

Energizing Higgs Phenomenology for the High-Luminosity Runs

Michael Spannowsky

IPPP, Durham University

T

Nanjing

TeV Physics Conference

Michael Spannowsky

22.04.2019

Due to absence of signs of new physics

HEP has 'Big Mac' blues,

i.e. why nature not like (as natural as) advertised?

Commercial

Reality

Sure, Higgs boson does the job, but...

2

Improved/Unified way of interpretation of measurements

- interpretation of any measurement model dependent
- interpretation requires communication between different scales as well as theorists and experimentalists

Connecting measurements with UV physics

Kappa Framework

- NP models simple rescaling of couplings $\sigma(g_p) \times BR(g_d)$
- No new Lorentz
 -structures or
 kinematics

EFT

- SM degrees of freedom and symmetries
- New kinematics/ Lorentz structures

Simplified Models

- New low-energy degrees of freedom
- Subset of states of full models, reflective at scale of measurement

Full (UV) Model

- Very complex and often high-dimensional parameter space
- Allows to correlate high-scale and lowscale physics

Complexity/Flexibility

Nanjing

TeV Physics Conference

4

EFT fit is next step to tension theory with data

EFT used to set limits on UV models from non-observation of new physics Lagrangian dim-6: $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{g_i^2}{\Lambda_{\mathrm{NP}}^2} \mathcal{O}_i$

EFT used to set limits on UV models from non-observation of new physics Lagrangian dim-6: $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{g_{i}^{2}}{\Lambda_{\mathrm{NP}}^{2}} \mathcal{O}_{i}$

6

6

Results for linearised LO EFT approach

Focus on linear contribution of EFT for theory prediction: [Englert, Kogler, Schulz, MS 1511.05170]

 $\mathcal{M} = \mathcal{M}_{SM} + \mathcal{M}_{d=6}$

$$\mathcal{M}|^{2} = |\mathcal{M}_{\rm SM}|^{2} + 2\operatorname{Re}\{\mathcal{M}_{\rm SM}\mathcal{M}_{d=6}^{*}\} + \mathcal{O}(1/\Lambda^{4})$$
$$N_{\rm th} = \sigma(H+X) \times \operatorname{BR}(H \to YY)$$

 $\times \mathcal{L} \times BR(X, Y \to \text{final state})$

Number of predicted events:

We assume that production and decay factorise to good approximation

Each channel has own prod. and decay efficiencies: $N_{\rm ev} = \epsilon_p \epsilon_d N_{\rm th}$

Wilson coefficients can be (over) constraint in many decay and production processes: signal strength:

Decays:	$H \to f \bar{f}$	$H\to\gamma\gamma$	$H \to \gamma Z$
	$H \to ZZ^*$	$H \to WW^*$	
Production:	$pp \to H$	$pp \to Hj$	$pp \to Hjj$
	$pp \to HV$	$pp \rightarrow ttH$	
Nanjing	TeV Physi	ics Conference	7

signal strength:
36 indep. meas. (300 ifb)
46 indep. meas. (3000 ifb)
differential:
88 indep. meas. (300 ifb)
123 indep. meas. (3000 ifb)

Michael Spannowsky

22.04.2019

signal strength measurement

differential measurement

22.04.2019

C_{d3}

10 20 30

2

4 6

40 50

8 10

č.,

9

Interpretation of results

Composite (SILH) Higgs:

One expects $\bar{c}_g \sim \frac{m_W^2}{16\pi^2} \frac{y_t^2}{\Lambda^2}$ with comp. scale $\Lambda \sim g_
ho f$ with $|\bar{c}_g| \lesssim 5 \times 10^{-6}$ we get $\Lambda \gtrsim 2.8$ TeV

indirect probe of new physics scenario using Higgs observables only

Nanjing

Michael Spannowsky

However, how about operators that have been tested at LEP via Z and W pole measurements?

Can energy enhancement in EFT framework combined with direct Higgs measurement overcome precision of linear e+e- collider? E.g. for

Can we perform electroweak precision measurements at the LHC?

Yes, `cause energy helps accuracy within an EFT framework:

$$\frac{\mathcal{A}_{\rm SM+BSM}}{\mathcal{A}_{\rm SM}} \sim 1 + \# \frac{E^2}{\Lambda^2}$$

LHC can match LEP accuracy in high E regime

Higgs dynamics at high energies

Amplitude	High-energy primaries	Low-energy primaries	Warsaw
$\bar{u}_L d_L \to W_L Z_L, W_L h$	$\sqrt{2}a_q^{(3)}$	$\sqrt{2}\frac{g^2}{m_W^2} \left[c_{\theta_W} (\delta g_{uL}^Z - \delta g_{dL}^Z) / g - c_{\theta_W}^2 \delta g_1^Z \right]$	$\mathcal{O}_L^3 = (\bar{q}_L \sigma^a \gamma^\mu q_L) (i H^\dagger \sigma^a \overleftrightarrow{D}_\mu H)$
$\bar{u}_L u_L \to W_L W_L$ $\bar{d}_L d_L \to Z_L h$	$a_q^{(1)} + a_q^{(3)}$	$-\frac{2g^2}{m_W^2} \left[Y_L t_{\theta_W}^2 \delta \kappa_\gamma + T_Z^{u_L} \delta g_1^Z + c_{\theta_W} \delta g_{dL}^Z / g \right]$	$\mathcal{O}_L = (\bar{q}_L \gamma^\mu q_L) (iH^\dagger \overleftrightarrow{D}_\mu H)$
$\bar{d}_L d_L \to W_L W_L$ $\bar{u}_L u_L \to Z_L h$	$a_q^{(1)} - a_q^{(3)}$	$-\frac{2g^2}{m_W^2} \left[Y_L t_{\theta_W}^2 \delta \kappa_\gamma + T_Z^{d_L} \delta g_1^Z + c_{\theta_W} \delta g_{uL}^Z / g \right]$	$\mathcal{O}_R^u = (\bar{u}_R \gamma^\mu u_R) (iH^\dagger \overleftrightarrow{D}_\mu H)$ $\mathcal{O}_R^d = (\bar{d}_R \gamma^\mu d_R) (iH^\dagger \overleftrightarrow{D}_R H)$
$\bar{f}_R f_R \to W_L W_L, Z_L h$	a_f	$-\frac{2g^2}{m_W^2} \left[Y_{f_R} t_{\theta_W}^2 \delta \kappa_\gamma + T_Z^{f_R} \delta g_1^Z + c_{\theta_W} \delta g_{f_R}^Z / g \right]$	$\mathcal{O}_R = (a_R \gamma^* a_R)(i\Pi^* D_{\mu}\Pi)$

Rel to SILH:
$$a_q^{(3)} = \frac{g^2}{M^2}(c_W + c_{HW} - c_{2W})$$
 and $a_q^{(1)} = \frac{g'^2}{3M^2}(c_B + c_{HB} - c_{2B})$

Nanjing

TeV Physics Conference

13

Michael Spannowsky

22.04.2019

WZ production

[Franceschini, Panico, Pomarol, Riva, Wulzer '17]

$$\frac{\mathcal{A}_{LL}^{\rm \tiny SM + BSM}(q\bar{q} \to WZ)}{\mathcal{A}_{LL}^{\rm \tiny SM}(q\bar{q} \to WZ)} \sim 1 + a_q^{(3)} E^2$$

transverse modes minimal for central scattering though longitudinal maximal

HZ / HW production

• Isolating couplings to u- vs d-quark and L vs R is difficult at LHC

> eff. L/R couplings: $g_{\mathbf{u}}^{Z} = g_{Zu_{L}}^{h} + \frac{g_{u_{R}}^{Z}}{g_{u_{L}}^{Z}}g_{Zu_{R}}^{h}$ $g_{\mathbf{d}}^{Z} = g_{Zd_{L}}^{h} + \frac{g_{d_{R}}^{Z}}{g_{d_{L}}^{Z}}g_{Zd_{R}}^{h}$

eff. up/down couplings:

$$g_{\mathbf{p}}^{Z} = g_{\mathbf{u}}^{Z} + \frac{\mathcal{L}_{d}(\hat{s})}{\mathcal{L}_{u}(\hat{s})} g_{\mathbf{d}}^{Z}$$

eff proton coupling:

 $g_{\mathbf{p}}^{Z} = g_{Zu_{L}}^{h} - 0.76 \ g_{Zd_{L}}^{h} - 0.45 \ g_{Zu_{R}}^{h} + 0.14 \ g_{Zd_{R}}^{h}$

• Boosted Higgs (H->bb)Z analysis

Projected sensitivity $g_{Z\mathbf{p}}^{h} \in [-0.003, 0.003]$ (300 fb⁻¹) $g_{Z\mathbf{p}}^{h} \in [-0.001, 0.001]$ (3000 fb⁻¹)

- ee and pp colliders provide complementary view. One design not sufficient to rule them all (EFT operators).
- ee even more advantageous for leptonic operators

Two Higgs properties are of particular interest

Total width of Higgs (invisible decays)

• Width affects all decay channels

- Indicative of new couplings (i.e. invisible or novel particles)
- Indicative of large coupling modifications, e.g. to second generation

Higgs self-coupling

- Indicative of ew sym. breaking potential
- Matter/Anti-matter asymmetry

Nanjing

18

CMS 'width' Measurement

19

TeV Physics Conference

Nanjing

I. Count events in on-shell region fix signal strength $\mu_{i,j} = \sigma_{H,i} \times BR_j \sim \frac{g_{ggH}g_{HZZ}}{\Gamma_H}$ II. measure $g_{ggH}^2 g_{HZZ}^2$ in off-shell region using angular correlations of 4l decay products

III. insert off-shell coupling measurement in on-shell signal strength to bound width

> Obs.(exp.) @95% C.L: Γ_H< 4.2(8.5) Γ_HSM Γ_H< 17.4 (35.3) MeV

Michael Spannowsky 22.0

See talk by Zhuoni Qian

Limit on invisible branching ratio from global Higgs fit

 In Kappa framework for Run 1: BR < 0.34 at 95% CL (assumed kV < 1)

• Extend SM EFT by light degree of freedom, e.g. fermionic DM candidate

Measure modification of self-coupling

• If new physics heavy can parametrise effect using EFT

$$\mathcal{L}_{\text{Dim6}} \supset c_H \partial^\mu (\Phi^\dagger \Phi) \partial_\mu (\Phi^\dagger \Phi) - c_6 (\Phi^\dagger \Phi)^3 + (c_y \Phi^\dagger \Phi \bar{Q}_L \Phi q_R + h.c.) + c_g \Phi^\dagger \Phi G^a_{\mu\nu} G^{a\mu\nu}$$

• Non-resonant loop-induced HH production affected

 c6 can only be constrained in global fit, after over-constraining the system

Measurement prospects at future colliders

- e+e- collider WBF most sensitive channel for large energies > 500 GeV
- Decay via H->bb
- Unless 1 TeV ILC precision low

$\Delta g/g$	Baseline			LumiUP		
	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
8HZZ	1.3%	1.0%	1.0%	0.61%	0.51%	0.51%
8 _{HWW}	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
8Hbb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
g Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1.0%
g_{Hgg}	6.4%	2.3%	1.6%	3.0%	1.2%	0.87%
8ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
8 Ηγγ	18%	8.4%	4.0%	8.2%	4.5%	2.4%
8 Нµµ	-	-	16%	-	-	10%
8 _{Htt}	-	14%	3.1%	-	7.8%	1.9%
Γ_H	11%	5.0%	1.60%	5 10%	2.5%	2.3%
λ_{HHH}	-	83%	21%	-	46%	13%

[Tian, Fujii 1311.6528]

• Promising predictions at FCC-hh 100 TeV: O(5)% accuracy

[Barr, Dolan, Englert, Ferreira, MS '14]
 [Azatov, Contino, Panico, Son '15]
 [Yao '15]
 [Papaefstathiou, Sakurai '15]
 [Papaefstathiou '15]
 [Banerjee, Englert, Mangano, Selvaggi, MS '18]

 For long time to come, HL-LHC is best chance to measure selfcoupling, but is it good enough?

decay modes $-9.4 < \kappa_\lambda^{2\sigma} < 17$

[Bizon, Gorbahn, Haisch, Zanderighi '16] [Maltoni, Pagani, Shivaji, Zhao '17] [Degrassi, Giardino, Maltoni, Pagani '16]

DOUBLE-HIGGS OBSERVABLES: Direct production (LO)

Di-Higgs production with various subsequent decay channels. Assumed CS accuracy 50%

 $-0.8 < \kappa_{\lambda}^{2\sigma} < 8.5$

[Di Vita, Grojean, Panico, Riembau, Vantalon '17] Michael Spannowsky 22.04.2019

Can Higgs-selfcoupling be bounded by theoretical considerations?

٨

- Vacuum stability Introducing new c6 contribution results in two possible instabilities for potential Iarge field instability (lfi) $V(\bar{h})$ $\mu^2 > 0, \lambda > 0, c_6 < 0$
 - → (lfi) requires resummation of large field contributions
 - → (sfi) requires too small cutoff scale for EFT approach
 - cannot connect vac. instabilities to bound on c6 within EFT
- Perturbativity

require loop corrections to be smaller than tree-level vertex

$$\Delta \lambda_{hhh}(\sqrt{s}, m_h) = -\frac{1}{16\pi^2} \lambda_{hhh}^3 C_0(m_h^2, m_h^2, s; m_h, m_h, m_h)$$

$$\left|\lambda_{hhh}/\lambda_{hhh}^{\rm SM}\right| \lesssim 6$$

for quartic: $|\beta_{\lambda_{hhhh}}/\lambda_{hhhh}| < 1 \implies |\lambda_{hhhh}/\lambda_{hhhh}^{SM}| \lesssim 68$

Nanjing

TeV Physics Conference

small field instability (sfi) V(h) $\mu^2 < 0, \ \lambda < 0, \ c_6 > 0$ ► h ►ħ ٨

Can Higgs-selfcoupling be bounded by theoretical considerations?

Largest shift in trilinear self-coupling $\mathcal{L}_6 = \frac{c_6}{\Lambda^2} |\mathcal{H}|^6$ from tree-level contributions

Nanjing

TeV Physics Conference

Summary

Optimising data analysis/interpretation is primary goal at LHC

- always trade-off between generality and precision (model dependence)
- EFT fits provide well-defined framework to extract information on UV physics from Higgs boson measurements
- Existing data and analysis strategies not sensitive enough to set strong constraints on Higgs width or Higgs selfcoupling

When sensitive, Higgs might cure us from Big Mac Blues