Consistency of Gauged Two Higgs Doublet Model: Gauge Sector

14th workshop on TeV Physics – NNU Nanjing Van Que Tran

Nanjing University

In collaboration with :

C.T. Huang, R. Ray, Y.L. Sming Tsai, T.C. Yuan

1

Challenges within SM

- What is origin of DM?
- \succ What is the origin of neutrino mass?, Why are they so light?
- Etc. \succ

Credit: symmetrymagazine.org

Rotation curve of spiral galaxy M33

Some interesting features of G2HDM

- \succ It was motivated by the iHDM of DM.
- Inert Higgs, DM candidate, is protected by the gauge invariance instead of ad-hoc Z₂ symmetry.
- > Neutrino has Dirac mass.
- > It is anomaly free and naturally absence of FCNC at tree level.
- >Unlike Left-Right symmetric models, the complex vector fields $W'^{(p,m)}$ are electrically neutral.

JHEP 1604 (2016) 019

Matter content

- ♦ H_1 , H_2 are embedded into $SU(2)_H$.
- * ϕ_H is introduced to gives a Dirac mass to heavy fermions.
- ◆ Triplet Higgs △_H VEV will contribute to the mass of charge Higgs mass.
- * $SU(2)_L$ doublet fermions are singlets under $SU(2)_H$, while $SU(2)_L$ singlet fermions pair up with heavy fermions as $SU(2)_H$ doublets.

Anomaly free!

Matter Fields	$SU(3)_C$	$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$
$H=\left(H_{1},H_{2} ight) ^{T}$	1	2	2	1/2	1
$\Phi_{H}=\left(\Phi_{1},\Phi_{2} ight)^{T}$	1	1	2	0	1
$\Delta_{H} = egin{pmatrix} \Delta_{3}/2 & \Delta_{p}/\sqrt{2} \ \Delta_{m}/\sqrt{2} & -\Delta_{3}/2 \end{pmatrix}$	1	1	3	0	0
$Q_L = \left(u_L , d_L ight)^T$	3	2	1	1/6	0
$U_R = \left(u_R , u_R^H ight)^T$	3	1	2	2/3	1
$D_R = \left(d_R^H , d_R ight)^T$	3	1	2	-1/3	-1
u_L^H	3	1	1	2/3	0
d_L^H	3	1	1	-1/3	0
$L_L = (u_L,e_L)^T$	1	2	1	-1/2	0
$N_R = \left(u_R , u_R^H ight)^T$	1	1	2	0	1
$E_R = \left(e_R^H,e_R ight)^T$	1	1	2	-1	-1
$ u_L^H$	1	1	1	0	0
e_L^H	1	1	1	-1	0

TABLE I, Matter field contents and their quantum number assignments in G2HDM. Huang, Tsai, Yuan <u>1708.02355</u>

4/20/19

Consistency of scalar sector

- Vacuum stability (VS),
- Perturbative unitarity (PU)
- Higgs boson mass
- Signal strengths of Higgs boson decays into diphoton and $\tau^+\tau^-$ from the LHC

A. Arhrib, W. C. Huang, R. Ramos, Y. L. S. Tsai & T. C. Yuan 1806.05632

Gauge sector

- > New gauge group: $SU(2)_H \otimes U(1)_X$
- The SM W bosons acquire a mass by eating the charged components of H_1 as in the SM since H_2 does not get VEV and other scalars (Φ_H and Δ_H) are neutral.

$$M_{W^{\pm}} = \frac{1}{2}gv \; ,$$

 \succ $SU(2)_H W'$ bosons receive a mass from all VEVs $\langle H_1 \rangle$, $\langle \Phi_2 \rangle$ and $\langle \Delta_3 \rangle$.

$$m_{W'^{(p,m)}}^2 = \frac{1}{4}g_H^2 \left(v^2 + v_{\Phi}^2 + 4v_{\Delta}^2\right),$$

Gauge sector

 $\succ \langle H_1 \rangle$ also gives mass to W'^3 and X boson because of their quantum number. Hence W'^3 and X mix with SM gauge boson W^3 and Y.

in the interaction basis of (B, W^3, W'^3, X) . Here $g_H(g_X)$ is the $SU(2)_H$ ($U(1)_X$) gauge coupling constant and v (v_{ϕ}) is VEV of H_1 (Φ_H). Their mass eigenstates are denoted as (A, Z, Z', Z'')

It turns out dark photon has massless which might not be phenomenologically desirable. One can use Stueckelberg Lagrangian to give mass for the dark photon. $\mathcal{L}_{\text{Stu}} = +\frac{1}{2} \left(\partial_{\mu} a + M_X X_{\mu} + M_Y B_{\mu} \right)^2$, B. Kors and P. Nath 2004, 2005

4/21/19

Parameter set-up

$$10^{-8} \le g_H \le g^{\text{SM}},$$

$$10^{-8} \le g_X \le g_1^{\prime \text{SM}},$$

 $5 \text{ TeV} \le v_{\Phi} \le 200 \text{ TeV}$,

 $M_Y = 0 .$

Heavy M_X : $M_X \in [0.1 : 10] (\text{TeV})$, Light M_X : $M_X \in [10^{-3} : 80] (\text{GeV})$.

LHC constraint

Direct Z' resonance search at the ATLAS and CMS 13 TeV.

$$m_{Z'}^2 \approx \frac{1}{4} g_H^2 \left(v^2 + v_{\Phi}^2 \right)$$

 $g_H = 0.1 \rightarrow v_\Phi > 50 \ TeV$

W. C. Huang, H. Ishida, C. T. Lu, Y. L. S. Tsai and T. C. Yuan 1708.02355

LEP+LHC constraints: Heavy M_X Scenario

- LHC gives the most stringent constraint on g_H and v_{ϕ} in case of W'^3 -like but not X-like.
- It turns out v_{ϕ} is very sensitive to LEP+LHC data constraints, v_{ϕ} > 23 TeV at 95% CL.

LEP+LHC constraints: Light M_X Scenario

• LHC gives the most stringent constraint on g_H and v_{ϕ} in both cases of W'^3 -like and X-like.

CEPC sensitivity

- CEPC puts a significant improvement on the lower bound of v_{ϕ} (45 TeV for heavy M_X scenario, 36 TeV for light M_X scenario at 95% CL).
- Heavy M_X scenario is more sensitive than light M_X scenario.

CEPC sensitivity

• New gauge couplings are not really sensitive at CEPC.

Conclusion

- G2HDM not only addresses to the DM but also neutrino mass issue.
- Without resorting to an ad-hoc Z_2 symmetry, an inert Higgs doublet H_2 can be naturally realized, providing a DM candidate.
- The constraints on the new parameters in the gauge sector of G2HDM is studied by using EWPT data collected from LEP at and off the Z-pole as well as current high-mass dilepton resonance search from the LHC.
- Projected sensitivities of the new parameters at the CEPC proposed to be built in China are also discussed.

Back up

Yukawa interaction

• SM quarks and lepton obtain their masses from the VEV of H1

$$\begin{split} \mathcal{L}_{\mathrm{Yuk}} \supset &+ y_d \bar{Q}_L \left(d_R^H H_2 - d_R H_1 \right)_{\mathrm{SM}} - y_u \bar{Q}_L \left(u_R \tilde{H}_1 + u_R^H \tilde{H}_2 \right) \\ &+ y_e \bar{L}_L \left(e_R^H H_2 - e_R H_1 \right)_{\mathrm{SM}} - y_\nu \bar{L}_L \left(\nu_R \tilde{H}_1 + \nu_R^H \tilde{H}_2 \right) + \mathrm{H.c.} , \\ &\mathrm{SM} \end{split}$$

Absence of FCNC interactions at tree level naturally!

Higgs potential

The most general Higgs potential which invariant under both $SU(2)_L \times U(1)_Y$ and $SU(2)_H \times U(1)_X$ can be written down as follows

$$V_T = V(H) + V(\Phi_H) + V(\Delta_H) + V_{\min}(H, \Delta_H, \Phi_H)$$

Where

$$\begin{split} V(H) &= \mu_{H}^{2} \left(H^{\alpha i} H_{\alpha i} \right) + \lambda_{H} \left(H^{\alpha i} H_{\alpha i} \right)^{2} + \frac{1}{2} \lambda_{H}^{\prime} \varepsilon_{\alpha \beta} \varepsilon^{\gamma \delta} \left(H^{\alpha i} H_{\gamma i} \right) \left(H^{\beta j} H_{\delta j} \right) \\ V(\Phi_{H}) &= \mu_{\Phi}^{2} \Phi_{H}^{\dagger} \Phi_{H} + \lambda_{\Phi} \left(\Phi_{H}^{\dagger} \Phi_{H} \right)^{2} \\ V(\Delta_{H}) &= - \mu_{\Delta}^{2} \mathrm{Tr} \left(\Delta_{H}^{2} \right) + \lambda_{\Delta} \left(\mathrm{Tr} \left(\Delta_{H}^{2} \right) \right)^{2} \end{split}$$

Higgs potential

$$\begin{split} V_{\mathrm{mix}}\left(H,\Delta_{H},\Phi_{H}\right) &= +M_{H\Delta}\left(H^{\dagger}\Delta_{H}H\right) - M_{\Phi\Delta}\left(\Phi_{H}^{\dagger}\Delta_{H}\Phi_{H}\right) \\ &+ \lambda_{H\Phi}\left(H^{\dagger}H\right)\left(\Phi_{H}^{\dagger}\Phi_{H}\right) + \lambda_{H\Phi}^{\prime}\left(H^{\dagger}\Phi_{H}\right)\left(\Phi_{H}^{\dagger}H\right) \\ &+ \lambda_{H\Delta}\left(H^{\dagger}H\right)\mathrm{Tr}\left(\Delta_{H}^{2}\right) + \lambda_{\Phi\Delta}\left(\Phi_{H}^{\dagger}\Phi_{H}\right)\mathrm{Tr}\left(\Delta_{H}^{2}\right) \;. \end{split}$$

Note that term like $\Phi_H^T \epsilon \Delta_H \Phi_H$ is $SU(2)_H$ invariant but forbidden by $U(1)_X$

Spontaneous symmetry breaking

Let parametrize the fields as

$$H_1 = \begin{pmatrix} G^+ \\ \frac{\nu+h}{\sqrt{2}} + i\frac{G^0}{\sqrt{2}} \end{pmatrix}, H_2 = \begin{pmatrix} H^+ \\ H_2^0 \end{pmatrix}, \Phi_H = \begin{pmatrix} G_H^p \\ \frac{\nu_{\Phi} + \phi_2}{\sqrt{2}} + i\frac{G_H^0}{\sqrt{2}} \end{pmatrix}, \Delta_H = \begin{pmatrix} \frac{-\nu_{\Delta} + \delta_3}{2} & \frac{1}{\sqrt{2}}\Delta_p \\ \frac{1}{\sqrt{2}}\Delta_m & \frac{\nu_{\Delta} - \delta_3}{2} \end{pmatrix}$$

where v, v_{Φ} and v_{Δ} are VEVs to be determined by minimization of the potential. The set $\Psi_G \equiv \{G^0, G^+, G^0_H, G^p_H\}$ are Goldstone bosons.

$$V_T(v, v_{\Delta}, v_{\Phi}) = \frac{1}{4} \left[\lambda_H v^4 + \lambda_{\Phi} v_{\Phi}^4 + \lambda_{\Delta} v_{\Delta}^4 + 2 \left(\mu_H^2 v^2 + \mu_{\Phi}^2 v_{\Phi}^2 - \mu_{\Delta}^2 v_{\Delta}^2 \right) - \left(M_{H\Delta} v^2 + M_{\Phi\Delta} v_{\Phi}^2 \right) v_{\Delta} + \lambda_{H\Phi} v^2 v_{\Phi}^2 + \lambda_{H\Delta} v^2 v_{\Delta}^2 + \lambda_{\Phi\Delta} v_{\Phi}^2 v_{\Delta}^2 \right]$$

Spontaneous symmetry breaking

We will obtain the following equations by minimizing the potential

$$\left(2\lambda_H v^2 + 2\mu_H^2 - M_{H\Delta}v_\Delta + \lambda_{H\Phi}v_\Phi^2 + \lambda_{H\Delta}v_\Delta^2\right) = 0,$$

$$\left(2\lambda_{\Phi}v_{\Phi}^2+2\mu_{\Phi}^2-M_{\Phi\Delta}v_{\Delta}+\lambda_{H\Phi}v^2+\lambda_{\Phi\Delta}v_{\Delta}^2
ight) = 0,$$

$$4\lambda_{\Delta}v_{\Delta}^3 - 4\mu_{\Delta}^2v_{\Delta} - M_{H\Delta}v^2 - M_{\Phi\Delta}v_{\Phi}^2 + 2v_{\Delta}\left(\lambda_{H\Delta}v^2 + \lambda_{\Phi\Delta}v_{\Phi}^2\right) = 0.$$

By solving this set of coupled equations, one can get solutions for v, v_{Φ} and v_{Δ} in terms of other parameters in the potential.

Scalar Mass Spectrum

First block in basis of $S = \{h, \phi_2, \delta_3\}$

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} 2\lambda_{H}v^{2} & \lambda_{H\Phi}vv_{\Phi} & \frac{\nu}{2}\left(M_{H\Delta}-2\lambda_{H\Delta}v_{\Delta}\right) \\ \lambda_{H\Phi}vv_{\Phi} & 2\lambda_{\Phi}v_{\Phi}^{2} & \frac{\nu_{\Phi}}{2}\left(M_{\Phi\Delta}-2\lambda_{\Phi\Delta}v_{\Delta}\right) \\ \frac{\nu}{2}\left(M_{H\Delta}-2\lambda_{H\Delta}v_{\Delta}\right) & \frac{\nu_{\Phi}}{2}\left(M_{\Phi\Delta}-2\lambda_{\Phi\Delta}v_{\Delta}\right) & \frac{1}{4\nu_{\Delta}}\left(8\lambda_{\Delta}v_{\Delta}^{3}+M_{H\Delta}v^{2}+M_{\Phi\Delta}v_{\Phi}^{2}\right) \end{pmatrix}$$

This matrix can be diagonalized by an orthogonal matrix O^H ,

$$(O^H)^T \cdot \mathscr{M}_H^2 \cdot O^H = \text{Diag}(m_{h_1}^2, m_{h_2}^2, m_{h_3}^2)$$

- h_1 is identified as 125 GeV SM-like Higgs while h_2 and h_3 are heavier scalars
- Now the 125 GeV SM-like Higgs is mixture of $\{h, \phi_2, \delta_3\}$

Scalar Mass Spectrum

The second block is also 3×3 . In the basis of $D = \{G_H^p, H_2^{0*}, \Delta_p\}$, it is given by

$$\mathcal{M}_{D}^{2} = \begin{pmatrix} M_{\Phi\Delta}v_{\Delta} + \frac{1}{2}\lambda'_{H\Phi}v^{2} & \frac{1}{2}\lambda'_{H\Phi}vv_{\Phi} & -\frac{1}{2}M_{\Phi\Delta}v_{\Phi} \\ \frac{1}{2}\lambda'_{H\Phi}vv_{\Phi} & M_{H\Delta}v_{\Delta} + \frac{1}{2}\lambda'_{H\Phi}v_{\Phi}^{2} & \frac{1}{2}M_{H\Delta}v \\ -\frac{1}{2}M_{\Phi\Delta}v_{\Phi} & \frac{1}{2}M_{H\Delta}v & \frac{1}{4v_{\Delta}}\left(M_{H\Delta}v^{2} + M_{\Phi\Delta}v_{\Phi}^{2}\right) \end{pmatrix}$$

This matrix can also be diagonalized by an orthogonal matrix O^D

$$(O^D)^T \cdot \mathscr{M}_D^2 \cdot O^D = \operatorname{Diag}(m_{\tilde{G}^p}^2, m_D^2, m_{\Delta}^2).$$

- \tilde{G}^p is a Goldstone boson which will be eaten by W'
- *D* is the dark matter candidate in the model.

Scalar Mass Spectrum

The final one is a 4×4 diagonal block with

$$egin{aligned} m_{H^\pm}^2 &= M_{H\Delta} v_\Delta - rac{1}{2} \lambda_H' v^2 + rac{1}{2} \lambda_{H\Phi}' v_\Phi^2 \ m_{G^\pm}^2 &= m_{G^0}^2 = m_{G_H^0}^2 = 0 \ , \end{aligned}$$

- $m_{H^{\pm}}$ is the mass of charged Higgs
- $m_{G^{\pm}}$, $m_{G^{0}}$ and $m_{G_{H}^{0}}$ are masses of the four Goldstone boson fields G^{\pm} , G^{0} and G_{H}^{0} , respectively.

Accidental Z2 symmetry assignment

	$h_1, h_2, h_3, W^{\pm}, Z, Z', Z'', f_{L,R}^{SM}$	$D, \tilde{\Delta}, H^{\pm}, W'^{(p,m)}, f^H_{L,R}$
\mathcal{Z}_2	+1	-1

Mass matrix diagonalization

One can diagonalize the 4 by 4 mass matrix by an orthogonal rotation matrix as follows:

$$\mathcal{O}_{M_{Y}=0}^{4\times4} = \begin{pmatrix} c_{W} & -s_{W} & 0 & 0 \\ s_{W} & c_{W} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{pmatrix} \qquad \text{Where} \quad \mathcal{O} = \begin{pmatrix} c_{\psi}c_{\phi} - s_{\theta}s_{\phi}s_{\psi} & -s_{\psi}c_{\phi} - s_{\theta}s_{\phi}c_{\psi} & -c_{\theta}s_{\phi} \\ c_{\psi}s_{\phi} + s_{\theta}c_{\phi}s_{\psi} & -s_{\psi}s_{\phi} + s_{\theta}c_{\phi}c_{\psi} & c_{\theta}c_{\phi} \\ -c_{\theta}s_{\psi} & -c_{\theta}c_{\psi} & s_{\theta} \end{pmatrix},$$

with
$$an(\phi) = rac{(g_H^2 v_\Phi^2 - 2M_{Z_3}^2) v M_{Z^{\rm SM}}}{g_H[(v^2 - v_\Phi^2) M_{Z_3}^2 + v_\Phi^2 (M_{Z^{\rm SM}})^2]}\,,$$

$$\tan(\theta) = \frac{g_H^2 [v_\Phi^2 (M_{Z^{\rm SM}})^2 - (v^2 + v_\Phi^2) M_{Z_3}^2] + 4M_{Z_3}^2 [M_{Z_3}^2 - (M_{Z^{\rm SM}})^2]}{2g_H g_X [(v^2 - v_\Phi^2) M_{Z_3}^2 + v_\Phi^2 (M_{Z^{\rm SM}})^2]} \cos\phi,$$

and

$$\cot(\psi) = \frac{g_H(M_{Z_1}^2 - M_X^2 - 2g_X^2 v_{\Phi}^2)}{g_X(g_H^2 v_{\Phi}^2 - 2M_{Z_1}^2)} \frac{\cos\theta}{\sin\phi} - \sin\theta \cot\phi.$$

Observables	LEP Data	CEPC Precision [23]	Standard Model
M_Z [GeV]	91.1876 ± 0.0021	$5 imes 10^{-4}$	91.1884 ± 0.0020
Γ_Z [GeV]	2.4952 ± 0.0023	$5.06 imes 10^{-4}$	2.4942 ± 0.0008
Γ_{had} [GeV]	1.7444 ± 0.0020	_	1.7411 ± 0.0008
Γ_{inv} [MeV]	499.0 ± 1.5	—	501.44 ± 0.04
$\Gamma_{l^+l^-}$ [MeV]	83.984 ± 0.086		83.959 ± 0.008
$\sigma_{had}[nb]$	41.541 ± 0.037	—	41.481 ± 0.008
R_e	20.804 ± 0.050		20.737 ± 0.010
R_{μ}	20.785 ± 0.033	0.05%	20.737 ± 0.010
$R_{ au}$	20.764 ± 0.045	0.05%	20.782 ± 0.010
R_b	0.21629 ± 0.00066	0.08%	0.21582 ± 0.00002
R_c	0.1721 ± 0.0030	—	0.17221 ± 0.00003
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	—	0.01618 ± 0.00006
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013	—	0.01618 ± 0.00006
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017	_	0.01618 ± 0.00006
$A_{FB}^{\left(0,b ight) }$	0.0992 ± 0.0016	0.15%	0.1030 ± 0.0002
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035		0.0735 ± 0.0001
$A_{FB}^{\left(0,s ight) }$	0.0976 ± 0.0114	—	0.1031 ± 0.0002
A_e	0.15138 ± 0.00216		0.1469 ± 0.0003
A_{μ}	0.142 ± 0.015	—	0.1469 ± 0.0003
$A_{ au}$	0.136 ± 0.015	—	0.1469 ± 0.0003
A_b	0.923 ± 0.020	_	0.9347
A_c	0.670 ± 0.027		0.6677 ± 0.0001
A_s	0.0895 ± 0.091		0.9356

LEP and CEPC observables

VQ Tran-TeV 2019-NNU

Z' composition

 $\operatorname{Here}_{4/21/19} Z_2 \equiv Z'$

VQ Tran–TeV 2019-NNU