Highlights from ATLAS

Haifeng Li (李海峰)

山东大学(青岛)

第十四届TeV物理工作组学术研讨会 南京师范大学,2019年4月19日-22日

LHC (大型强子对撞机)

LHC (大型强子对撞机)

ATLAS数据采集@LHC二期

LHC二期运行顺利结束

- LHC delivered: 158 fb⁻¹
- ATLAS采集: 149 fb⁻¹, 效率>94%
- 可用做物理分析: 140 fb⁻¹

Mean Number of Interactions per Crossing

ATLAS数据采集@LHC二期

ATLAS数据采集@LHC二期

RPC Barrel Muon Chambers

ALFA

TGC End-Cap Muon Chambers

- LHC delivered: 158 fb⁻¹
- ATLAS采集: 149 fb⁻¹, 效率>94%
- 可用做物理分析: 140 fb⁻¹
- 最高瞬时亮度 L = 3x10²⁴cm⁻²s⁻¹
- 平均Pileup: ~35
- 2018年取数: 60 fb⁻¹
- 正常工作的探测器channel > 95% 4/20/19 李海峰

Data > 1 PB/day, 20 GB/s, 1.500.000 - 2.000.000 files / day

96.00%

95%

98.009

100.00%

94.00%

Luminosity

in pp collisi

luminosity

activities de

includes 19

ATLAS合作组:~3000人

物理objects的重建和测量

Highlights

到目前为止,ATLAS 提交文章840篇

Only can cover some highlights from recent ATLAS results with personal bias

Jet Substructure 测量 arXiv:1903.02942

VBS WZ

arXiv:1812.09740

李海峰(山东大学,青岛)

17

SM精确测量

新物理的寻找

 $p_T=3.8 \text{ TeV}$

Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST Di-jet resonance search

ATLAS-CONF-2019-007

p_T=3.8 TeV

X→di-jet 末态

ATLAS-CONF-2019-007

13 TeV, 139 fb-1, Full Run2 Data

σ × A × BR [pb] μ

1(

1(

1(

ATLAS EXPERIMENT

Run Number: 327862, Event Number: 1045863550

Date: 2017-06-26 10:52:22 CEST

Z'→ee/µµ

arXiv:1903.06248

Sequential Standard Model Z'_{SSM} < 5.1 TeV are excluded at 95 % CL

- Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns
- Masses below 1.3 TeV are excluded for all lifetimes between 0.01 ns and 30 ns

Higgs物理

ttH, $H \rightarrow \gamma \gamma$

ATLAS-CONF-2019-004

13 TeV, 139 fb-1, Full Run2 Data

log(1+S/B) weighted

Obs. (exp.) significance: 4.9 (4.2) σ

 $\mu_{t\bar{t}H} = 1.38 {}^{+0.41}_{-0.36} = 1.38 {}^{+0.33}_{-0.31} \text{ (stat.) }^{+0.13}_{-0.11} \text{ (exp.) }^{+0.22}_{-0.14} \text{ (theo.).}$

Combined Measurements of Higgs

Combined Measurements of Higgs

ATLAS-CONF-2019-005

VH, $H \rightarrow bb$: Simplified Template X.S.

- Reduce model dependence and increase sensitivity to new physics.
- Easy to combine different channels

Spin Correlation

arXiv:1903.0757

13 TeV, 36 fb-1

- Indirectly probe the spin correlations using Δφ in lab frame
- Enhancement at low Δφ and suppression at high Δφ

Region	$f_{\text{SM}} \pm (\text{stat.,syst.,theory})$	Significance (excl. theory uncertainties
Inclusive	$1.249 \pm 0.024 \pm 0.061 \pm 0.040$	3.2 (3.8)
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.12 \pm 0.04 ~^{+0.12}_{-0.13} \pm 0.02$	0.86 (0.87)
$450 \le m_{t\bar{t}} < 550 \; \mathrm{GeV}$	$1.18 \pm 0.08 \ {}^{+0.13}_{-0.14} \pm 0.08$	1.0 (1.1)
$550 \le m_{t\bar{t}} < 800 \text{ GeV}$	$1.65 \pm 0.19 \ {}^{+0.31}_{-0.41} \pm 0.22$	1.3 (1.4)
$m_{t\bar{t}} \ge 800 \text{ GeV}$	$2.2 \pm 0.9 {}^{+2.5}_{-1.7} \pm 0.7$	0.58 (0.61)

$$x_i = f_{\text{SM}} \cdot x_{\text{spin}, i} + (1 - f_{\text{SM}}) \cdot x_{\text{nospin}, i} ,$$

f_{SM}=1: 符合标准模型

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

Single Top: ATLAS+CMS Combination

截面测量

李海峰(山东大学,青岛)

ATLAS探测器升级

LHC计划

- Long Shutdown 2019-2020: ATLAS Phase-I Upgrade
- 2021-2023: LHC Run 3。 积累150 fb-1。Run 1 + Run 2 > 300 fb-1
- Run 3 LHC expectations: 瞬时亮度 L = 3x10³⁴cm⁻²s⁻¹ at √s = 14 TeV.
 →更大的pileup
- 需要提高触发判选的能力(效率和fake rejection)

Trigger and Data Acquisition

New Small Wheel (NSW)

- MicroMegas
- Thin Gap Chambers (sTGC)

将提供

- 更精确的径迹
- 高颗粒度; 更短的响应时间

FINAL ADJUSTMENTS for PRODUCTION - VERY INTENSE CONSTRUCTION PERIOD AHEAD of US for INSTALLATION DURING LS2

Phase-I Upgrade

Trigger and Data Acquisition

 FELIX unified readout interface electronics New trigger electronics and readouts needed for Muon and LAr Galorimeter

ATLAS Phase-II 升级计划

总结

- ATLAS实验圆满完成了LHC二期的取数。各部分探测器 工作正常。共获取149 fb⁻¹, 效率>94%。可用做物理分析 的积分亮度140 fb⁻¹
- 到目前为止, ATLAS一共提交文章840篇
- ATLAS持续探测新的领域, VVV的迹象, VBS的发现, Dijet, Z'的寻找, Long Lived Particles等等
- 精确测量Higgs (员 to be, Atthe phase-II to be protein a de approved by the LHC Committee and the Upgrade Cost 程(W质量,弱混合, 新) in ally lapping to by the LHC Committee and the Upgrade Cost $H \rightarrow \mu \mu, H \rightarrow Z \gamma$

积极准备Phase-I 和Phase-II升级

Silicon Strip + Pixel tracker Muon system

Calorimeters

TDAQ

In additio 新海峰 A 出 东 办 尝 ar 青 母 TDR for the High Granularity timing detector 37

VVV

BDT 3I

WWW	判选条件
-----	------

	$WWW \rightarrow \ell \nu \ell \nu q q$	$WWW \rightarrow \ell \nu \ell \nu \ell \nu$	
Lepton	Two leptons with $p_{\rm T}$ >	Three leptons with $p_{\rm T}$ >	
	27(20) GeV and one same-sign	27(20, 20) GeV and no same-	
	lepton pair	flavour opposite-sign lepton pairs	
$m_{\ell\ell}$	$40 < m_{\ell\ell} < 400 \mathrm{GeV}$	_	
Jets	At least two jets with $p_{\rm T}$ >	_	
	$30(20) GeV$ and $ \eta < 2.5$		
m_{jj}	$m_{jj} < 300 \mathrm{GeV}$	_	
$\Delta \eta_{jj}$	$ \Delta \eta_{jj} < 1.5$	_	
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 55 {\rm GeV} (\text{only for } ee)$	_	
${\cal Z}$ boson veto	$m_{ee} < 80 \text{GeV}$ or $m_{ee} > 100 \text{GeV}$ (only for ee and μee)		
Lepton veto	No additional lepton with $p_{\rm T} > 7 {\rm GeV}$ and $ \eta < 2.5$		
<i>b</i> -jet veto	No $b\text{-jets}$ with $p_{\rm T}>25{\rm GeV}$ and $ \eta <2.5$		

BDT 4I

Input Variable	DF	on-shell SF	off-shell SF
number of reconstructed jets	6	4	6
$m_{4\ell}$	3	6	4
$E_{\mathrm{T}}^{\mathrm{miss}}$	4	1	1
$H_{ m T}^{ m lep}$	1		
$H_{ m T}^{ m had}$	5		
$m_{\ell\ell}^{ m second\ best\ pair}$	2	3	2
$m_{\ell\ell}^{ ext{best } Z}$		5	5
H _T		2	3

Input Variable	3 <i>ℓ</i> -1j	3ℓ-2j	3 <i>ℓ</i> -3j
$m_{3\ell}$	5	4	5
$m_{\ell_0\ell_1}$	7	9	
$m_{\ell_0\ell_2}$	8	8	
$m_{\ell_1\ell_2}$	10	10	
leading jet $p_{\rm T}$	12	14	
$p_{\mathrm{T}}^{\ell_0}$	3	3	
$p_{\mathrm{T}}^{\ell_1}$	6	5	8
$p_{\mathrm{T}}^{\ell_2}$	9	12	9
$E_{\mathrm{T}}^{\mathrm{miss}}$		6	11
$\Sigma p_{ m T}(\ell)$	2	2	4
$\Sigma p_{\mathrm{T}}(j)$			2
H_{T}	4	7	
total lepton charge	13	15	12
invariant mass of all leptons, jets and $E_{\rm T}^{\rm miss}$			7
invariant mass of the best $Z \to \ell \ell$ and leading jet	11		
sub-leading jet $p_{\rm T}$		11	3
m_{ii} for the two leading $p_{\rm T}$ jets		1	
$m_{\mathrm{T}}^{W ightarrow \ell u}$		13	
number of reconstructed jets			10
$m_{ii}^{\text{best }W}$			1
smallest m_{ii}			6

Uncertainty source	$\Delta \mu$	
Data-driven	+0.14	-0.15
Theory	+0.15	-0.13
Instrumental	+0.11	-0.09
MC stat. uncertainty	+0.05	-0.05
Generators	+0.04	-0.03
Total systematic uncertainty	+0.30	-0.27

SM精确测量

8 TeV, 20 fb-1

WZ 极化

W:
$$\frac{1}{\sigma_{W^{\pm}Z}} \frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8} f_{\rm L} [(1 \mp \cos\theta_{\ell,W})^2] + \frac{3}{8} f_{\rm R} [(1 \pm \cos\theta_{\ell,W})^2] + \frac{3}{4} f_0 \sin^2\theta_{\ell,W} ,$$

$$Z: \qquad \frac{1}{\sigma_{W^{\pm}Z}} \frac{\mathrm{d}\sigma_{W^{\pm}Z}}{\mathrm{d}\cos\theta_{\ell,Z}} = \frac{3}{8} f_{\mathrm{L}} (1 + 2\alpha\cos\theta_{\ell,Z} + \cos^{2}\theta_{\ell,Z}) \\ + \frac{3}{8} f_{\mathrm{R}} (1 + \cos^{2}\theta_{\ell,Z} - 2\alpha\cos\theta_{\ell,Z}) \\ + \frac{3}{4} f_{0}\sin^{2}\theta_{\ell,Z} ,$$

Figure 7: The decay angle $\theta_{\ell,W(Z)}$ is defined as the angle between the negatively (positively for W^+) charged lepton produced in the decay of the W(Z) boson as seen in the W(Z) rest frame and the direction of the W(Z) which is given in the WZ centre-of-mass frame.

Single Top: ATLAS+CMS Combination

42

Higgs Coupling Measurement

• Coupling information can be extracted from individual processes

Higgs Coupling Measurement

• Coupling information can be extracted from individual processes

Signal strength and fitting framework

$$\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i)_{SM} \cdot (BR^f)_{SM}} = \mu_i \times \mu^f$$

Leading-order motivated framework: **k-framework**

Dictionary

FIGULUTION	LUUps	Interference		Perclard modifier	
Troduction	Loops		modifier	Resolved mounter	
$\sigma(\text{ggF})$	\checkmark	t - b	κ_g^2	$1.04 \kappa_t^2 + 0.002 \kappa_b^2 - 0.04 \kappa_t \kappa_b$	
$\sigma(\text{VBF})$	-	-	-	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$	
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	t-Z	$K_{(ggZH)}$	$2.46\kappa_Z^2 + 0.46\kappa_t^2 - 1.90\kappa_Z\kappa_t$	
$\sigma(WH)$	-	-	-	κ_W^2	
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2	
$\sigma(tHW)$	-	t - W	-	$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$	
$\sigma(tHq)$	-	t - W	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$	
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2	
Partial decay width					
Γ^{bb}	-	-	-	κ_b^2	
Γ^{WW}	-	-	-	κ_W^2	
Γ^{gg}	\checkmark	t - b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$	
$\Gamma^{\tau\tau}$	-	-	-	κ_{τ}^2	
Γ^{ZZ}	-	-	-	κ_Z^2	
Γ^{cc}	-	-	-	$\kappa_c^2 (= \kappa_t^2)$	
$\Gamma^{\gamma\gamma}$	\checkmark	t - W	κ_{γ}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$	
$\Gamma^{Z\gamma}$	\checkmark	t - W	$\kappa^2_{(Z\gamma)}$	$1.12 \kappa_W^2 - 0.12 \kappa_W \kappa_t$	
Γ^{ss}	-	-	-	$\kappa_s^2 (= \kappa_b^2)$	
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2	
Total width ($B_{inv} = B_{undet} = 0$)					
				$0.58 \kappa_b^2 + 0.22 \kappa_W^2$	
				$+0.08 \kappa_g^2 + 0.06 \kappa_\tau^2$	
Γ_H	\checkmark	-	κ_H^2	$+0.03 \kappa_Z^2 + 0.03 \kappa_c^2$	
				+0.0023 κ_{γ}^2 + 0.0015 $\kappa_{(Z\gamma)}^2$	
				+0.0004 κ_s^2 + 0.00022 κ_μ^2	

4/20/19

Profile likelihood and systematics

Nuisance parameters: about 4200 NPs (most of them are related to MC statistics uncertainties), one single fitting takes hours

$$\Lambda(\vec{\alpha}) = \frac{L(\vec{\alpha}, \hat{\vec{\theta}}(\vec{\alpha}))}{L(\hat{\vec{\alpha}}, \hat{\vec{\theta}})}$$
POI

- RooFit development
- Asymptotic method

- Most of experimental systematics are assumed uncorrelated
- Main correlated systematics are the signal theoretical uncertainties