

[arXiv:1901.06532] In collaboration with Lei Wu, Huaying Zhang,

Nanjing Normal University, April 20, 2019

Bin Zhu zhubin@mail.nankai.edu.cn

Do we live at an exciting time as particle physicist?

- We found Higgs boson $m_h = 125$ GeV.
- We only found Higgs boson.

Is there something special about the Higgs boson from a gravitational point of view?

gravity might help us control hierarchy problem!

It is the Higgs boson that we all know

 The Standard Model predicts precisely how the Higgs boson should be produced.

 The Standard Model predicts precisely how the Higgs boson should decay.

/ 16

Something special about the Higgs boson

Is there any bound on its value? This is a dimension-4 operator: it is a fundamental constant of nature.

Bin Zhu zhubin@mail.nankai.edu.cn

The non-decoupling effect

• Consider Standard Model with a non-minimal coupling to R in Jordan frame

$$S_{J} = \int d^{4}x \sqrt{-g^{J}} \left(\frac{1}{2}M^{2} + \xi H^{\dagger}H\right) R^{J} - \frac{1}{4} \sum_{j} F_{\mu\nu j} F_{j}^{\mu\nu} + (D_{\mu}H)^{\dagger} (D^{\mu}H) - V(H)$$

Gravity is not canonical

Equation of motion after differentiating with action is

$$\left\{R^J_{\mu\nu} - \frac{1}{2}g^J_{\mu\nu}R^J + \left(g^J_{\mu\nu}\Delta_\lambda\Delta^\lambda - \Delta_\mu\Delta_\nu\right)\right\}\Omega^2 = -\frac{1}{M_P^2}T_{\mu\nu}$$

Obtain a canonical Einstein equation

Weyl transformation

We go from the Jordan frame to the Einstein frame

$$g^{J}_{\mu\nu} = \Omega^{-2} g_{\mu\nu}$$
$$g^{\mu\nu J} = \Omega^{2} g^{\mu\nu}$$
$$\sqrt{-g^{J}} = \Omega^{-4} \sqrt{-g}$$
$$R^{J} = \Omega^{2} \left(R - 6\Delta^{\lambda} \Delta_{\lambda} \log \Omega + 6g^{\mu\nu} \Delta_{\mu} \log \Omega \Delta_{\nu} \log \Omega \right)$$

Scale factor

$$\Omega^2 = \frac{M^2 + 2\xi H^{\dagger} H}{M_P^2}$$

Bin Zhu zhubin@mail.nankai.edu.cn

Non-decoupling effect in Einstein frame

gravition is now canonical with higgs not being canonical.

Here is the action after Weyl transformation

$$\begin{split} S_E &= -\int d^4x \sqrt{-\tilde{g}} \left[\frac{1}{2} M_P^2 \tilde{R} - \frac{3\xi^2}{M_P^2 \Omega^4} \partial^\mu \left(H^\dagger H \right) \partial_\mu \left(H^\dagger H \right) \right. \\ &\left. - \frac{1}{\Omega^2} \left(D^\mu H \right)^\dagger \left(D_\mu H \right) + \frac{\mathcal{L}_{SM}}{\Omega^4} \end{split}$$

One notices that the Higgs boson kinetic term is not canonically normalized. We need to diagonalize this term. use the unitary gauge

$$H = \frac{1}{\sqrt{2}}(0, h+v)^{\top}$$

• The Planck mass is defined by

$$\left(M^2 + \xi v^2\right) = M_P^2$$

Additional transformation?

Higgs doublet must be transformed too

Ways Forward: canonical normalization

• To diagonalize the Higgs boson kinetic term

$$\frac{d\chi}{dh} = \sqrt{\frac{1}{\Omega^2} + \frac{6\xi^2 v^2}{M_P^2 \Omega^4}}$$

• To leading order in Ω^{-1}

$$h = \frac{1}{\sqrt{1+\beta}}\chi \quad \beta = 6\xi^2 v^2 / M_P^2$$

• The couplings of the Higgs boson to particles of the SM are rescaled!

$$yh\overline{\psi}\psi o \frac{y}{\sqrt{1+\beta}}\chi\overline{\psi}\psi$$

Jordan Frame Detection

Schematic form of the Jordan frame equation The decoupling can also be seen in the Jordan frame

$$\mathcal{L}^{(2)} = -\frac{M^2 + \xi v^2}{8} \left(h^{\mu\nu} \Box h_{\mu\nu} + 2\partial_{\nu} h^{\mu\nu} \partial^{\rho} h_{\mu\rho} - 2\partial_{\nu} h^{\mu\nu} \partial_{\mu} h^{\rho}_{\rho} - h^{\mu}_{\mu} \Box h^{\nu}_{\nu} \right) + \frac{1}{2} \left(\partial_{\mu} h \right)^2 + \xi v \left(\Box h^{\mu}_{\mu} - \partial_{\mu} \partial_{\nu} h^{\mu\nu} \right) h$$

same renormalization factor!

$$\begin{split} h &= \frac{1}{\sqrt{1+\beta}} \chi \\ h_{\mu\nu} &= \frac{1}{M_P} \tilde{h}_{\mu\nu} - \frac{2\xi v}{M_P^2 \sqrt{1+\beta}} \overline{g}_{\mu\nu} \chi \end{split}$$

Bin Zhu zhubin@mail.nankai.edu.cn

Bound on the non-minimal coupling from the LHC

• The LHC experiments produce fits to the data assuming that all Higgs boson couplings are modified by a single parameter

 $\kappa = 1/\sqrt{1+\beta}$

• In the narrow width approximation, one finds

$$\sigma(ii \to h \to ff) = \sigma(ii \to h) \cdot \text{BR}(h \to ff)$$

= $\kappa^2 \sigma_{\text{SM}}(ii \to h) \cdot \text{BR}_{\text{SM}}(h \to ff)$

Bound on the non-minimal coupling from the LHC

• The signal strength of a single Higgs boson in a specific analysis

$$u = \sum_{i} c_i \omega_i$$

• For i-th channel, the signal strength can be calculated

$$c_{i} = \frac{[\sigma \times BR]_{i}}{[\sigma_{SM} \times BR_{SM}]_{i}}, \quad \omega_{i} = \frac{\epsilon_{i} [\sigma_{SM} \times BR_{SM}]_{i}}{\sum_{j} \epsilon_{j} [\sigma_{SM} \times BR_{SM}]_{j}}$$

Actual bound from numerical analysis

Figure: Bounds on non-minimal coupling ξ from the LHC (run I+run2), HL-LHC(14 TeV, 3 fb⁻¹), ILC(250GeV, 2 fb⁻¹), FCC-ee (240 GeV, 5 fb⁻¹) and CEPC(240 GeV, 5 fb⁻¹).

2/1

Unitary constraint on cut-off

Does the theory become unnatural at the scale $\Lambda = M_P/\xi$

In terms of power counting and unitary constraint, one gets the cut-off $\Lambda=M/\xi$

- For larger ξ satisfying the bound, we will have a much lower cut-off i.e. $\Lambda=10^3~{\rm GeV}$

Does our bound make sense?

Do we need new physics above the bound like supersymmetry or strong coupling?

Self-healing of unitarity

There is no need to worry about cut-off problem!

• Perturbative unitarity of the S-matrix implies at one-loop.

$$T^{\text{tree}} \Big|^2 = \operatorname{Im} \left(T^{1-\operatorname{loop}} \right)$$

- This is optical theorem and is a test of unitarity
- Look at the gravitational scattering between the Higgs boson and pseudo-Goldstone particles.

If so

New physics is not needed above M/ξ . The actual cut-off can be arbitrary as Plank scale.

$$A_{\text{tree}} = \frac{8\pi G_N(\overline{\phi})}{s} \left[s^2 \left(6\xi_1 \xi_2 + \xi_1 + \xi_2 \right) + ut \right]$$

At one-loop

at tree-levels

$$A_{\rm 1-loop} = -\frac{G_N^2(\phi)}{15} \left[s^2 F\left(\xi_A,\xi_B,\xi\right) - ut\right] \log(-s) \label{eq:A1-loop}$$

 we thus verify the cutting relation implied by unitarity

$$|a_{0, \text{ tree }, \max}|^2 = \text{Im}\left(a_{0,1-\text{loop}, \max}\right)$$

Bin Zhu zhubin@mail.nankai.edu.cn

/16

Implication on naturalness

- Since cut-off can be very high, Higgs naturalness problems re-emerges!
- non-minimal coupling ξ provides a possible method to solve hierarchy problem.
- at spontaneously broken phase.

$$v^{2} = \frac{-m_{h}^{2}M_{P}^{2} - 4V_{0}\xi}{M_{P}^{2}\lambda_{h} + m_{h}^{2}\xi}$$

we have the one-loop correction to vev $\delta v^2 \sim \left(1-rac{\Lambda^2}{M_P^2}\xi
ight)\Lambda^2$

Fine-tuning measure

Here we define a dimensionless fine-tuning measure

$$\Delta = \delta v^2 / v^2$$

Bin Zhu zhubin@mail.nankai.edu.cn

Non-minimal Higgs-gravity coupling and naturalness at the LHC

16

Conclusions

- Large non-minimal coupling of higgs boson to gravity can be bounded by LHC data.
- Large non-minimal coupling of higgs boson to gravity does not suffer from unitarity constraints.
- Large non-minimal coupling of higgs boson to gravity can soften the fine-tuning problem of itself.