Search for Extra Scalars Model-independently at the ILC

Yan Wang (IHEP)

14th workshop on TeV Physics, Nanjing

April 20, 2019

The SM-like scalar H^{125} was found in 2012: \Rightarrow the real SM Higgs?

Theoretical:

Many BSMs predict one or more extra scalars.

2HDM, NMSSM, Randall Sundrum model ...

- * many models.
- * many parameters.
- * very weak couplings

Experimental:

LHC/LEP(*) constraints rely on the model details:

CP, mass hierarchy, couplings, etc.

precise constraints are necessary.

We want a better result!

LEP results (CERN-EP-2002-032):

- the OPAL detector
- Decay-mode independent searches for new scalar bosons
- energy & luminosity:
 - 91.2 GeV and 0.115 fb⁻¹ at LEP1
 - 161 to 202 GeV and 0.662 fb⁻¹ at LEP2.
- extra higgs mass: 10 keV 100 GeV

$$\blacktriangleright k = \frac{\sigma_{SZ}}{\sigma_{H_{\mathsf{SM}}Z}(m_{H_{SM}} = m_S)}$$

comparing with LEP: ILC is sensitive to extra scalars with smaller SZZ coupling.

	LEP	ILC	improvement
max \sqrt{s} (GeV)	189-209	250 and 500	
m_h region (GeV)	<115	<160 and $<$ 410	
luminosity	totally ${\sim}2.5~{\rm fb}^{-1}$	2000 fb $^{-1}$ and 4000 fb $^{-1}$	recoil mass
polarization	×	\checkmark	angle correlation
detector e.g. σ_{1/p_T}	$6\times 10^{-4}{\rm GeV}^{-1}$	$2\times 10^{-5}{\rm GeV}^{-1}$	resolution
search channels	$2b2q, 2b2\nu, 2b2l, \tau \tau qq$	model independent	

Phys.: Conf. Ser. 110 042030

comparing with LHC

- \blacktriangleright LHC, complex initial states and backgrounds, $S \to \gamma \gamma / Z Z...$ channel, large uncertanties.
- > ILC, e^+e^- well known initial states, clean environment, model-independent.

The Recoil Method on SM Higgs at ILC

 e^+e^- collider \rightarrow know the initial states behaviour \rightarrow recoil technique \rightarrow model independence

Yan Wang | Searching for extra scalars at the ILC | April 20, 2019 | 5/16

Principle: using the smallest amount of information of S decay.

- a pair of isolated muon, with opposite charges.
- ▶ ISR photons may undermine *S* recoil distribution.

Signal and backgrounds

The signal production:

The signal decay \Rightarrow same as SM H^{125} .

The background MC samples:

- 1. 2-fermion
 - leptonic/bhabha/hadronic
- 2. 4-fermion leptonic/semi-lepton/hadronic

The signal MC samples

- The signal MC samples @ ILC@250
 - $M_h = 10, 15, 20, ..., 160 \text{ GeV},$
 - polarization ratio: (45%, 45%, 5%, 5%).
- The signal MC samples @ ILC@500
 - $M_h = 10, 20, ..., 410 \, \text{GeV},$
 - polarization ratio: (40%, 40%, 10%, 10%).

- 3. 6-fermion $t\bar{t}$, llWW, qqWW...
- 4. SM Higgs, (125 GeV)
- 5. $\gamma\gamma$ backgrounds

full ILD (International Large Detector Simulation)

c.f. Mon 16:30 pm, J.List

- optimized for particle flow
- Momentum resolution: $\sigma_{1/p_T} < 2 * 10^{-5} \, \mathrm{GeV}^{-1}$
- excellent tracking and calorimeter performance

(arXiv:1306.6327, ILC TDR)

tracking performance

calorimeter performance

Yan Wang | Searching for extra scalars at the ILC | April 20, 2019 | 8/16

Analysis flow

Yan Wang | Searching for extra scalars at the ILC | April 20, 2019 | 9/16

Recoil Mass Distribution at 250 GeV

different M_h .

Yan Wang | Searching for extra scalars at the ILC | April 20, 2019 | 10/16

same definition k_{95} with OPAL, exclusion limits with the likelihood method for $\frac{\sigma_{SZ}}{\sigma_{H_{\rm SM}Z}(m_{H_{SM}}=m_S)}$

The ILC theoretical prediction, extrapolated from the LEP measurements. P.Drechsel etc. arXiv:1801.09662

▶ 500 fb⁻¹, $P(e^-, e^+) = (-80\%, +30\%)$

- ▶ theoretical prediction combines $S\mu^+\mu^-$ and Se^+e^- channels.
- theoretical prediction doesn't include SM Higgs background.

Comparing with LEP \rightarrow 1-2 orders better than LEP

- ▶ 2000 fb⁻¹, ILC@250. $P(e^-, e^+) = (\pm 80\%, \pm 30\%).$
- ILC recoil: only $S\mu^+\mu^-$.
- ▶ LEP recoil: combine $S\mu^+\mu^-$ and Se^+e^- channels.
- ▶ ILC recoil: extrapolating to $S\mu^+\mu^-$ and Se^+e^- , and variable scalar width.

 Better ISR Photon Tagging: two cone method MVA(BDTG) analysis

Muons:

boost leptons in the effective center-ofmass reference frame

 Analysis: Two MVA signal, 2f

Extra scalars at 500 ILC \rightarrow Recoil Mass Distribution

- recoil mass distribution for different M_h.
- ► 4000 fb⁻¹, ILC@500. $P(e^{-}, e^{+}) =$ $(\pm 80\%, \pm 30\%).$

mass region	main backgrounds	
$M_{h} > 125$	$\mu^+\mu^-f\bar{f},\ \mu^+\mu^-H^{125},\ 6f$	
$125 > M_h > M_Z$	$\mu^{+}\mu^{-}f\bar{f}, \mu^{+}\mu^{-}H^{125}$	
$M_h \sim M_Z$	$\mu^+\mu^-f\bar{f}$,	
$M_Z > M_h > 40$	$\mu^{+}\mu^{-}, \mu^{+}\mu^{-}$	
$40 > M_{h}$	$\mu^+\mu^-$	

Extra scalars at 500 ILC \rightarrow Preliminary Exclusion Limits

An extra scalar is favored in many BSM models

- 2HDM, NMSSM, RS ...
- A model-independent analysis has been performed for $\mu\mu S$ channel.
 - ▶ mass range [10, 160) GeV, 2000 fb⁻¹, when $\sqrt{s} = 250$ GeV.
 - mass range [10, 410) GeV, 4000 fb⁻¹, when $\sqrt{s} = 500$ GeV.
- Sensitivities for k₉₅ (cross section scale factor) are given
 - 1-2 orders of magnitude more sensitive than LEP
 - covering new phase spaces

Backup Slides

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- General Two Higgs Doublet Model (2HDM...)
 with 2 scalars: h, H, 1 pheudoscalar A, 2 charged particles
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 with 3 scalars: h1, h2, h3, 2 pheudoscalars A1, A2, 2 charged particles
- Randall Sundrum model
 - a radion

In these models, an extra scalar is well motivated.

LHC Higgs boson rather SM-like \rightarrow new higgs coupling to Z boson strongly suppressed. Could we find it at the ILC?

LEP SM Higgs searches: constrain other extra scalars, whose properties, especially decay profile, are similar as SM higgs's.

LEP/LHC constraints rely on the model details: CP, mass hierarchy, couplings, etc. JHEP 12 (2016) 068

2HDM, Type I: $tan\beta > 1.2$, $m_A > 60$ GeV, $m_{H^{\pm}} > 80$ GeV ...

ILC run plan

▶ totally 22 years ▶ (-+,+-,--,++) = (45\%,45\%,5\%,5\%) polarization scenario

ILD (International Large Detector)

and full simulation of Signal and SM Background

- new trackers, calorimeters, 3.5T magnetic field, yoke for muon, forward system
- Requirements:
 - Impact parameter resolution: $\sigma_{r\phi} < 5 \oplus 10/(p \ sin^{3/2}\theta)\mu m$
 - Momentum resolution: $\sigma_{1/p_T} < 2*10^{-5}\,{\rm GeV}^{-1}$
 - Energy resolution: $\sigma_E/E = 3 4\%$

The generator and simulation software

- WHIZARD 1.95 + Pythia 6
- ILCSoft-01-17-09 (Mokka) + ILD detector concept

The background MC samples:

- 2-fermion (2f^l,2f^h) leptonic/bhabha/hadronic
- 4-fermion (4f^l, 4f^{sl}, 4f^h) leptonic/semi-lepton/hadronic
- ▶ SM Higgs, *Higgs*₁₂₅
- $\gamma\gamma$ backgrounds

- > 2 σ exclusion limits with a bin-by-bin comparison between the signal and backgrounds recoil mass histograms.
- ▶ the background-only hypothesis no new higgs in the investigated mass range.
- ▶ the signal-plus-background hypothesis the new higgs is assumed to be produced.
- a global test-statistic $X(m_h) = \mathcal{L}(s(m_h))/\mathcal{L}(0)$ is constructed to discriminate signal and background.
- ▶ the distributions of $X(m_h)$ are normalised to become probability density functions → integrated to be the confidence levels $CL_b(m_h)$ and $CL_{s+b}(m_h)$.
- ▶ the ratio $CL_s(m_h) = CL_{s+b}(m_h)/CL_b(m_h)$ is used to described that the signal confidence one might have obtained in the absence of background.

ISR photon veto

- There is photon return effects in 2f process.
- identify ISR photon by
 - ▶ ISR photon in the central region ($\cos\theta < 0.95$): $E_{central} > 100 \text{ GeV}$
 - ▶ ISR photon in the forward region $(0.95 < \cos\theta < 0.99)$: $E_{\text{forward}} > 60 \text{ GeV}$
 - lSR cone around photon axis: $\cos \alpha = 0.90$
 - Energy ratio inside the ISR photon cone: $\frac{E}{E_{\text{cone}}} = 0.95$

comparing LEP2 and my strategy for searching extra scalars

OPAL's strategy

- at least two opposite charged leptons
- ► isolation of lepton tracks, $\alpha_{iso}^1 > 15^\circ$, $\alpha_{iso}^2 > 10^\circ$
- ▶ find two best leptons $m_{ll} \sim m_Z$
- invariant mass of the lepton pair, $M_{\mu\mu} \in [81.2, 101.2] \text{ GeV}$
- $\blacktriangleright \ p_{ll}^Z > 50 \, \mathrm{GeV}$
- \blacktriangleright polar angle of missing momentum, $|\theta_{mis}|{<}0.95$ for $p_{mis}>5\,{\rm GeV}$
- acoplanarity
- ISR photon veto

my strategy

- at least two isolated muon, with IsolatedLeptonTagging Processor
- ▶ find two best leptons, $m_{ll} \sim m_Z$ and $m_{rec} \sim m_h$
- Recovery of bremsstrahlung and FSR photons
- Reconstruct Z boson mass $M_{\mu\mu} \in [73, 120]$ GeV.
- ▶ 70 GeV > P_T^Z > 10 GeV
- ► the polar angle of the missing momentum, $|\theta_{mis}| < 0.98$, when $E_{mis} > 10 \text{ GeV}$
- ► MVA: $M_{\mu^+\mu^-}$, $cos(\theta_Z)$, $cos(\theta_{\mu^+\mu^-})$, $cos(\theta_{\mu^+})$, $cos(\theta_{\mu^-})$,acoplanarity

Yan Wang | Searching for extra scalars at the ILC | April 20, 2019 | 25/16

signal, 2f, $4f_l$, $4f_{sl}$

large detector, trained for 4f

