Enlighten Dark Photon With Kinetic Mixing

Xiao-Gang He

The 14th TeV Physics Workshop April 19-22, 2019, Nanjing Normal University

1. Enlighten Dark Photon by Kinetic Mixing

- 2. e⁺e⁻ Collider Detection of Dark Photon
- 3. Dark Photon From Non-Abelian Kinetic Mixing
- 4. CP Violating Kinetic Mixing

交大要闻

天文与天体物理部 Director:赖东

量子物理部 Director:顾威

近日,2019年上海市重大建设项目清单公布,在清单中的10项科创中 心项目中,李政道研究所位列其中。

李政道研究所粒子与核物理部成员

全职资深研究员

L. Maiani, J. Ellis 长访资深研究员

合聘研究员

H-J Yang, E D Xiang, E

6位研究员,5博士后 将近期加入

研究员:

博士后:

Y-S Liu, T

C Kato, E

P-W Xie, E

1. Enlighten Dark Photon by Kinetic Mixing

A photon and a pure dark photon

A theory of
$$U(1)_{em} \times U(1)_{X}$$
 gauge group

$$L = - \frac{1}{4} F_{\mu\nu}F^{\mu\nu} - \frac{1}{4} X_{\mu\nu}X^{\mu\nu} + A_{\mu} j^{\mu}{}_{em} + X_{\mu} j^{\mu}{}_{X}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$$

A is the usual photon field and X is a new gauge field X and $j^{\mu}_{em,X}$ currents X may have or not have a finite mass $m^2_A X^{\mu}X_{\mu}/2$

If j^{μ}_{X} does not involve with SM particle, X is a photon like particle which cannot be probed using laboratory probes – a **Dark Photon**

Some basics for Dark Photon

Work with $SU(3)_C xSU(2)_L xU(1)_Y xU(1)_X$

Kinetic mixing can happen between $U(1)_{Y}$ and $U(1)_{X}$

$$\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sigma}{2} X_{\mu\nu} Y^{\mu\nu} - \frac{1}{4} Y_{\mu\nu} Y^{\mu\nu} + j_Y^{\mu} Y_{\mu} + j_X^{\mu} X_{\mu}$$

Need to re-write in the canonical form to identify physics gauge bosons. (mixing term removed!) This may generate dark photon to interact with SM J^{μ}_{γ}

How to remove the mixing term?

M He, X-G He, G. Li,arXiv: 1807.00921

Not unique! Examples

$$\begin{array}{ll} Case \ a): & \mathcal{L}_{a}=-\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu}-\frac{1}{4}\hat{Y}_{\mu\nu}\hat{Y}^{\mu\nu}+j_{Y}^{\mu}\frac{1}{\sqrt{1-\sigma^{2}}}\hat{Y}_{\mu}+j_{X}^{\mu}(\hat{X}_{\mu}-\frac{\sigma}{\sqrt{1-\sigma^{2}}}\hat{Y}_{\mu}) \ ,\\ & \hat{Y}_{\mu}=\sqrt{1-\sigma^{2}}Y_{\mu} \ , \quad \hat{X}_{\mu}=\sigma Y_{\mu}+X_{\mu} \ ,\\ Case \ b): & \mathcal{L}_{b}=-\frac{1}{4}\hat{X}_{\mu\nu}'\hat{X}'^{\mu\nu}-\frac{1}{4}\hat{Y}_{\mu\nu}'\hat{Y}'^{\mu\nu}+j_{Y}^{\mu}(\hat{Y}_{\mu}'-\frac{\sigma}{\sqrt{1-\sigma^{2}}}\hat{X}_{\mu}')+j_{X}^{\mu}\frac{1}{\sqrt{1-\sigma^{2}}}\hat{X}_{\mu}' \ ,\\ & \hat{Y}_{\mu}'=Y_{\mu}+\sigma X_{\mu} \ , \quad \hat{X}_{\mu}'=\sqrt{1-\sigma^{2}}X_{\mu} \ . \end{array}$$

Case a), Redefined X does not couple to $j\mu_Y$ is still "dark"

Case b), Redefined X does not couple to $j^{\mu}{}_Y$ is not dark any more, but Y does not couple to $j^{\mu}{}_X$.

Which one is the correct one to choose?

$$\begin{array}{l} \text{Work with SM photon and dark photon} \\ Y_{\mu} = c_{W}A_{\mu} - s_{W}Z_{\mu} \ , \ W_{\mu}^{3} = s_{W}A_{\mu} + c_{W}Z_{\mu} \ , \\ \mathcal{L}_{0} = \ -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} - \frac{1}{2}\sigma c_{W}X_{\mu\nu}A^{\mu\nu} + \frac{1}{2}\sigma s_{W}X_{\mu\nu}Z^{\mu\nu} \\ + j_{em}^{\mu}A_{\mu} + j_{Z}^{\mu}Z_{\mu} + j_{X}^{\mu}X_{\mu} + \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu} \ , \end{array}$$

Write the above into canonical form requires

$$Case \ a): \ \begin{pmatrix} A \\ Z \\ X \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\sigma^2 c_W^2}} & \frac{-\sigma^2 s_W c_W}{\sqrt{1-\sigma^2}\sqrt{1-\sigma^2} c_W^2} & 0 \\ 0 & \frac{\sqrt{1-\sigma^2 c_W^2}}{\sqrt{1-\sigma^2} c_W^2} & 0 \\ \frac{-\sigma c_W}{\sqrt{1-\sigma^2} c_W^2} & \frac{\sigma s_W}{\sqrt{1-\sigma^2}\sqrt{1-\sigma^2} c_W^2} & 1 \end{pmatrix} \begin{pmatrix} \tilde{A} \\ \tilde{Z} \\ \tilde{X} \end{pmatrix} ,$$

$$Case \ b): \ \begin{pmatrix} A \\ Z \\ X \end{pmatrix} = \begin{pmatrix} 1 & \frac{-\sigma^2 s_W c_W}{\sqrt{1-\sigma^2} \sqrt{1-\sigma^2} c_W^2} & \frac{-\sigma c_W}{\sqrt{1-\sigma^2} c_W^2} \\ 0 & \frac{\sqrt{1-\sigma^2} c_W^2}{\sqrt{1-\sigma^2} c_W^2} & 0 \\ 0 & \frac{\sigma s_W}{\sqrt{1-\sigma^2} \sqrt{1-\sigma^2} c_W^2} & \frac{1}{\sqrt{1-\sigma^2} c_W^2} \end{pmatrix} \begin{pmatrix} \tilde{A}' \\ \tilde{Z}' \\ \tilde{X}' \end{pmatrix} ,$$

$$\begin{split} \mathcal{L}_{a} &= -\frac{1}{4}\tilde{X}_{\mu\nu}\tilde{X}^{\mu\nu} - \frac{1}{4}\tilde{A}_{\mu\nu}\tilde{A}^{\mu\nu} - \frac{1}{4}\tilde{Z}_{\mu\nu}\tilde{Z}^{\mu\nu} + \frac{1}{2}m_{Z}^{2}\frac{1-\sigma^{2}c_{W}^{2}}{1-\sigma^{2}}\tilde{Z}_{\mu}\tilde{Z}^{\mu} \\ &+ j_{em}^{\mu}(\frac{1}{\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{A}_{\mu} - \frac{\sigma^{2}s_{W}c_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{Z}_{\mu}) + j_{Z}^{\mu}(\frac{\sqrt{1-\sigma^{2}c_{W}^{2}}}{\sqrt{1-\sigma^{2}}}\tilde{Z}_{\mu}) \\ &+ j_{X}^{\mu}(\frac{-\sigma c_{W}}{\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{A}_{\mu} + \frac{\sigma s_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{Z}_{\mu} + \tilde{X}_{\mu}) , \\ \mathcal{L}_{b} &= -\frac{1}{4}\tilde{X}_{\mu\nu}'\tilde{X}'^{\mu\nu} - \frac{1}{4}\tilde{A}_{\mu\nu}'\tilde{A}'^{\mu\nu} - \frac{1}{4}\tilde{Z}_{\mu\nu}'\tilde{Z}'^{\mu\nu} + \frac{1}{2}m_{Z}^{2}\frac{1-\sigma^{2}c_{W}^{2}}{1-\sigma^{2}}\tilde{Z}_{\mu}'\tilde{Z}'^{\mu} \\ &+ j_{em}^{\mu}(\tilde{A}_{\mu}' - \frac{\sigma^{2}s_{W}c_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{Z}_{\mu}' - \frac{\sigma c_{W}}{\sqrt{1-\sigma^{2}}}\tilde{X}_{\mu}') \\ &+ j_{Z}^{\mu}(\frac{\sqrt{1-\sigma^{2}c_{W}^{2}}}{\sqrt{1-\sigma^{2}}}\tilde{Z}_{\mu}') + j_{X}^{\mu}(\frac{\sigma s_{W}}{\sqrt{1-\sigma^{2}}c_{W}'}\tilde{Z}_{\mu}' + \frac{1}{\sqrt{1-\sigma^{2}}c_{W}^{2}}\tilde{X}_{\mu}') . \end{split}$$

Which one to choose?

If dark photon is massive, easy to identify

X has a mass to start with: (1/2) $m_{\chi^2} X^{\mu} X_{\mu}$

Example: get a mass from the vev of a scalar S with $U(1)_X$ charge but not charge with SM charges.

$$\begin{array}{ll} Case \ a): & \frac{1}{2}m_X^2(\frac{-\sigma c_W}{\sqrt{1-\sigma^2 c_W^2}}\tilde{A}_{\mu} + \frac{\sigma s_W}{\sqrt{1-\sigma^2}\sqrt{1-\sigma^2 c_W^2}}\tilde{Z}_{\mu} + \tilde{X}_{\mu})^2 \ , \\ Case \ b): & \frac{1}{2}m_X^2(\frac{\sigma s_W}{\sqrt{1-\sigma^2}\sqrt{1-\sigma^2 c_W^2}}\tilde{Z}_{\mu}' + \frac{1}{\sqrt{1-\sigma^2 c_W^2}}\tilde{X}_{\mu}')^2 \ . \end{array}$$

Case b) is more convenient to use, because tilde-A' already the physical massless photon, tilde-Z' and tilde X' mixing with each other

$$\begin{pmatrix} \frac{m_Z^2(1-\sigma^2 c_W^2)^2 + m_X^2 \sigma^2 s_W^2}{(1-\sigma^2)(1-\sigma^2 c_W^2)} & \frac{m_X^2 \sigma s_W}{\sqrt{1-\sigma^2}(1-\sigma^2 c_W^2)} \\ \frac{m_X^2 \sigma s_W}{\sqrt{1-\sigma^2}(1-\sigma^2 c_W^2)} & \frac{m_X^2}{1-\sigma^2 c_W^2} \end{pmatrix}, \qquad \begin{pmatrix} Z^m \\ X^m \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \tilde{Z}' \\ \tilde{X}' \end{pmatrix} \\ \tan(2\theta) = \frac{2m_X^2 \sigma s_W \sqrt{1-\sigma^2}}{m_Z^2(1-\sigma^2 c_W^2)^2 - m_X^2[1-\sigma^2(1+s_W^2)]}.$$

Inconvenient to work with a) although finally one will reach the same interactions

For massless dark photon, much less stringent!

What above massless dark photon?

More complicated!

Photon and dark photon are both massless, degenerate!

They can be rotated into each other by an orthogonal transformation $(\sqrt{1-\sigma^2 c^2})$

$$\begin{pmatrix} \tilde{A}'\\ \tilde{X}' \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \sigma^2 c_W^2} & \sigma c_W \\ & \\ -\sigma c_W & \sqrt{1 - \sigma^2 c_W^2} \end{pmatrix} \begin{pmatrix} \tilde{A}\\ \tilde{X} \end{pmatrix}$$

Which one is the photon and dark photon! Cannot be decided by looking at their masses.

In fact, any rotation from case b)

is as good as any other ones
$$\begin{pmatrix} \tilde{A}'\\ \tilde{X}' \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta}\\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \bar{A}'\\ \bar{X}' \end{pmatrix}$$
, $\tilde{Z}' = \bar{Z}'$

$$\begin{split} \mathcal{L}_{\bar{b}} &= -\frac{1}{4} \bar{X}'_{\mu\nu} \bar{X}'^{\mu\nu} - \frac{1}{4} \bar{A}'_{\mu\nu} \bar{A}'^{\mu\nu} - \frac{1}{4} \bar{Z}'_{\mu\nu} \bar{Z}'^{\mu\nu} + \frac{1}{2} m_Z^2 \frac{1 - \sigma^2 c_W^2}{1 - \sigma^2} \bar{Z}'_{\mu} \bar{Z}'^{\mu} \\ &+ \left((c_{\beta} + \frac{\sigma c_W}{\sqrt{1 - \sigma^2} c_W^2} s_{\beta}) j_{em}^{\mu} - s_{\beta} \frac{1}{\sqrt{1 - \sigma^2} c_W^2} j_X^{\mu} \right) \bar{A}'_{\mu} \\ &+ \left(\frac{\sqrt{1 - \sigma^2} c_W^2}{\sqrt{1 - \sigma^2}} j_Z^{\mu} - \frac{\sigma^2 s_W c_W}{\sqrt{1 - \sigma^2} \sqrt{1 - \sigma^2} c_W^2} j_{em}^{\mu} + \frac{\sigma s_W}{\sqrt{1 - \sigma^2} \sqrt{1 - \sigma^2} c_W^2} j_X^{\mu} \right) \bar{Z}'_{\mu} \\ &+ \left(\frac{1}{\sqrt{1 - \sigma^2} c_W^2} c_{\beta} j_X^{\mu} + (s_{\beta} - \frac{\sigma c_W}{\sqrt{1 - \sigma^2} c_W^2} c_{\beta}) j_{em}^{\mu} \right) \bar{X}'_{\mu} \,. \end{split}$$

For case b), $\beta = 0$

For case a) $s_{\beta} = \sigma c_W, \ \bar{A}' = \tilde{A} \ \text{and} \ \bar{X}' = \tilde{X}$

The final physical observable should be β independent!!!

Dark photon effects in electroweak interactions

Let us first look at the EM interactions alone.

A physical process include how the process occur how the results are detected Photon or dark photon can affect observable

involve EM interaction must be proportional to

 j^{μ}_{em} X----- $g_{\mu\nu}$ (due to A, X exchange)-----j^{\upsilon}_{em}

Exchange A:
$$e^2 R_A$$

 $R_A = \left(c_{\beta} + \frac{\sigma \bar{c}_W}{\sqrt{1 - \sigma^2 c_W^2}} s_{\beta}\right)^2$
Exchange X: $e^2 R_X$
 $R_X = \left(s_{\beta} - \frac{\sigma \bar{c}_W}{\sqrt{1 - \sigma^2 c_W^2}} c_{\beta}\right)^2$

Total:
$$e^{2}(R_{A} + R_{X}) = e^{2}/(1-\sigma^{2}C_{w}^{2})$$

Normalize the electric charge: $\bar{e} = e/\sqrt{1 - \sigma^2 c_W^2}$

No other observable effects!

Example: g-2 of leptons No observable effects!

$$a_{\mu,X}^{\gamma} = R_X \frac{\alpha}{2\pi}, \quad R_X = \left(s_{\beta} - \frac{\sigma c_W}{\sqrt{1 - \sigma^2 c_W^2}} c_{\beta}\right)^2,$$

$$a_{\mu,A}^{\gamma} = R_A \frac{\alpha}{2\pi}, \quad R_A = \left(c_{\beta} + \frac{\sigma c_W}{\sqrt{1 - \sigma^2 c_W^2}} s_{\beta}\right)^2.$$

$$\mu = \left(c_{\beta} + \frac{\sigma c_W}{\sqrt{1 - \sigma^2 c_W^2}} s_{\beta}\right)^2.$$

 $a_{\mu,\text{total}}^{\gamma} = (R_X + R_A) \frac{\alpha}{2\pi} = \frac{1}{1 - \sigma^2 c_W^2} \frac{\alpha}{2\pi} = \frac{\bar{\alpha}}{2\pi}, \quad \bar{\alpha} = \bar{e}^2 / 4\pi = \alpha / (1 - \sigma^2 c_W^2)$ This amounts to redefine $\bar{j}_{em}^{\mu} = (\bar{e}/e) j_{em}^{\mu}$. EM interaction for an SM particle can all be absorbed into $\bar{e} = e / \sqrt{1 - \sigma^2 c_W^2}.$

 $a_{\mu,\text{total}}^{\gamma_D} = -\sigma c_W \bar{\alpha}/2\pi$ under the influence of a non-zero $X_{\mu\nu}$.

What about weak interaction? No observable effects!

$$\begin{split} &-\frac{1}{4}\bar{Z}'_{\mu\nu}\bar{Z}'^{\mu\nu}+\frac{1}{2}m_{Z}^{2}\frac{1-\sigma^{2}c_{W}^{2}}{1-\sigma^{2}}\bar{Z}'_{\mu}\bar{Z}'^{\mu} \\ &+\left(\frac{\sqrt{1-\sigma^{2}c_{W}^{2}}}{\sqrt{1-\sigma^{2}}}j_{Z}^{\mu}-\frac{\sigma^{2}s_{W}c_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}j_{em}^{\mu}+\frac{\sigma s_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}j_{X}^{\mu}\right)\bar{Z}'_{\mu} \end{split}$$

No modifications on W interactions and W mass.

$$\begin{array}{lll} \text{Modify Z mass:} &: \end{multiplicative} \overline{m}_Z^2 = m_Z^2 (1\!+\!z) & z = \sigma^2 s_W^2 / (1 - \sigma^2). \\ \text{On-shell mass scheme} & \overline{c}_W^2 \equiv \cos^2 \bar{\theta}_W = c_W^2 / (1 + z) \\ & \overline{s}_f^2 = s_W^2 \big[1 + \sigma^2 c_W^2 / (1 - \sigma^2 c_W^2) \big] = \overline{s}_W^2 \\ \hline{j}_{em}^\mu = \bar{e} Q_f \bar{f} \gamma^\mu f \;, \end{multiplicative} f \;, \end{multiplicative} \frac{g}{2\sqrt{2}} \bar{f}^u \gamma^\mu (1 - \gamma_5) f^d \;, \end{multiplicative} \frac{g_Z}{2} \bar{f} \gamma^\mu (\bar{g}_V^f - \bar{g}_A^f \gamma^5) f \;, \\ g_Z = 2 (\sqrt{2} G_F \bar{m}_Z^2)^{1/2}. & \rho \; \text{parameter} \; \rho = \frac{|g_Z^2 / \bar{m}_Z^2}{g^2 / \bar{m}_W^2} = 1 \;. \\ \hline{g}_A^f = I_f^3 \;, \end{multiplicative} \frac{g_Z}{2} \bar{f}_X^{\mu} = (I_f^3 - 2Q_f \bar{s}_f^2) & \rho \; \text{parameter} \; \rho = \frac{|g_Z^2 / \bar{m}_W^2}{g^2 / \bar{m}_W^2} = 1 \;. \end{array}$$

Where can massless dark photon be observed?

Minicharged particle

$$\begin{aligned} \mathcal{L}_{a} &= -\frac{1}{4}\tilde{X}_{\mu\nu}\tilde{X}^{\mu\nu} - \frac{1}{4}\tilde{A}_{\mu\nu}\tilde{A}^{\mu\nu} - \frac{1}{4}\tilde{Z}_{\mu\nu}\tilde{Z}^{\mu\nu} + \frac{1}{2}m_{Z}^{2}\frac{1-\sigma^{2}c_{W}^{2}}{1-\sigma^{2}}\tilde{Z}_{\mu}\tilde{Z}^{\mu} \\ &+ j_{em}^{\mu}(\frac{1}{\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{A}_{\mu} - \frac{\sigma^{2}s_{W}c_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{Z}_{\mu}) + j_{Z}^{\mu}(\frac{\sqrt{1-\sigma^{2}c_{W}^{2}}}{\sqrt{1-\sigma^{2}}}\tilde{Z}_{\mu}) \\ &+ j_{X}^{\mu}(\frac{-\sigma c_{W}}{\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{A}_{\mu} + \frac{\sigma s_{W}}{\sqrt{1-\sigma^{2}}\sqrt{1-\sigma^{2}c_{W}^{2}}}\tilde{Z}_{\mu} + \tilde{X}_{\mu}) , \end{aligned}$$

Effective minicharged particle: example $j_X^{\mu} = g_X \bar{f}_{\chi} \gamma^{\mu} f_{\chi}$

 $j_X^{\mu}(-\sigma c_W/\sqrt{1-\sigma^2 c_W^2})\bar{A}_{\mu} = (\bar{j}_X^{\mu}/\bar{g}_x)(\bar{e}Q_{\chi})\bar{A}_{\mu} \text{ with } Q_{\chi} = -\sigma c_W \bar{g}_X/\bar{e}.$

Lamb shift

 10^{0}

10⁻¹

10-2

10-3

Ψ

FIG. 2: Vacuum polarization diagrams contributing to and Lamb shift (left) and muon g-2 (right) in the presence of millicharged particles. The cross vertex denotes the external source.

Lamb shift between the levels of $2S_{1/2}$ and $2P_{1/2}$ of hydrogen atom

$$\begin{split} \delta E &= -\epsilon^2 \frac{4\bar{\alpha}^3 m_e}{3\pi} \alpha^{*2} I(\alpha^*), \qquad \qquad a_{\mu}^{2\text{-loop}} = \epsilon^2 A_2 \left(\frac{m_{f_{\chi}}}{m_{\mu}}\right) \\ I(\alpha^*) &= \int_1^\infty du(1 + \frac{1}{2u^2}) \frac{\sqrt{u^2 - 1}}{(\alpha^* + 2u)^4} \qquad \qquad A_2(x) = \frac{\alpha^2}{\pi^2} \int_0^1 du \int_0^1 dv \frac{u^2(1 - u)v^2(1 - v^2/3)}{u^2(1 - v^2) + 4x^2(1 - u)} \end{split}$$

M. Gluck, S. Rakshit and E. Reya, arXiv:hep-ph/0703140 H.H. elend, Phys. Letts. 20, 682(1966)

(g−2)_µ

Where can massless dark photon be observed?

- A process involve only SM particles, and detected by electroweak interactions, no observable!
- To feel effect massless dark photon effects, J_X information must be used. => missing energy E_T

Example: $h, pp \to \gamma\gamma, \gamma\gamma_D$ and $\gamma_D\gamma_D$.

• j_{em}^2 : diphoton $(\gamma \gamma)$;

• j_X^2 : E_T .

$$pp, h \rightarrow \gamma \gamma \ e^4(2R_A \times R_X + R_A \times R_A + R_X \times R_X) = \left(\frac{e^2}{1 - \sigma^2 c_W^2}\right)^2$$

 $\bar{e} = e/\sqrt{1 - \sigma^2 c_W^2} \ \beta \text{ independent. The same as SM!}$

$$\frac{B_{\gamma\gamma_D}}{B_{\gamma\gamma}} = 4\sigma^2 c_W^2 , \quad \frac{B_{\gamma_D\gamma_D}}{B_{\gamma\gamma}} = \sigma^4 c_W^4 .$$

 $h \to \gamma \not \! E_T$

Can reach 0.1% at HLLHC $|\sigma|$ can be constrained to be less than 0.24 at 90% CL

- Dark photon can be enlightened by kinetic mixing and have interesting consequences.
- What is a dark photon, easily determined, by mass eigenstates, but for massless dark photon care should be taken to distinguish a dark photon and a photon
- Massless dark photon has no observable effect in processes involve only SM particles
- Massless dark photon needs to know how it interacts with visible world to know effect of kinetic mixing.

h -> $\gamma \gamma_D$ is a good process to search for such effects.

2. e⁺e⁻ Collider Detection of Dark Photon

M. He, X-G He, C-K Huang, Int. J. Mod. Phys. A32(2017)1750138

M He, X-G he, C-K Huang, G Li, JHEP 1803(2018)139

$$\frac{d\sigma_{e^+e^- \to \gamma A' \to \gamma \mu^+ \mu^-}}{d\sigma_{e^+e^- \to \gamma \gamma^* \to \gamma \mu^+ \mu^-}}|_{m_{\mu\mu} \sim m_{A'}} \sim \epsilon^4 \frac{m_{\mu\mu}^4}{(m_{\mu\mu}^2 - m_{A'}^2)^2 + \Gamma_{A'}^2 m_{A'}^2}$$

Naïve expectation
$$\begin{aligned} \frac{s}{B_{em-background}} \sim \epsilon^4 \frac{\pi}{8} \frac{m_{A'}^2}{\Gamma_{A'} \sigma_{\mu\mu}} ,\\ \Gamma_{A'->f\bar{f}} = \frac{\epsilon^2}{3} Q_f^2 \alpha_{em} m_{A'} (1+2\frac{m_f^2}{m_{A'}^2}) \sqrt{1-\frac{4m_f^2}{m_{A'}^2}} \end{aligned}$$

Integrate dimuon energy range $|m_{\mu\mu} - m_{A'}| < 2\sigma_{\mu\mu}$

With some physical cuts

Basic cuts $|\eta_{\mu^{\pm},\gamma}| < 3$, $E_{\gamma} > 2$ GeV, $\Delta R_{ij} > 0.2$, $\Delta m_{\mu^{+}\mu^{-}} < 10$ GeV, CEPC

$$\frac{\Delta p_T}{p_T} = 0.1\% \oplus \frac{p_T}{10^5 \text{ GeV}} \text{ for } |\eta| < 1.0 \text{ and } 10 \text{ times larger for } 1.0 < |\eta| < 3.0;$$

$$\frac{\Delta E}{E} = \frac{0.20}{\sqrt{E/\text{GeV}}} \oplus 0.5\%. \text{ for } |\eta| < 3.0.$$

FCC-ee

$$\begin{aligned} \frac{\Delta p_T}{p_T} &= 0.1\% \oplus \frac{p_T}{10^5 \text{ GeV}} \text{ for } |\eta| < 1.0 \text{ and } 10 \text{ times larger for } 1.0 < |\eta| < 2.4; \\ \frac{\Delta E}{E} &= \frac{0.15}{\sqrt{E/\text{GeV}}} \oplus 1\%. \text{ for } |\eta| < 3.0. \end{aligned}$$

Sensitivities at various e⁺e⁻ colliders

CEPC may have advantage probing dark photon at 10 to a few 10s ($<<m_z$) GeV mass range.

3. Dark Photon From Non-Abelian Kinetic Mixing

Naively, not possible to have Abelian-No-Abelian

Kinetic mixing, w_w x_w, is not gauge invariant!

Assuming that there is a field Δ^a transforming as 3 under SU(2)_W, then one can make gauge singlet: $W^a_{\mu\nu} X^{\mu\nu} \Delta^a$

If the VEV of $<\Delta^a > = v_3/sqrt(2)$ along a particular direction in group space is not zero, one can generate kinetic mixing term

 $W_{\mu\nu}^{3} X^{\mu\nu} v_{3}/sqrt(2)$

Problem: not renormalizable.

If one gives up renormalizability one can write higher order operators to generate abelian and non-abelian gauge fields mixing!

In fact in the SM, one can generate such a mixing between SU(2) $_{\rm L}$ and U(1) $_{\rm Y}$

 $W^{a}_{\mu\nu} X^{\mu\nu} (H^{+} \tau^{a} H)$

Here H is the usual SM doublet!

Possible to have kinetic mixing between ablian and non-abelian gauge fields.

J. Cline and A. Frey, arXiv: 1408.0233; G. Barello abd s. Chang, PRD94(2016)055018 C. Arguelles, X-G He, G. Ovanesyan, T Peng, M Ramsey-Musolf, PLB770(2017)101₃₄ UV completion of kinetic mixing of Abeliand-NonAbelian gauge field?

Yes, they can be generated at loop level starting from a renormalizable theory.

The particle in the loop carry both abelian and nonabelian charges. W^{a}

One can even talking about SU(N) and SU(m) kinetic mixing

$$W^{a}_{\mu\nu} Y^{b\mu\nu} \Delta_{ab}$$

Kinetic mixing between an Abelian and a non-Abelian fields should be very common when going beyond SM.

A triplet Δ^a (0,3,0) and W-B mixing

C. Arguelles, X-G He, G. Ovanesyan, T Peng, M Ramsey-Musolf, PLB770(2017)101

 $SU(2)_W = SU(2)_L, U(1)_X = U(1)_Y$

$$L_{k-mixing} = -\frac{1}{2} \alpha \frac{v_{\Delta}/\sqrt{2}}{\Lambda} B^{0,\mu\nu} W^{3,0}_{\mu\nu} \qquad m_W^2 = (m_W^0)^2 \left(1 + 4\frac{v_{\Delta}^2}{v^2}\right)$$
$$= -\frac{1}{2} \epsilon \left(s_W c_W A^0_{\mu\nu} A^{0,\mu\nu} - s_W c_W Z^0_{\mu\nu} Z^{0,\mu\nu} + (c_W^2 - s_W^2) A^0_{\mu\nu} Z^{0,\mu\nu}\right)$$

Analysis the effects through S,T, U parameters

$$\begin{split} \Delta L_{eff} &= -\frac{A}{4} A^{0}_{\mu\nu} A^{0,\mu\nu} - \frac{B}{2} W^{+0}_{\mu\nu} W^{-0,\mu\nu} - \frac{C}{4} Z^{0}_{\mu\nu} Z^{0,\mu\nu} + \frac{G}{2} A^{0}_{\mu\nu} Z^{0,\mu\nu} \\ &+ w (m^{0}_{W})^{2} W^{+,0}_{\mu} W^{-,0,\mu} + \frac{z}{2} (m^{0}_{Z})^{2} Z^{0}_{\mu} Z^{0\mu} , \\ A &= 2s_{W} c_{W} \epsilon , \quad B = 0 , \quad C = -2s_{W} c_{W} \epsilon , \quad G = -(c^{2}_{W} - s^{2}_{W}) \epsilon , \quad w = 4 \frac{v^{2}_{\Delta}}{v^{2}} , \quad z = 0. \\ &\alpha S = 4s^{2}_{W} c^{2}_{W} \left(A - C - \frac{c^{2}_{W} - s^{2}_{W}}{s_{W} c_{W}} G \right) = 4s^{2}_{W} c^{2}_{W} \left(4s_{W} c_{W} + \frac{(c^{2}_{W} - s^{2}_{W})^{2}}{s_{W} c_{W}} \right) \epsilon , \\ &\alpha T = w - z = 4 \frac{v^{2}_{\Delta}}{v^{2}} , \\ &\alpha U = 4s^{4}_{W} \left(A - \frac{1}{s^{2}_{W}} B + \frac{c^{2}_{W}}{s^{2}_{W}} C - 2 \frac{c_{W}}{s_{W}} G \right) = 0 . \end{split}$$

Some phenomenological implications

 $\mathcal{O}_{WX}^{(5)} = -\frac{\beta}{\Lambda} \operatorname{Tr} \left(W_{\mu\nu} \Sigma \right) X^{\mu\nu}$

$$\epsilon = \beta \sin \theta_W \left(\frac{v_{\Sigma}}{\Lambda}\right)$$

\varepsilon is naturally small!

FIG. 1: Bound on abelian mixing parameter ϵ (left) and non-abelian mixing parameter ϵ_{WX} (right).

Figure 4. Branching ratios for H^+ decays as a function of β/Λ (bottom horizontal axis) and ϵ (upper horizontal axis) for $m_X = 0.4$ GeV. The top (bottom) row corresponds to $v_{\Sigma} = 1$ GeV ($v_{\Sigma} = 10^{-3}$ GeV), while the left (right) column corresponds to $m_{H^+} = 130$ GeV ($m_{H^+} = 130$ GeV). The solid black line indicates the branching ratio for $H^+ \rightarrow W^+X$. Branching ratios for other final states are as indicated by the legend insert.

Figure 5. Constraints on triplet-assisted non-abelian kinetic mixing, recast from the ATLAS search reported Ref. [12]. The left panel gives the exclusion in the $(c\tau, \sigma \times BR)$ plane, where the region above the parabola is excluded. The diagonal lines indicate the dependence of $\sigma \times BR$ on $c\tau$ for different representative choices of v_{Σ} . The right panel gives the exclusion region in the $(v_{\Sigma}, \Lambda/\beta)$ plane for $m_X = 0.4$ GeV (red region) and $m_X = 1.5$ GeV (yellow region).

Kinetic mixing can also be induced for abelian and non-abelian gauge particles

Effects can be searched at colliders

4. CP Violating Kinetic Mixing

CP violating kinetic mixing allowed?

K Fuyuto, X-G He, G. Li, M Ramsey-Musolf arXiv:1902.10340

For Abelian kinetic mixing

 $Y^{\mu\nu}X_{\mu\nu}, \qquad \text{CP conserving} \\ Y^{\mu\nu}\tilde{X}_{\mu\nu}, \text{with } \tilde{X}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}X^{\alpha\beta}, \text{ CP violating} \\ \text{But} \\ Y^{\mu\nu}\tilde{X}_{\mu\nu} = -\epsilon_{\mu\nu\alpha\beta}\partial^{\alpha}(Y^{\mu\nu}X^{\beta})$

It is a total derivative, can be dropped off. No physical effects.

For Non-Abelian kinetic mixing $Tr(W_{\mu\nu}\Sigma)\tilde{X}^{\mu\nu}/\Lambda \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^{0} & \sqrt{2}\Sigma^{+} \\ \sqrt{2}\Sigma^{-} & -\Sigma^{0} \end{pmatrix}$ $(x_{0} + \Sigma^{0})\tilde{X}^{\mu\nu}W^{+}_{\mu}W^{-}_{\nu} \qquad x_{0} \text{ vev of } \Sigma_{0}$

Allowed! There are physical effects.

A model study

$$\mathcal{L}^{(d=5)} = -\frac{\beta}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] X^{\mu\nu} - \frac{\tilde{\beta}}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] \tilde{X}^{\mu\nu} \\ \mathcal{L}^{(d=5)} \supset -\frac{1}{2} \left(\alpha_{ZX} Z_{\mu\nu} X^{\mu\nu} + \alpha_{AX} F_{\mu\nu} X^{\mu\nu} \right) \\ - \frac{\tilde{\beta}}{2\Lambda} \tilde{X}^{\mu\nu} \left[s_W F_{\mu\nu} \Sigma^0 - ig_2 (x_0 + \Sigma^0) \left(W^-_{\mu} W^+_{\nu} - W^+_{\mu} W^-_{\nu} \right) \right] \\ V(H, \Sigma) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 - \frac{M_{\Sigma}^2}{2} F + \frac{b_4}{4} F^2 + a_1 H^{\dagger} \Sigma H + \frac{a_2}{2} H^{\dagger} H F, \\ \alpha_{ZX}(AX) = \beta x_0 c_W(s_W) / \Lambda \\ \mathsf{F} = \operatorname{Tr}(\Sigma^+ \Sigma). \qquad \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ \Sigma^0 \end{pmatrix} \\ H = (\phi^+, \ (h + i\phi^0) / \sqrt{2}) \end{cases}$$

a₁ breaks CP explicitly, x₀ breaks CP spontaneously

Physical effects
EDM:
$$\mathcal{L}^{\text{EDM}} = -\frac{i}{2} d_f \bar{f} \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu}.$$

 $d_f = \frac{e}{8\pi^2} \frac{m_f}{v} c_\theta s_\theta \Big[C_Z V_Z^f f(r_{ZH_1}, r_{ZH_2}) + C_X V_X^f f(r_{XH_1}, r_{XH_2}) \Big] \int_{f} \frac{\gamma}{\sqrt{f}} \int_{f} f^{H_1, H_2} \int_{f} f^{H_2} \int_{f} f^{H_1, H_2} \int_{f} f^{H_2} \int_{f} f^{H_2} \int_{f} f^{H_1, H_2} \int_{f} f^{H_2} \int_{f$

FIG. 2: The electron, proton and neutron EDMs against the mixing parameter $\sin \theta$. It is taken that $\beta x_0 \Lambda = \tilde{\beta} x_0 \Lambda = 2 \times 10^{-3}$, $m_X = 20$ GeV and $m_H = 200$ GeV.

We also tried to study collider signature: Jet correlations probe effects of $(x_0/\Lambda) \tilde{X}^{\mu\nu} W^+_\mu W^-_
u$

$$\mathcal{A} = \frac{\sigma(\sin \Delta \phi_{jj} > 0) - \sigma(\sin \Delta \phi_{jj} < 0)}{\sigma(\sin \Delta \phi_{jj} > 0) + \sigma(\sin \Delta \phi_{jj} < 0)}$$

$$\Delta \phi_{jj} = \phi_{j_1} - \phi_{j_2},$$

$$\phi_{j_1} \text{ and } \phi_{j_2} \text{ are the azimuthal angles of the jets}$$
in the forward and backward regions of the detector,

$$0 \le \Delta \phi_{jj} \le \pi \text{ and } -\pi \le \Delta \phi_{jj} \le 0$$

 V^*

Unfortunately, although at parton level, the asymmetry can be large, but the back ground is to large, very chllenging to observe it experimentally.

-X

q

- CP violating kinetic mixing can be induced for abelian and non-abelian gauge particles.
- Effects can be searched by studying EDM of fundamental particles.
- Study of the CP violation effects are challenging at colliders.

Dark Photon can be enlightened by kinetic mixing

Yet to find any signal !

Workshop on Fractional Charge Particles, Monopoles, and Dark Photon

from 31 May 2019 to 1 June 2019 Tsung-Dao Lee Institute Asia/Shanghai timezone

https://indico.leeinst.sjtu.edu.cn/event/54/overview