : Clearly showing dominant backgrounds (ttbas & WZ) are being suppressed in high Mjj region

Mjj>1.5TeV, 2.0TeV -> background would be negligible

VBS ZZKinematic distribution : Z1_PT, lep1pt

lep1pt

Particle-based DNN

- Separate inputs by particle
- Gradually merge layers

Jet1 4-momenta Jet2 4-momenta

