

Shape of Higgs Potential at Future Colliders

Jiang-Hao Yu (于江浩) ITP, CAS (中国科学院理论物理研究所)

Pankaj Agrawal, Debashis Saha, Ling-Xiao Xu, **JHY**, C.-P. Yuan, 1905.xxxxx Hao-Lin Li, Ling-Xiao Xu, **JHY**, Shouhua Zhu, 1904.05359 Tyler Corbett, Aniket Joglekar, Hao-Lin Li, **JHY**, JHEP 1805 (2018) 061

April 20, 2019

Higgs Boson

Higgs discovery completes the standard model spectrum

Given Higgs mass, all parameters in Higgs sector are predicted!

Higgs and New Physics

Any deviation from the SM in the Higgs sector is new physics!

Jiang-Hao Yu

New Physics in Higgs Sector

Parametrize new physics effects using SMEFT

$$m_{\rm NP} \sim \text{TeV} \qquad \begin{array}{c} \mathcal{L} = \mathcal{L}_{\rm Gravity}^{\rm eff} + \mathcal{L}_{\rm QCD} + \mathcal{L}_{\rm QED} + \mathcal{L}_{\rm EW}} + \mathcal{L}_{\rm heavy}^{NP} \\ \text{New Physics Model} \qquad \qquad \text{shape of Higgs potential} \\ \hline \mathcal{Q}_{H} = (H^{\dagger}H)^{3}, \\ \mathcal{Q}_{H\Pi} = (H^{\dagger}H)^{3}, \\ \mathcal{Q}_{H\Pi} = (H^{\dagger}H) \Box (H^{\dagger}H), \\ \mathcal{Q}_{H\Pi} = (H^{\dagger}H) \Box (H^{\dagger}H), \\ \mathcal{Q}_{H\Pi} = (H^{\dagger}H) (\bar{\mathcal{Q}}u_{R}\bar{H}), \\ \mathcal{Q}_{uH} = (H^{\dagger}H)(\bar{\mathcal{Q}}u_{R}\bar{H}), \\ \mathcal{Q}_{uH} = ($$

New Physics Models

How to generate H^6 operator?

Fundamental Higgs

Scalar singlet

Triplet/Seesaw

Quadruplet

Integrate out heavy scalars

[Corbett, Joglekar, Li, Yu, 2018]

Theory:	c_6	$c_{H\Box}$	$\mathbf{c}_{\mathbf{HD}}$	$\mathbf{c}_{\mathbf{eH}}$	c_{uH}	c_{dH}
ℝ Singlet	$-rac{\lambda_{HS}}{2}rac{g_{HS}^2}{M^4}$	$-rac{g_{HS}^2}{2M^4}$	-	-	-	-
\mathbb{C} Singlet	$-\left(\frac{ g_{HS} ^2\lambda'_{H\Phi}}{2M^4}\!+\!\frac{\mathrm{Re}[g^2_{HS}\lambda_{H\Phi}]}{M^4}\right)$	$-\tfrac{ g_{HS} ^2}{M^4}$	-	-	-	-
2HDM, Type I	$\frac{ Z_6 ^2}{M^2}$	-	-	$rac{Z_6}{M^2}Y_lc_eta$	$rac{Z_6}{M^2}Y_uc_{eta}$	$rac{Z_6}{M^2}Y_dc_eta$
Type II:	$\frac{ Z_6 ^2}{M^2}$	-	-	$-\frac{Z_6}{M^2}Y_ls_{\beta}$	$\frac{Z_6}{M^2}Y_uc_\beta$	$-\frac{Z_6}{M^2}Y_ds_\beta$
Lepton-Specific:	$ Z_6 ^2$ M^2	-	-	$-rac{Z_6}{M^2}Y_ls_eta$	$rac{Z_6}{M^2}Y_uc_eta$	$rac{Z_6}{M^2}Y_dc_{eta}$
Flipped:	$\frac{ Z_6 ^2}{M^2}$	-	-	$rac{Z_6}{M^2}Y_lc_{eta}$	$\frac{Z_6}{M^2}Y_uc_\beta$	$-rac{Z_6}{M^2}Y_ds_eta$
\mathbb{R} Triplet (Y=0)	$-rac{g^2}{M^4}\left(rac{\lambda_{H\Phi}}{8}\!-\!\lambda ight)$	$\frac{g^2}{8M^4}$	$-rac{g^2}{2M^4}$	$rac{g^2}{4M^4}Y_l$	$rac{g^2}{4M^4}Y_u$	$rac{g^2}{4M^4}Y_d$
\mathbb{C} Triplet (Y=-1)	$-rac{ g ^2}{M^4}\left(rac{\lambda_{R\Phi}}{4}+rac{\lambda'}{8}-2\lambda ight)$	$\frac{ g ^2}{2M^4}$	$\frac{ g ^2}{M^4}$	$rac{ g ^2}{2M^4}Y_l$	$\frac{ g ^2}{2M^4}Y_u$	$rac{ g ^2}{2M^4}Y_d$
$\mathbb C$ Quadruplet (Y=1/2)	$\frac{ \lambda_{H3\Phi} ^2}{M^2}$	-	$\frac{2 \lambda_{H3\Phi} ^2 v^2}{2M^4}$	-	-	-
$\mathbb C$ Quadruplet (Y=3/2)	$rac{ \lambda_{H3\Phi} ^2}{M^2}$	-	$\frac{6 \lambda_{H3\Phi} ^2 v^2}{2M^4}$	-	-	-

EWPT and Single Higgs data Jiang-Hao Yu

Fundamental Higgs

EWPT and Single Higgs data put constraints on di-Higgs cross section

[Corbett, Joglekar, Li, Yu, 2018]

Pseudo-Goldstone Higgs

Higgs as pseudo-goldstone Boson

(Composite) fermion states trigger EWSB!

PNGB Higgs Models

Composite fermion states also solve little hierarchy problem

PNGB Chiral Lagrangian

Higgs nonlinearity effect is not included in SMEFT

Integrate Out by Form Factors

EW Chiral Lagrangian

12

Pseudo-Goldstone Higgs

Dim-6 SMEFT (SILH) does not encode Higgs nonlinearity

 $MCHM_{5+5}, f = 1TeV$

[Li, Xu, Yu, Zhu, 2019]

13

Pseudo-Goldstone Higgs

Similar to 2HDM, di-Higgs cross section is larger than SM one

Difference: strong correlation among Wilson coefficients

Shape of Higgs Potential

Very different analytic Higgs behavior

Coleman Weinberg Higgs

Radiative correction triggers electroweak symmetry breaking

16

Tadpole Induced Higgs

Bosonic technicolor (Induced EWSB)

How to Distinguish Them?

Model Discrimination

[Agrawal, Saha, Xu, Yu, Yuan, 2019]

Quartic Higgs Coupling

Determine the shape of Higgs potential

20

Tri-Higgs Production

Many references

21

Tri-Higgs Production

Determine Quartic Coupling

Summary

Explore Higgs potential beyond Landau-Ginzburg Higgs potential

SMEFT is not enough to describe effective Lagrangian

Discriminate shape of Higgs potential via di/tri-Higgs production

Thanks very much!

